Representation Theory / Spring 2010 / Erzsébet Horváth \& Alex Küronya

Practice Session \# 1
Due date: February $\mathbf{2 3}^{\text {rd }}$
The homework problem with an asterisk is the one you are supposed to submit.

1. Let X be a set, G an arbitrary group. Check that the evaluation action ev: Aut $(X) \times X \rightarrow X$ and the trivial action triv : $G \times X \rightarrow X$ are indeed group actions.
2. Consider the complex upper half-plane $\mathfrak{H} \stackrel{\text { def }}{=}\{z=x+i y \mid y>0\}$ with the function

$$
\begin{array}{rll}
\alpha: \mathrm{SL}_{2}(\mathbb{R}) \times \mathfrak{H} & \longrightarrow & \mathfrak{H} \\
\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), z\right) & \mapsto & \frac{a z+b}{c z+d}
\end{array}
$$

Check that α is indeed a group action.
3. Let G be a group, k be an arbitrary field, V a k-vector space (not necessarily finite-dimensional). Show that every representation $\rho: G \rightarrow \operatorname{GL}_{k}(V)$ gives rise to a unique k-algebra homomorphism $\widetilde{\rho}: k[G] \rightarrow \operatorname{End}_{k}(V)$ with $\left.\tilde{\rho}\right|_{G}=\rho$, and vice versa $(k[G]$ denotes the appropriate group algebra).
4. For given representations $\rho: G \rightarrow \mathrm{GL}(V)$ and $\sigma: G \rightarrow \mathrm{GL}(W)$, we define a natural representation of G on $\operatorname{Hom}_{k}(V, W)$. If $g \in G, \phi \in \operatorname{Hom}_{k}(V, W)$, and $v \in V$, then $\tau: G \rightarrow \operatorname{GL}\left(\operatorname{Hom}_{k}(V, W)\right)$ is given by

$$
(\tau(g)(\phi))(v) \stackrel{\text { def }}{=}(\sigma(g))\left(\phi\left(\rho\left(g^{-1}\right)(v)\right)\right)
$$

Check that τ is indeed a representation of G. Compute the special case when σ is the trivial representation on k. The result is called the dual representation of ρ.
5. Continuing the previous exercise, let $\tau: G \rightarrow \mathrm{GL}\left(V^{*}\right)$ the the representation dual to ρ. Prove that for every $v \in V, w^{*} \in V^{*}$, and $g \in G$,

$$
\left\langle(\tau(g))\left(w^{*}\right),(\rho(g))(v)\right\rangle=\left\langle w^{*}, v\right\rangle
$$

6. Let V be a finite-dimensional vector space over $k, \phi \in \operatorname{Hom}_{k}(V, V)$ a projection, that is, a linear map with $\phi^{2}=\phi$. Prove that

$$
\operatorname{dim} \phi(V)=\operatorname{Tr} \phi
$$

Definition. Let $\rho: G \rightarrow \mathrm{GL}_{k}(V)$ be a representation of G on a finite-dimensional vector space V. Then $\chi_{\rho}: G \rightarrow k^{\times}$, the character of G is defined by

$$
\chi_{\rho}(g) \stackrel{\text { def }}{=} \operatorname{Tr} \rho(g)
$$

7. Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a finite-dimensional representation of the finite group G, let

$$
V^{G} \stackrel{\text { def }}{=}\{v \in V \mid \rho(g)(v)=v \text { for all } g \in G\}
$$

be the invariant subspace of ρ. Using the averaging map $\phi: V \rightarrow V$ given by

$$
\phi(v) \stackrel{\text { def }}{=} \frac{1}{|G|} \sum_{g \in G} \rho(g)(v)
$$

show that

$$
\operatorname{dim} V^{G}=\frac{1}{|G|} \sum_{g \in G} \chi_{\rho}(g)
$$

Homework

Definition. Let G be a group, $S \subseteq G$ a subset (not necessarily a subgroup). The centralizer of S is defined as

$$
Z(S) \stackrel{\text { def }}{=}\{g \in G \mid g s=s g \text { for all } s \in S\}
$$

while the normalizer of S is

$$
N(S) \stackrel{\text { def }}{=}\{g \in G \mid g S=S g\}
$$

The centralizer $Z(G)$ of G is called the center of G.
8. (i) Prove that $Z(G) \triangleleft G$.
(ii) Show that for every $S \subseteq G$, one has $Z(S) \leqslant G$ and $N(S) \leqslant G$.
(iii) Let $S \leqslant G$. Prove that $N(S)$ is the largest subgroup of G, in which S is a normal subgroup.
9. (Class formula) Let G be a finite group with center Z, x_{1}, \ldots, x_{m} a complete system of representatives of the orbits of $G \backslash Z$. Then

$$
|G|=|Z|+\sum_{i=1}^{m}\left|G: Z\left(x_{i}\right)\right|
$$

10. Let G be a finite group, $H \leqslant G$. Consider the action of H on G by left translation. What does the orbit formula say in this case?
11.* Let G be an arbitrary group, and \mathcal{S} the set of all subgroups of G. Show that

$$
\begin{aligned}
\alpha: G \times \mathcal{S} & \longrightarrow \mathcal{S} \\
(g, H) & \mapsto g H g^{-1}
\end{aligned}
$$

defines an action of G on the collection \mathcal{S}. When does the orbit of a subgroup G consist of one element?
Let us now assume that G is finite, and $|G|=p^{k}$ for some prime number p. Prove that the number number of subgroups of G - number of normal subgroups of G
is divisible by p.
12. Let G be a finite group with p^{k} elements, p a prime. Show that $p||Z(G)|$, in particular, $Z(G) \neq 1$.
13. Let $\rho: G \rightarrow \mathrm{GL}(V)$ and $\sigma: G \rightarrow \mathrm{GL}(W)$ be two representations. Verify that $\tau: G \rightarrow \mathrm{GL}(V \otimes W)$ defined as

$$
\tau(g) \stackrel{\text { def }}{=} \rho(g) \otimes \sigma(g)
$$

is a again a representation of G.
14. Let X be a finite set, $\alpha: G \times X \rightarrow X$ a group action giving rise to a homomorphism $\tilde{\alpha}: G \rightarrow \operatorname{Aut}(X)$. Using $\tilde{\alpha}$, we can define a linear representation of G, which is called the associated permutation representation as follows. Let V be the vector space over k with basis $\left\{e_{x} \mid x \in X\right\}$. Then $\pi: G \rightarrow \mathrm{GL}(V)$ is defined by

$$
\pi(g)\left(\sum_{x \in X} a_{x} e_{x}\right) \stackrel{\text { def }}{=} \sum_{x \in X} a_{x} e_{\alpha(g)(x)}
$$

Check that π is indeed a representation.
Alternatively, we could set V^{\prime} to be the vector space of functions $\phi: X \rightarrow k$, and define $\pi^{\prime}: G \rightarrow \mathrm{GL}\left(V^{\prime}\right)$ as

$$
\left(\pi^{\prime}(g)(\phi)\right)(x) \stackrel{\text { def }}{=} \phi\left(\left(\tilde{\alpha}\left(g^{-1}\right)\right)(x)\right) .
$$

Verify that π^{\prime} is also a representation and show that the representations π and π^{\prime} are isomorphic by identifying e_{x} with the characteristic function of x.
15. Let $\alpha: G \times X \rightarrow X$ be an action of the finite group G on the finite set X. Prove that the number of orbits of α equals

$$
\frac{1}{|G|} \sum_{g \in G}|\operatorname{Fix}(g)|
$$

