Representation Theory / Spring 2010 / Erzsébet Horváth \& Alex Küronya

Practice Session \# 2

Due date: March $2^{\text {nd }}$

The homework problem with an asterisk is the one you are supposed to submit.

1. Let G be a topological group, $H \leqslant G$. Prove that $\bar{H} \subseteq G$ is again a subgroup. If H was a normal subgroup in G, then so is \bar{H}.
2. Show that a surjective map, which is open/closed, is a quotient map.
3. Prove that the product of two open maps is open as well.
4. Let (G, τ) be a topological group with multiplication μ and inversion i. Let $H \leqslant G$. Check that $\left(H,\left.\tau\right|_{H}\right)$ with the operations $\left.\mu\right|_{H}$ and $\left.i\right|_{H}$ is again a topological group.
5. (Orthogonal and special orthogonal groups) Let $A \in \operatorname{Mat}_{n}(\mathbb{R})$, with column vectors a_{1}, \ldots, a_{n}. We denote the usual scalar product of the vectors $x, y \in \mathbb{R}^{n}$ by $\langle x, y\rangle$.
(1) Show that the following conditions on A are equivalent.
(a) The vectors a_{1}, \ldots, a_{n} are orthonormal, i.e. $\left\langle a_{i}, a_{j}\right\rangle=\delta_{i j}$ for every $1 \leq i, j \leq n$.
(b) We have $\langle A x, A y\rangle=\langle x, y\rangle$ for every $x, y \in \mathbb{R}^{n}$.
(c) $A^{T} A=\mathrm{Id}$.

A matrix satisfying these conditions is called orthogonal, the set of $n \times n$ orthogonal matrices is denoted by $O(n, \mathbb{R})$. An interesting subset of $O(n, \mathbb{R})$ is the collection of special orthogonal matrices,

$$
S O(n, \mathbb{R}) \stackrel{\text { def }}{=}\{A \in O(n, \mathbb{R}) \mid \operatorname{det} A=1\}
$$

(2) Prove that the determinant of an orthogonal matrix equals ± 1.
(3) Show that $O(n), S O(n) \leqslant \mathrm{GL}(n, \mathbb{R})$, in particular, they are topological groups themselves.
6. (Unitary and special unitary groups) Let $A \in \operatorname{Mat}_{n}(\mathbb{C})$, with column vectors a_{1}, \ldots, a_{n}. We denote the usual Hermitian scalar product of the vectors $w, z \in \mathbb{C}^{n}$ by $\langle w, z\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{n} w_{i} \bar{z}_{i}$.
(1) Show that the following conditions on A are equivalent.
(a) The vectors a_{1}, \ldots, a_{n} are orthonormal, i.e. $\left\langle a_{i}, a_{j}\right\rangle=\delta_{i j}$ for every $1 \leq i, j \leq n$.
(b) We have $\langle A w, A z\rangle=\langle w, z\rangle$ for every $w, z \in \mathbb{C}^{n}$.
(c) $A^{*} A=\mathrm{Id}$.

Here $A^{*} \stackrel{\text { def }}{=} \bar{A}^{T}$ denotes the adjoint of A. A matrix satisfying these conditions is called unitary, the set of $n \times n$ unitary matrices is denoted by $U(n, \mathbb{C})$. A very important subset of $U(n, \mathbb{C})$ is the collection of special unitary matrices,

$$
S U(n, \mathbb{C}) \stackrel{\text { def }}{=}\{A \in U(n, \mathbb{C}) \mid \operatorname{det} A=1\}
$$

(2) Prove that $|\operatorname{det} A|=1$ whenever $A \in U(n, \mathbb{C})$.
(3) Show that $U(n), S U(n) \leqslant \mathrm{GL}(n, \mathbb{C})$, in particular, they are topological groups themselves.
7. (Symplectic groups) Consider the skew-symmetric bilinear form S on $\mathbb{R}^{2 n}$ given by

$$
S(x, y) \stackrel{\text { def }}{=} \sum_{k=1}^{n}\left(x_{k} y_{n+k}-x_{n+k} y_{k}\right) .
$$

(1) If $J \in \operatorname{Mat}_{2 n}(\mathbb{R})$ is the matrix

$$
J=\left(\begin{array}{ll}
0 & \mathrm{Id} \\
-\mathrm{Id} & 0
\end{array}\right),
$$

then show that $S(x, y)=\langle x, J y\rangle$ for all $x, y \in \mathbb{R}^{2 n}$.
(2) Check that a matrix $A \in \operatorname{Mat}_{2 n}(\mathbb{R})$ preserves S (in the sense that $S(A x, A y)=S(x, y)$ for all vectors $x, y \in \mathbb{R}^{2 n}$) precisely if $A^{T} J A=J$.
The group of $2 n \times 2 n$ matrices satisfying the above equivalent conditions is called the symplectic group, and is denoted by $\operatorname{Sp}(n, \mathbb{R})$.

Homework

8. Let $H \triangleleft G$ be a normal subgroup of a topological group, $\phi: G \rightarrow L$ a morphism of topological groups such that $H \subseteq \operatorname{ker} \phi$. Show that there exists a unique morphism $\bar{\phi}: G / H \rightarrow L$ for which $\bar{\phi} \circ q=\phi$.
9. Let X be a topological space. Prove that the following are equivalent.
(1) X is Hausdorff.
(2) The diagonal $\Delta(X) \stackrel{\text { def }}{=}\{(x, x) \mid x \in X\} \subseteq X \times X$ is a closed subset.
(3) For any topological space Y and any two maps $f, g: Y \rightarrow X$, the subset $\{y \in Y \mid f(y)=g(y)\}$ is closed in Y.
10. (Heisenberg group) The collection $H \subseteq \mathrm{GL}_{3}(\mathbb{R})$ of 3×3 real matrices of the form

$$
A \stackrel{\text { def }}{=}\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)
$$

is a subgroup of the general linear group. Give an explicit formula for A^{-1}.
11. * Let $\phi: G \rightarrow H$ be a morphism of topological groups, $j: \Im \phi \rightarrow H$ the inclusion, $q: \underset{\sim}{~} G \rightarrow$ $G / \operatorname{ker} \phi$ the quotient map. Show that there exists a unique morphism of topological groups $\widetilde{\phi}$ such that

$$
j \circ \widetilde{\phi} \circ q=\phi .
$$

The morphism $\widetilde{\phi}$ is always bijective (but not necessarily a homeomorphism). If ϕ is open/closed then $\widetilde{\phi}$ is a homeomorphism.
12. Show that $\mathrm{GL}(n, \mathbb{R}) / \mathrm{SL}(n, \mathbb{R}) \simeq \mathbb{R}^{\times}$as topological groups via the determinant map.
13. Let $X \stackrel{\text { def }}{=} \mathbb{Z}$, with the usual addition of integers μ and additive inverse i, τ the topology generated by the collection $\{[n,+\infty) \mid n \in \mathbb{Z}\}$. Show that μ is continuous with respect to τ, but i is not.
14. Let G be a topological group, \mathcal{N} an open neighbourhood basis of $1_{G} \in G$.
(1) Show that for every $U \in \mathcal{N}$ there exist $V, W \in \mathcal{N}$ such that $V^{-1} \subseteq U$ and $W^{2} \subseteq U$.
(2) If U, V are open neighbourhoods of 1 , then so are $U \cap V$ and U^{-1}.
(3) Every open neighbourhood U of 1 contains a symmetric open neighbourhood (that is, one for which $\left.W^{-1}=W\right)$.

