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1. Basic concepts

Topology is the area of mathematics which investigates continuity and related
concepts. Important fundamental notions soon to come are for example open and
closed sets, continuity, homeomorphism.

Originally coming from questions in analysis and differential geometry, by now
topology permeates mostly every field of math including algebra, combinatorics,
logic, and plays a fundamental role in algebraic/arithmetic geometry as we know it
today.

Definition 1.1. A topological space is an ordered pair (X, τ), where X is a set, τ a
collection of subsets of X satisfying the following properties

(1) ∅, X ∈ τ ,
(2) U, V ∈ τ implies U ∩ V ,
(3) {Uα |α ∈ I} implies ∪α∈IUα ∈ τ .

The collection τ is called a topology on X, the pair (X, τ) a topological space. The
elements of τ are called open sets.

A subset F ⊆ X is called closed, if its complement X − F is open.

Although the official notation for a topological space includes the topology τ , this
is often suppressed when the topology is clear from the context.

Remark 1.2. A quick induction shows that any finite intersection U1 ∩ · · · ∩ Uk of
open sets is open. It is important to point out that it is in general not true that
an arbitrary (infinite) union of open sets would be open, and it is often difficult to
decide whether it is so.

Remark 1.3. Being open and closed are not mutually exclusive. In fact, subsets that
are both open and closed often exist, and play a special role.

The collection of closed subsets in a topological space determines the topology
uniquely, just as the totality of open sets does. Hence, to give a topology on a set, it
is enough to provide a collection of subsets satisfying the properties in the exercise
below.
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Exercise 1.4. Prove the following basic properties of closed sets. If (X, τ) is a
topological space, then

(1) ∅, X are closed sets,
(2) if F,G ⊆ X are closed, then so is F ∪G,
(3) if {Fα |α ∈ I} is a collection of closed subsets, then ∩α∈IFα is closed as well.

Example 1.5 (Discrete topological space). Let X be an arbitrary set, τ
def
= 2X ,

that is, we declare every subset of X to be open. One checks quickly that (X, τ) is
indeed a topological space.

Example 1.6 (Trivial topology). Considering the other extreme, the pair
(X, {∅, X}) is also a topological space, with ∅ and X being the only open subsets.

The previous two examples are easy to understand, however not that important
in practice. The primordial example of a very important topological space coming
from analysis is the real line. In fact R1 and its higher-dimensional analogues are the
prime source of our topological intuition. However, since there are copious examples
of important topological spaces very much unlike R1, we should keep in mind that
not all topological spaces look like subsets of Euclidean space.

Example 1.7. Let X = R1. We will define a topology on R1 which coincides with
our intuition about open sets. Consider the collection

τ
def
=
{
U ⊆ R1 |U is the union of open intervals

}
where an open interval is defined as (a, b)

def
= {x ∈ R1 | a < x < b} with a, b ∈ R1.

This topology is called the classical or Hausdorff or Euclidean topology on R1.
By definition open intervals are in fact open subsets of R1. Other examples of

open sets are (a,+∞)
def
= {x ∈ R1 | a < x} as can be seen from the description

(a,+∞) =
⋃
n∈N

(a, n) .

On the other hand, one can see that closed intervals [a, b]
def
= {x ∈ R1 | a ≤ x ≤ b}

are indeed closed subsets of R1.

Exercise 1.8. Decide if [0, 1] ⊆ R1 is an open subset in the classical topology.

Example 1.9 (Euclidean spaces). This example generalizes the real line to higher
dimensions. Let X = Rn, where Rn = {(x1, . . . , xn) |xi ∈ R} is the set of vectors
with n real coordinates. We define the open ball with center x ∈ Rn and radius
ε > 0 as

B(x, ε)
def
= {y ∈ Rn | |x− y| < ε} ,

where |x| def
=
√∑n

i=1 x
2
i . The so-called Euclidean or classical or Hausdorff topology

on Rn is given by the collection of arbitrary unions of open balls. More formally,
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a subset U ∈ Rn is open in the Euclidean topology if and only if there exists a
collection of open balls {B(xα, εα) |α ∈ I} such that

U =
⋃
α∈I

{B(xα, εα) |α ∈ I} .

Exercise 1.10. Verify that Rn with the classical topology is indeed a topological
space.

The above definition of open sets with balls prompts the following generaliza-
tion for metric spaces, a concept somewhere halfway between Euclidean spaces and
general topological spaces. First, a reminder.

Definition 1.11. A set X equipped with a function d : X × X → R≥0 is called
a metric space (and the function d a metric or distance function) provided the
following holds.

(1) For every x ∈ X we have d(x, x) = 0; if d(x, y) = 0 for x, y ∈ X then x = y.
(2) (Symmetry) For every x, y ∈ X we have d(x, y) = d(y, x).
(3) (Triangle inequality) If x, y, z ∈ X are arbitrary elements, then

d(x, y) ≤ d(x, z) + d(z, y) .

Exercise 1.12. Show that (Rn, d) with d(x, y) = |x− y| is metric space.

