Representation Theory / Spring 2010 / Erzsébet Horváth & Alex Küronya

PRACTICE SESSION # 3

Due date: March 16th

The homework problem with an asterisk is the one you are supposed to submit.

1. Let G be a topological group. Then the following hold.

- (1) Every open subgroup of G is closed, conversely, every closed subgroup of finite index is open.
- (2) For a subgroup $H \leq G$, H is open if and only if G/H is discrete.
- (3) All subgroups containing a neighbourhood of 1_G are open.

DEFINITION. A topological space X is called *totally disconnected*, if every connected component of X has one point.

2. Show that the connected component G° of a topological group G is a closed connected normal subgroup of G for which G/G° is a totally disconnected Hausdorff group. In addition, show that the components of G are exactly the cosets of G° , and every open subgroup of G contains G° .

3. It is known that $E \stackrel{\text{def}}{=} \overline{\{1_G\}}$ is a normal subgroup of G. Verify that G/E is the universal Hausdorff subgroup on G in the following sense. For every morphism of topological groups $\phi : G \to H$ with H Hausdorff, there exists a unique morphism of topological groups $\tilde{\phi} : G/E \to H$ such that $\tilde{\phi} \circ q = \phi$.

4. In this exercise we construct a very important map of topological groups $\phi : \mathrm{SU}(n, \mathbb{C}) \to \mathrm{SO}(3, \mathbb{R})$, which is a twofold covering space.

(1) Let V be the set of 2×2 self-adjoint complex matrices A with Tr(A) = 0. Define a scalar product on V by setting

$$\langle A, B \rangle \stackrel{\text{def}}{=} \frac{1}{2} \operatorname{Tr}(AB) \; .$$

Prove that the so-called Pauli matrices

$$A_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, A_1 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, A_1 = \begin{pmatrix} 1 & 0 \\ & -1 \end{pmatrix}$$

for an orthonormal basis of V. We will identify V with \mathbb{R}^3 via this basis.

(2) Show that the function

$$\begin{aligned} \phi : \mathrm{SU}(2) & \longrightarrow & \mathrm{End}_{\mathbb{R}}(V) \\ U & \mapsto & (A \mapsto UAU^{-1}) \end{aligned}$$

is a well-defined morphism of topological groups with $\operatorname{im} \phi \subseteq \operatorname{SO}(3, \mathbb{R})$, that is, it gives rise to a morphism of topological groups $\phi : \operatorname{SU}(2, \mathbb{C}) \to \operatorname{SO}(3, \mathbb{R})$ (you can make use of the fact that $\operatorname{SU}(2, \mathbb{C})$ is connected).

- (3) Prove that ϕ is two-to-one and onto (if you know what a covering space is, show that ϕ is a covering space as well).
- (4) For $w, z \in \mathbb{C}$ arbitrary, with $|w|^2 + |z|^2 = 1$, check that the matrix

$$\left(\begin{array}{cc} w & -\overline{z} \\ z & \overline{w} \end{array}\right)$$

is an element of $\mathrm{SU}(2,\mathbb{C})$. Conversely, verify that every matrix $U \in \mathrm{SU}(2,\mathbb{C})$ can be expressed in the above form for a unique pair of complex numbers (w, z). (This way one can think of $\mathrm{SU}(2,\mathbb{C})$ as $\mathbb{S}^3 \subseteq \mathbb{C}^2 = \mathbb{R}^4$.)

5. (i) Let $n \ge 2$, $v \in \mathbb{R}^n$ an arbitrary vector. Check that there exists a continuous path $\gamma : I \to SO(n, \mathbb{R})$ with $\gamma(0) = Id$ and $\gamma(1)v = (1, 0, ..., 0)$.

(ii) Using induction on n, show that $\mathrm{SO}(n,\mathbb{R})$ is a connected topological group.

(*iii*) Prove that O(n, R) has exactly two connected components, one of which is $SO(n, \mathbb{R})$.

6. Which of the groups $\operatorname{GL}(n,\mathbb{R})$, $\operatorname{SL}(n,\mathbb{R})$, \mathbb{R}^n , \mathbb{S}^1 , $\operatorname{O}(n,\mathbb{R})$, $\operatorname{SO}(n,\mathbb{R})$, $\operatorname{U}(n,\mathbb{C})$, $\operatorname{SU}(n,\mathbb{C})$, $\operatorname{Sp}(n,\mathbb{R})$ are compact?

Homework

7. * (Polar decomposition and connectedness of $SL(n, \mathbb{R})$). Using the following line of thought, prove that $SL(n, \mathbb{R})$ is a connected topological group.

- (1) For a symmetric positive definite matrix $A \in \operatorname{GL}(n, \mathbb{R})$ there exists an orthogonal matrix B such that $A = BDB^{-1}$, with D a diagonal matrix with strictly positive diagonal entries $\lambda_1, \ldots, \lambda_n$.
- (2) With A as above, there exists a unique matrix $A^{1/2} \in \operatorname{GL}(n,\mathbb{R})$ for which $(A^{1/2})^2 = A$.
- (3) For a matrix $M \in GL(n, \mathbb{R})$ there exists a unique pair of matrices (B, A) where $B \in SO(n, \mathbb{R})$, A is symmetric and positive definite, and M = BA. In addition, det A = 1.
- (4) Using the fact that $SO(n, \mathbb{R})$ is connected, prove that $SL(n, \mathbb{R})$ is a connected topological group.

8. Prove that every discrete topological space is totally disconnected. Is the converse true?

- 9. Let X, $\{X_{\alpha} \mid \alpha \in I\}$ be (non-empty) totally disconnected topological spaces.
 - (1) Show that every subspace of X is totally disconnected.
 - (2) Prove that $\prod_{\alpha \in I} X_{\alpha}$ is totally disconnected if and only if every X_{α} is so.
- 10. Let G be a connected topological group, $N \triangleleft G$ a discrete normal subgroup. Show that $N \subseteq Z(G)$.
- 11. Prove that the topological groups $\operatorname{GL}(n,\mathbb{C})$, $\operatorname{SL}(n,\mathbb{C})$, $\operatorname{U}(n,\mathbb{C})$, $\operatorname{SU}(n,\mathbb{C})$ are all connected.
- 12. Show that $\operatorname{GL}(n, \mathbb{R})$ is not connected, but has the two connected components $\operatorname{GL}(n, \mathbb{R})^+ = \{A \in \operatorname{GL}(n, \mathbb{R}) \mid \det A > 0\}$ and $\operatorname{GL}(n, \mathbb{R})^- = \{A \in \operatorname{GL}(n, \mathbb{R}) \mid \det A < 0\}$.
- 13. (The group of rotations in the plane) Prove that the matrix

$$M(\phi) \stackrel{\text{def}}{=} \left(\begin{array}{c} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{array} \right)$$

belongs to SO(2, \mathbb{R}). Check that $M(\phi_1)M(\phi_2) = M(\phi_1 + \phi_2)$. Next, verify that every element of O(2, \mathbb{R}) is of one of the forms

$$M^{+}(\phi) = \begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \text{ or } M^{-}(\phi) = \begin{pmatrix} \cos\phi & \sin\phi \\ \sin\phi & -\cos\phi \end{pmatrix}.$$

14. Is the Heisenberg group connected? Is it compact?