
Representation Theory / Spring 2010 / Erzsébet Horváth & Alex Küronya
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Due date: March 2nd

The homework problem with an asterisk is the one you are supposed to submit.

1. Let G be a topological group, H 6 G. Prove that H ⊆ G is again a subgroup. If H was a
normal subgroup in G, then so is H.

2. Show that a surjective map, which is open/closed, is a quotient map.

3. Prove that the product of two open maps is open as well.

4. Let (G, τ) be a topological group with multiplication µ and inversion i. Let H 6 G. Check that
(H, τ |H) with the operations µ|H and i|H is again a topological group.

5. (Orthogonal and special orthogonal groups) Let A ∈ Matn(R), with column vectors a1, . . . , an.
We denote the usual scalar product of the vectors x, y ∈ Rn by 〈x, y〉.

(1) Show that the following conditions on A are equivalent.
(a) The vectors a1, . . . , an are orthonormal, i.e. 〈ai, aj〉 = δij for every 1 ≤ i, j ≤ n.
(b) We have 〈Ax,Ay〉 = 〈x, y〉 for every x, y ∈ Rn.
(c) ATA = Id.

A matrix satisfying these conditions is called orthogonal, the set of n×n orthogonal matrices
is denoted by O(n,R). An interesting subset of O(n,R) is the collection of special orthogonal
matrices,

SO(n,R) def= {A ∈ O(n,R) |detA = 1} .
(2) Prove that the determinant of an orthogonal matrix equals ±1.
(3) Show that O(n), SO(n) 6 GL(n,R), in particular, they are topological groups themselves.

6. (Unitary and special unitary groups) Let A ∈ Matn(C), with column vectors a1, . . . , an. We
denote the usual Hermitian scalar product of the vectors w, z ∈ Cn by 〈w, z〉 def=

∑n
i=1wizi.

(1) Show that the following conditions on A are equivalent.
(a) The vectors a1, . . . , an are orthonormal, i.e. 〈ai, aj〉 = δij for every 1 ≤ i, j ≤ n.
(b) We have 〈Aw,Az〉 = 〈w, z〉 for every w, z ∈ Cn.
(c) A∗A = Id.

Here A∗ def= A
T denotes the adjoint of A. A matrix satisfying these conditions is called

unitary, the set of n× n unitary matrices is denoted by U(n,C). A very important subset
of U(n,C) is the collection of special unitary matrices,

SU(n,C) def= {A ∈ U(n,C) | detA = 1} .
(2) Prove that | detA| = 1 whenever A ∈ U(n,C).
(3) Show that U(n), SU(n) 6 GL(n,C), in particular, they are topological groups themselves.

7. (Symplectic groups) Consider the skew-symmetric bilinear form S on R2n given by

S(x, y) def=
n∑

k=1

(xkyn+k − xn+kyk) .

(1) If J ∈ Mat2n(R) is the matrix

J =
(

0 Id
− Id 0

)
,

then show that S(x, y) = 〈x, Jy〉 for all x, y ∈ R2n.



(2) Check that a matrix A ∈ Mat2n(R) preserves S (in the sense that S(Ax,Ay) = S(x, y) for
all vectors x, y ∈ R2n) precisely if ATJA = J .

The group of 2n × 2n matrices satisfying the above equivalent conditions is called the symplectic
group, and is denoted by Sp(n,R).

Homework

8. Let H �G be a normal subgroup of a topological group, φ : G→ L a morphism of topological
groups such that H ⊆ kerφ. Show that there exists a unique morphism φ : G/H → L for which
φ ◦ q = φ.

9. Let X be a topological space. Prove that the following are equivalent.
(1) X is Hausdorff.
(2) The diagonal ∆(X) def= {(x, x) |x ∈ X} ⊆ X ×X is a closed subset.
(3) For any topological space Y and any two maps f, g : Y → X, the subset {y ∈ Y | f(y) = g(y)}

is closed in Y .

10. (Heisenberg group) The collection H ⊆ GL3(R) of 3× 3 real matrices of the form

A
def=

 1 a b
0 1 c
0 0 1


is a subgroup of the general linear group. Give an explicit formula for A−1.

11. * Let φ : G → H be a morphism of topological groups, j : =φ → H the inclusion, q : G →
G/ kerφ the quotient map. Show that there exists a unique morphism of topological groups φ̃ such
that

j ◦ φ̃ ◦ q = φ .

The morphism φ̃ is always bijective (but not necessarily a homeomorphism). If φ is open/closed
then φ̃ is a homeomorphism.

12. Show that GL(n,R)/ SL(n,R) ' R× as topological groups via the determinant map.

13. Let X def= Z, with the usual addition of integers µ and additive inverse i, τ the topology gen-
erated by the collection {[n,+∞) |n ∈ Z}. Show that µ is continuous with respect to τ , but i is not.

14. Let G be a topological group, N an open neighbourhood basis of 1G ∈ G.
(1) Show that for every U ∈ N there exist V,W ∈ N such that V −1 ⊆ U and W 2 ⊆ U .
(2) If U, V are open neighbourhoods of 1, then so are U ∩ V and U−1.
(3) Every open neighbourhood U of 1 contains a symmetric open neighbourhood (that is, one

for which W−1 = W ).