Definition 1.13. Let (X, d) be a metric space. The open ball in X with center
x ∈ X and radius ε > 0 is

B(x, ε)
def
= {y ∈ X | d(y, x) < ε} .

The topology τd induced by d consists of arbitrary unions of open balls in X.

Remark 1.14. A subset U ⊆ (X, d) is open if and only if for every y ∈ U there exists
ε > 0 (depending on y) such that B(y, ε) ⊆ U .

Most of the examples of topological spaces we meet in everyday life are induced
by metrics (such topological spaces are called metrizable); however, as we will see,
not all topologies arise from metrics.

Example 1.15. Let (X, τ) be a discrete topological space. Consider the function

d(x, y) =

{
0 if x = y

1 if x 6= y

One can see quickly that (X, d) is a metric space, and the topology induced by d is
exactly τ .

Exercise 1.16. Let (X, d) be a metric space, and define

d1(x, y)
def
=

{
d(x, y) if d(x, y) ≤ 1

1 if d(x, y) > 1 .
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Show that (X, d′) is also a metric space, moreover d, d1 induce the same topology
on X (we could replace 1 by any positive real number).

Example 1.17 (Finite complement topology). Let X be an arbitrary set. The
finite complement topology on X has ∅ and all subsets with a finite complement as
open sets. Alternatively, the closed subsets with respect to the finite complement
topology are X and all finite subsets.

For the next example, we will quickly review what a partially ordered set is. Let
X be an arbitrary set, ≤ a relation on X (i.e. ≤⊆ X ×X). The relation ≤ is called
a partial order, and (X,≤) a partially ordered set if ≤ is reflexive, antisymmetric,
and transitive; that is

(1) (Reflexivity) for every x ∈ X we have x ≤ x
(2) (Antisymmetry) x ≤ y and y ≤ x implies x = y
(3) (Transitivity) x ≤ y and y ≤ z implies x ≤ z.

Example 1.18 (Order topology). Let (X,≤) be a partially ordered set. For an
element a ∈ X consider the one-sided intervals {b ∈ X | a < b} and {b ∈ X | b < a}.
The order topology τ consists of all finite unions of such.

Let us now recall how continuity is defined in calculus. A function f : R → R is
called continuous if for every x ∈ R and every ε > 0 there exists δ > 0 such that

|x− x′| < δ whenever |f(x)− f(x′)| < ε

for all x′ ∈ X. The naive idea behind this notion is the points that are ‘close’ to
each other get mapped to points that are ’close’ to each other as well in some sense.

The definition generalizes to metric spaces with no change, however, to obtain a
notion of continuity for topological spaces, we need a reformulation in terms of open
sets only. To this end, we reconsider how continuity is defined for functions between
metric spaces. Let f : (X, d) → (Y, d′) be a function of metric spaces; fix x ∈ X
arbitrary. Then f is called continuous at x if for every ε > 0 there exists δ > 0 such
that for every x′ ∈ X one has

d′(f(x), f(x′)) < ε whenever d(x, x′) < δ .

To phrase this in the language of open balls, it is equivalent to require that for every
ε > 0 there exists δ > 0 for which

f(BX(x, δ)) ⊆ BY (f(x), ε) .

Proposition 1.19. A function f : X → Y between two metric spaces is continuous
if and only if for every open set U ⊆ Y the inverse image f−1(U) ⊆ X is open as
well.

Proof. Assume first that f : (X, d) → (Y, d′) is continuous, that is, f is continuous
at every x ∈ X. Choose an open set U ⊆ Y (in the topology induced by d′, of
course), let x ∈ f−1(U) be arbitrary. Since f(x) is contained in the open set U ⊆ Y ,
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there exists εx > 0 such that BY (f(x), εx) ⊆ U . By the continuity of f at x, we can
find δx > 0 with the property that f(BX(x, δx) ⊆ BY (f(x), εx), and hence

BX(x, δx) ⊆ f−1(U) .

But then

f−1(U) =
⋃

x∈f−1(U)

BX(x, δx) ,

and hence f−1(U) ⊆ X is open.
Conversely, let us assume that the inverse image of every open subset of Y under f

is open in X. Fix a point x ∈ X, and ε > 0. Then BY (f(x), ε) ⊆ Y is open, hence so
is f−1(BY (f(x), ε)), which in addition contains x. This implies that f−1(BY (f(x), ε))
contains an open ball with center x and some radius, which we can take to be δ. �

The result above motivates the following fundamental definition.

Definition 1.20 (Continuity). Let X,Y be topological spaces, f : X → Y an
arbitrary function. Then f is said to be continuous if the inverse image of every
open set in Y is open in X. More formally, for every U ⊆ Y open, f−1(U) ⊆ X is
open as well. A map of topological spaces is a continuous function.

As taking inverse images preserves complements (i.e. f−1(Y −Z) = X−f−1(Z)),
the continuity of f can be characterized equally well in terms of closed subsets of
X: a function f : X → Y is continuous exactly if f−1(F ) ⊆ X is closed for every
closed subset Z ⊆ Y .

Exercise 1.21. Prove the following statements.

(1) Constant functions (ie. f : X → Y with f(X) consisting of exactly one
element) are continuous.

