Representation Theory / Spring 2010 / Erzsébet Horváth \& Alex Küronya

Practice Session \# 3

Due date: March $16^{\text {th }}$

The homework problem with an asterisk is the one you are supposed to submit.

1. Let G be a topological group. Then the following hold.
(1) Every open subgroup of G is closed, conversely, every closed subgroup of finite index is open.
(2) For a subgroup $H \leqslant G, H$ is open if and only if G / H is discrete.
(3) All subgroups containing a neighbourhood of 1_{G} are open.

Definition. A topological space X is called totally disconnected, if every connected component of X has one point.
2. Show that the connected component G° of a topological group G is a closed connected normal subgroup of G for which G / G° is a totally disconnected Hausdorff group. In addition, show that the components of G are exactly the cosets of G°, and every open subgroup of G contains G°.
3. It is known that $E \stackrel{\text { def }}{=} \overline{\left\{1_{G}\right\}}$ is a normal subgroup of G. Verify that G / E is the universal Hausdorff subgroup on G in the following sense. For every morphism of topological groups $\phi: G \rightarrow H$ with H Hausdorff, there exists a unique morphism of topological groups $\widetilde{\phi}: G / E \rightarrow H$ such that $\widetilde{\phi} \circ q=\phi$.
4. In this exercise we construct a very important map of topological groups $\phi: \mathrm{SU}(n, \mathbb{C}) \rightarrow \mathrm{SO}(3, \mathbb{R})$, which is a twofold covering space.
(1) Let V be the set of 2×2 self-adjoint complex matrices A with $\operatorname{Tr}(A)=0$. Define a scalar product on V by setting

$$
\langle A, B\rangle \stackrel{\text { def }}{=} \frac{1}{2} \operatorname{Tr}(A B)
$$

Prove that the so-called Pauli matrices

$$
A_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), A_{1}=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right), A_{1}=\left(\begin{array}{cc}
1 & 0 \\
& -1
\end{array}\right)
$$

for an orthonormal basis of V. We will identify V with \mathbb{R}^{3} via this basis.
(2) Show that the function

$$
\begin{aligned}
& \phi: \mathrm{SU}(2) \longrightarrow \operatorname{End}_{\mathbb{R}}(V) \\
& U \mapsto \\
&\left(A \mapsto U A U^{-1}\right)
\end{aligned}
$$

is a well-defined morphism of topological groups with $\operatorname{im} \phi \subseteq \operatorname{SO}(3, \mathbb{R})$, that is, it gives rise to a morphism of topological groups $\phi: \mathrm{SU}(2, \mathbb{C}) \rightarrow \mathrm{SO}(3, \mathbb{R})$ (you can make use of the fact that $\mathrm{SU}(2, \mathbb{C})$ is connected).
(3) Prove that ϕ is two-to-one and onto (if you know what a covering space is, show that ϕ is a covering space as well).
(4) For $w, z \in \mathbb{C}$ arbitrary, with $|w|^{2}+|z|^{2}=1$, check that the matrix

$$
\left(\begin{array}{cc}
w & -\bar{z} \\
z & \bar{w}
\end{array}\right)
$$

is an element of $\operatorname{SU}(2, \mathbb{C})$. Conversely, verify that every matrix $U \in \operatorname{SU}(2, \mathbb{C})$ can be expressed in the above form for a unique pair of complex numbers (w, z). (This way one can think of $\mathrm{SU}(2, \mathbb{C})$ as $\mathbb{S}^{3} \subseteq \mathbb{C}^{2}=\mathbb{R}^{4}$.)
5. (i) Let $n \geq 2, v \in \mathbb{R}^{n}$ an arbitrary vector. Check that there exists a continuous path $\gamma: I \rightarrow \mathrm{SO}(n, \mathbb{R})$ with $\gamma(0)=$ Id and $\gamma(1) v=(1,0, \ldots, 0)$.
(ii) Using induction on n, show that $\mathrm{SO}(n, \mathbb{R})$ is a connected topological group.
(iii) Prove that $\mathrm{O}(n, R)$ has exactly two connected components, one of which is $\mathrm{SO}(n, \mathbb{R})$.
6. Which of the groups $\mathrm{GL}(n, \mathbb{R}), \mathrm{SL}(n, \mathbb{R}), \mathbb{R}^{n}, \mathbb{S}^{1}, \mathrm{O}(n, \mathbb{R}), \mathrm{SO}(n, \mathbb{R}), \mathrm{U}(n, \mathbb{C}), \mathrm{SU}(n, \mathbb{C}), \mathrm{Sp}(n, \mathbb{R})$ are compact?

Homework

7. * (Polar decomposition and connectedness of $\operatorname{SL}(n, \mathbb{R})$). Using the following line of thought, prove that $\mathrm{SL}(n, \mathbb{R})$ is a connected topological group.
(1) For a symmetric positive definite matrix $A \in \operatorname{GL}(n, \mathbb{R})$ there exists an orthogonal matrix B such that $A=B D B^{-1}$, with D a diagonal matrix with strictly positive diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$.
(2) With A as above, there exists a unique matrix $A^{1 / 2} \in \mathrm{GL}(n, \mathbb{R})$ for which $\left(A^{1 / 2}\right)^{2}=A$.
(3) For a matrix $M \in \mathrm{GL}(n, \mathbb{R})$ there exists a unique pair of matrices (B, A) where $B \in \mathrm{SO}(n, \mathbb{R}), A$ is symmetric and positive definite, and $M=B A$. In addition, $\operatorname{det} A=1$.
(4) Using the fact that $\mathrm{SO}(n, \mathbb{R})$ is connected, prove that $\mathrm{SL}(n, \mathbb{R})$ is a connected topological group.
8. Prove that every discrete topological space is totally disconnected. Is the converse true?
9. Let $X,\left\{X_{\alpha} \mid \alpha \in I\right\}$ be (non-empty) totally disconnected topological spaces.
(1) Show that every subspace of X is totally disconnected.
(2) Prove that $\prod_{\alpha \in I} X_{\alpha}$ is totally disconnected if and only if every X_{α} is so.
10. Let G be a connected topological group, $N \triangleleft G$ a discrete normal subgroup. Show that $N \subseteq Z(G)$.
11. Prove that the topological groups $\operatorname{GL}(n, \mathbb{C}), \mathrm{SL}(n, \mathbb{C}), \mathrm{U}(n, \mathbb{C}), \mathrm{SU}(n, \mathbb{C})$ are all connected.
12. Show that $\mathrm{GL}(n, \mathbb{R})$ is not connected, but has the two connected components

$$
\mathrm{GL}(n, \mathbb{R})^{+}=\{A \in \mathrm{GL}(n, \mathbb{R}) \mid \operatorname{det} A>0\} \text { and } \mathrm{GL}(n, \mathbb{R})^{-}=\{A \in \mathrm{GL}(n, \mathbb{R}) \mid \operatorname{det} A<0\}
$$

13. (The group of rotations in the plane) Prove that the matrix

$$
M(\phi) \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)
$$

belongs to $\mathrm{SO}(2, \mathbb{R})$. Check that $M\left(\phi_{1}\right) M\left(\phi_{2}\right)=M\left(\phi_{1}+\phi_{2}\right)$. Next, verify that every element of $\mathrm{O}(2, \mathbb{R})$ is of one of the forms

$$
M^{+}(\phi)=\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \text { or } M^{-}(\phi)=\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
\sin \phi & -\cos \phi
\end{array}\right)
$$

14. Is the Heisenberg group connected? Is it compact?
