Representation Theory / Spring 2010 / Erzsébet Horváth & Alex Küronya

PRACTICE SESSION # 1

Due date: February 23rd

The homework problem with an asterisk is the one you are supposed to submit.

1. Let X be a set, G an arbitrary group. Check that the evaluation action $ev : Aut(X) \times X \to X$ and the trivial action triv : $G \times X \to X$ are indeed group actions.

2. Consider the complex upper half-plane $\mathfrak{H} \stackrel{\text{def}}{=} \{z = x + iy | y > 0\}$ with the function

$$\begin{array}{rccc} \alpha: \operatorname{SL}_2(\mathbb{R}) \times \mathfrak{H} & \longrightarrow & \mathfrak{H} \\ \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, z \right) & \mapsto & \frac{az+b}{cz+d} \end{array}.$$

Check that α is indeed a group action.

3. Let G be a group, k be an arbitrary field, V a k-vector space (not necessarily finite-dimensional). Show that every representation $\rho: G \to \operatorname{GL}_k(V)$ gives rise to a unique k-algebra homomorphism $\tilde{\rho}: k[G] \to \operatorname{End}_k(V)$ with $\tilde{\rho}|_G = \rho$, and vice versa (k[G] denotes the appropriate group algebra).

4. For given representations $\rho: G \to \operatorname{GL}(V)$ and $\sigma: G \to \operatorname{GL}(W)$, we define a natural representation of G on $\operatorname{Hom}_k(V, W)$. If $g \in G$, $\phi \in \operatorname{Hom}_k(V, W)$, and $v \in V$, then $\tau: G \to \operatorname{GL}(\operatorname{Hom}_k(V, W))$ is given by

$$(\tau(g)(\phi))(v) \stackrel{\text{def}}{=} (\sigma(g))(\phi(\rho(g^{-1})(v)))$$

Check that τ is indeed a representation of G. Compute the special case when σ is the trivial representation on k. The result is called the dual representation of ρ .

5. Continuing the previous exercise, let $\tau : G \to \operatorname{GL}(V^*)$ the the representation dual to ρ . Prove that for every $v \in V$, $w^* \in V^*$, and $g \in G$,

$$\langle (\tau(g))(w^*), (\rho(g))(v) \rangle = \langle w^*, v \rangle$$
.

6. Let V be a finite-dimensional vector space over $k, \phi \in \text{Hom}_k(V, V)$ a projection, that is, a linear map with $\phi^2 = \phi$. Prove that

$$\dim \phi(V) = \operatorname{Tr} \phi \,.$$

DEFINITION. Let $\rho: G \to \operatorname{GL}_k(V)$ be a representation of G on a finite-dimensional vector space V. Then $\chi_{\rho}: G \to k^{\times}$, the *character of* G is defined by

$$\chi_{\rho}(g) \stackrel{\text{def}}{=} \operatorname{Tr} \rho(g) \;.$$

7. Let $\rho: G \to \operatorname{GL}(V)$ be a finite-dimensional representation of the finite group G, let

$$V^G \stackrel{\text{def}}{=} \{ v \in V \,|\, \rho(g)(v) = v \text{ for all } g \in G \}$$

be the *invariant subspace* of ρ . Using the averaging map $\phi: V \to V$ given by

$$\phi(v) \stackrel{\text{def}}{=} \frac{1}{|G|} \sum_{g \in G} \rho(g)(v)$$

show that

$$\dim V^G = \frac{1}{|G|} \sum_{g \in G} \chi_\rho(g) \; .$$

Homework

DEFINITION. Let G be a group, $S \subseteq G$ a subset (not necessarily a subgroup). The *centralizer of* S is defined as

$$Z(S) \stackrel{\text{def}}{=} \{g \in G \,|\, gs = sg \text{ for all } s \in S\} \ ,$$

while the *normalizer* of S is

$$N(S) \stackrel{\text{def}}{=} \{g \in G \,|\, gS = Sg\} \ .$$

The centralizer Z(G) of G is called the *center of* G.

8. (i) Prove that $Z(G) \triangleleft G$.

(*ii*) Show that for every $S \subseteq G$, one has $Z(S) \leq G$ and $N(S) \leq G$.

(*iii*) Let $S \leq G$. Prove that N(S) is the largest subgroup of G, in which S is a normal subgroup.

9. (Class formula) Let G be a finite group with center Z, x_1, \ldots, x_m a complete system of representatives of the orbits of $G \setminus Z$. Then

$$|G| = |Z| + \sum_{i=1}^{m} |G: Z(x_i)|$$

10. Let G be a finite group, $H \leq G$. Consider the action of H on G by left translation. What does the orbit formula say in this case?

11.* Let G be an arbitrary group, and S the set of all subgroups of G. Show that

$$\begin{array}{rcccc} \alpha: G \times \mathcal{S} & \longrightarrow & \mathcal{S} \\ (g, H) & \mapsto & gHg^{-1} \end{array}$$

defines an action of G on the collection S. When does the orbit of a subgroup G consist of one element?

Let us now assume that G is finite, and $|G| = p^k$ for some prime number p. Prove that the number

number of subgroups of G – number of normal subgroups of G

is divisible by p.

12. Let G be a finite group with p^k elements, p a prime. Show that p||Z(G)|, in particular, $Z(G) \neq 1$.

13. Let $\rho: G \to \operatorname{GL}(V)$ and $\sigma: G \to \operatorname{GL}(W)$ be two representations. Verify that $\tau: G \to \operatorname{GL}(V \otimes W)$ defined as

$$\tau(g) \stackrel{\text{def}}{=} \rho(g) \otimes \sigma(g)$$

is a again a representation of G.

14. Let X be a finite set, $\alpha : G \times X \to X$ a group action giving rise to a homomorphism $\tilde{\alpha} : G \to \operatorname{Aut}(X)$. Using $\tilde{\alpha}$, we can define a linear representation of G, which is called the associated *permutation representation* as follows. Let V be the vector space over k with basis $\{e_x \mid x \in X\}$. Then $\pi : G \to \operatorname{GL}(V)$ is defined by

$$\pi(g)(\sum_{x\in X} a_x e_x) \stackrel{\text{def}}{=} \sum_{x\in X} a_x e_{\alpha(g)(x)} \; .$$

Check that π is indeed a representation.

Alternatively, we could set V' to be the vector space of functions $\phi: X \to k$, and define $\pi': G \to \operatorname{GL}(V')$ as

$$(\pi'(g)(\phi))(x) \stackrel{\text{def}}{=} \phi((\tilde{\alpha}(g^{-1}))(x))$$

Verify that π' is also a representation and show that the representations π and π' are isomorphic by identifying e_x with the characteristic function of x.

15. Let $\alpha : G \times X \to X$ be an action of the finite group G on the finite set X. Prove that the number of orbits of α equals

$$\frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}(g)| \; .$$