Representation Theory / Spring 2010 / Erzsébet Horváth \& Alex Küronya

Practice Session \# 5

Due date: March 30 ${ }^{\text {th }}$

The homework problem with an asterisk is the one you are supposed to submit.

1. Give an isomorphism between the vector space of local derivations of $\mathcal{O}_{M, x}$ and $T_{x} M$. Show that

$$
T_{x} M \simeq\left(\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}\right)^{*}
$$

2. Consider $C^{\infty}(M, \mathbb{R})$, the ring of smooth functions on the manifold M, let X be a smooth vector field on M. Check that the assignment $X(f)_{m} \stackrel{\text { def }}{=} X_{m}(f)$ gives a derivation of $C^{\infty}(M, \mathbb{R})$.
3. Prove that the spaces of vector fields on M is isomorphic to $\operatorname{Der}_{\mathbb{R}}\left(C^{\infty}(M, \mathbb{R})\right)$.
4. Let $U \subseteq M$ be a coordinate neighbourhood, $X=\sum_{i=1}^{n} a_{i} \partial_{i}$ and $Y=\sum_{j=1}^{n} b_{j} \partial_{j}$ be vector fields on M. Verify that the vector field corresponding to the derivation $[X, Y] \stackrel{\text { def }}{=} X Y-Y X$ is

$$
\sum_{i, j=1}^{n}\left(a_{j}\left(\partial_{j} b_{i}\right)-b_{j}\left(\partial_{j} a_{i}\right)\right) \partial_{i}
$$

Definition. Let G be a Lie group. A vector field X on G is called left-invariant if $\left(T_{g} L_{h}\right) X_{h}=X_{g h}$ for every $g, h \in G$.
5. Show that the real vector space of left-invariant vector fields on a Lie group G forms a Lie algebra of dimension $\operatorname{dim} G$ with the bracket operation introduced above. Consequently, deduce that for every $X \in T_{1} G$ there exists a unique left-invariant vector field Y on G for which $(Y)_{1}=X$.

Homework

Definition. A matrix $A \in \operatorname{Mat}_{n}(\mathbb{R})$ is said to be unipotent, if $A-\mathrm{Id}$ is nilpotent.
6. Let $A \in \operatorname{Mat}_{n}(\mathbb{R})$ be a unipotent matrix. Check that $\log A$ is convergent, nilpotent and $\exp (\log A)=A$ holds.
7. Show that if $N \in \operatorname{Mat}_{n}(\mathbb{R})$ is nilpotent, then e^{N} is unipotent and $\left.\log (\exp N)\right)=N$.
8. For every $A \in \mathrm{GL}_{n}(\mathbb{R})$ there exists $X \in \operatorname{Mat}_{n}(\mathbb{R})$ such that $e^{X}=A$.
9. Give an example for a matrix Lie group G and $A \in \operatorname{Mat}_{n}(\mathbb{R})$ for which $e^{A} \in G$, but $A \notin \mathfrak{g}$ (that is, there exists $t \in \mathbb{R}$ such that $\left.e^{t A} \notin G\right)$.
10. Check that the Pauli matrices

$$
E_{1}=\frac{1}{2}\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), E_{2}=\frac{1}{2}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), E_{3}=\frac{1}{2}\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

form a basis of $\mathfrak{s u}(2)$. Compute $\left[E_{i}, E_{j}\right]$ for all pairs. Prove that there exists a linear isomorphism $\phi: \mathfrak{s u}(2) \longrightarrow \mathbb{R}^{3}$ such that $\phi([A, B])=\phi(A) \times \phi(B)$ (where \times denotes the usual cross product of vectors).
11. Verify that $\mathfrak{s u} u(2) \simeq \mathfrak{s o}(3)$.
12. * Prove that for all matrices $A, B \in \operatorname{Mat}_{n}(\mathbb{R})$, one has

$$
\left(\operatorname{ad}_{A}\right)^{m}(B)=\sum_{k=0}^{m}\binom{m}{k} A^{k} B(-A)^{m-k}
$$

Use the above identity to conclude that $e^{\operatorname{ad}_{A}}(B)=\operatorname{Ad}_{e^{A}}(B)=e^{A} B e^{-A}$.
13. Let G be a Lie group, $\rho_{i}: G \rightarrow \operatorname{GL}\left(V_{i}\right)(i=1,2)$ two representations of G. Recall that the tensor product of the two representations is given by

$$
\begin{aligned}
\rho_{1} \otimes \rho_{2}: G & \longrightarrow G L\left(V_{1} \otimes V_{2}\right) \\
g & \mapsto
\end{aligned} \rho_{1}(g) \otimes \rho_{2}(g) .
$$

Let \mathfrak{g} be the Lie algebra of G, then the ρ_{i} 's induce Lie algebra representations $\tilde{\rho}_{i}: \mathfrak{g} \rightarrow \mathfrak{g l}\left(V_{i}\right)$ via the tangent functor. Describe the induced action of \mathfrak{g} on $V_{1} \otimes V_{2}$.
14. Let $\exp : \mathfrak{s l}(2, \mathbb{R}) \rightarrow \mathrm{SL}(2, \mathbb{R})$ denote the exponential map.
(1) If $A \in \mathfrak{s l}(2, \mathbb{R})$ then prove that the eigenvalues of A are either of the form $\{\lambda,-\lambda\}$ or $\{i \lambda,-i \lambda\}$ where $\lambda \in \mathbb{R}$.
(2) Describe all possible sets of eigenvalues of matrices in $\operatorname{SL}(2, \mathbb{R})$.
(3) Compute the image of exp and conclude that it is not dense in $\operatorname{SL}(2, \mathbb{R})$.
15. (i) Let $A \in \mathrm{SO}(3)$. Prove that A has an eigenvalue with absolute value 1 .
(ii) Find an orthonormal basis with respect to which A has the form

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right)
$$

(iii) Prove that exp : $\mathfrak{s o}(3) \rightarrow \mathrm{SO}(3)$ is surjective.