(2) The identity function f : (X, τ) → (X, τ), x 7→ x is continuous for every
topological space X.

(3) Let X, Y, Z be topological spaces. If the functions f : X → Y and g : Y → Z

are continuous, then so is the composition g◦f : X → Z given by (g◦f)(x)
def
=

g(f(x)).

Exercise 1.22. Show that every function from a discrete topological space is con-
tinuous. Analogously, verify that every function to a trivial topological space is
continuous.

Interestingly enough, our definition of continuity is ’global’ in the sense that no
reference is made to individual points of the spaces X and Y . In fact, as opposed to
the usual definition of continuity of functions on the real line, it is somewhat more
delicate — and is less important in general — to define continuity at a given point
of a topological space. In order to find the right notion first we need to pin down
what it means to be ’close to a given point’.
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Definition 1.23. Let (X, τ) be a topological space, x ∈ X an arbitrary point. A
subset N ⊆ X is a neighbourhood of x if there exists an open set U ⊆ x for which
x ∈ U ⊆ N .

Remark 1.24. The terminology in the literature is ambiguous; it is often required
that neighbourhoods be open. We call such a neighbourhood an open neighbourhood.

Remark 1.25. The intersection of two neighbourhoods of a given point is also a
neighbourhood. If U ⊆ X is an open set, then it is a neighbourhood of any of its
points. In particular, X is a neighbourhood of every x ∈ X.

Remark 1.26. In a metric space X, a subset N ⊆ X is a neighbourhood of a point
x ∈ X if and only if N contains an open ball centered at x.

Definition 1.27. Let (X, τ) be a topological space, x ∈ X. A collection Bx ⊆ P (X)
of subsets all containing x is called a neighbourhood basis of x if

(1) every element of Bx is a neighbourhood of x;
(2) every neighbourhood of x contains an element of Bx as a subset.

Example 1.28. Let X = R1 be the real line with the Euclidean topology, x = 0.
Then {(

− 1

n
,

1

n

)
|n ∈ N

}
and {[

− 1

n
,

1

n

]
|n ∈ N

}
are both neighbourhood bases of x. To put it in a more general context, let (X, d)
be a metric space with the induced topology, x ∈ X arbitrary. Then the collection{

B(x,
1

n
) |n ∈ N

}
forms again a neighbourhood basis of x ∈ X.

Example 1.29 (Non-examples). Consider again the case X = R1, x = 0. The
collections of subsets below are not neighbourhood bases of x:{[

0,
1

n

)
|n ∈ N

}
, {(−1, n) |n ∈ N} .

Beside their inherent usefulness neighbourhoods and neighbourhood bases serve
the purpose letting us define the continuity of a function at a point.

Definition 1.30 (Continuity of a function at a point). Let f : X → Y be a function
between topological spaces, x ∈ X. We say that f is continuous at the point x, if
for every neighbourhood N of f(x) in Y there exists a neighbourhood M of x in X
such that f(M) ⊆ N .
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Remark 1.31. It is enough to require the condition in the definition for the elements
of a neighbourhood basis of f(x). To put it more clearly, let Bf(x) be a neighbour-
hood basis of f(x) in Y . Then f as above is continuous at x if and only if for every
N ∈ Bf(x) there exists a neighbourhood M of x in X with f(M) ⊆ N .

Remark 1.32. Observe that for an arbitrary map of sets f : X → Y and a subset
A ⊆ Y we have

f(f−1(A)) = A ∩ f(X) ,

hence f(f−1(A)) ⊆ A. Therefore, if f : X → Y is a function between topological
spaces, f is continuous at a point x if and only if for every neighbourhood N of f(x)
in Y , f−1(N) is a neighbourhood of x ∈ X.

Combining this observation with Remark 1.31, f is continuous at x precisely if
for any neighbourhood basis Bf(x) of f(x) in Y , the collection{

f−1(N) |N ∈ Bf(x)

}
is a neighbourhood basis of x.

The next result is our first theorem; note that as opposed to calculus, it is no
longer the definition of continuity, but rather something we need to prove.

Theorem 1.33. Let f : X → Y be a function between topological spaces. Then f
is continuous if and only if it is continuous at x for every x ∈ X

Proof. Assume first that f : X → Y is continuous, that is, the inverse image of
every open set in Y under f is open in X. Fix a point x ∈ X; we will show that
f is continuous at x. Let N be a neighbourhood of f(x) ∈ Y ; this means that
there exists an open set V ⊆ Y for which f(x) ∈ V ⊆ N . By the continuity of f ,
f−1(V ) ⊆ X is open, moreover

x ∈ f−1(V ) ⊆ f−1(N) ,

hence f−1(N) is a neighbourhood of x ∈ X, and we are done by Remark 1.32.
To prove the other implication, assume that f is continuous at every x ∈ X; let

V ⊆ Y be an arbitrary open set. For any x ∈ f−1(V ), the set V is a neighbourhood
of f(x), therefore f−1(V ) is a neighbourhood of x since f is continuous at x. This
means that for every x ∈ f−1(V ) there exists an open subset Ux ⊆ X for which
x ∈ Ux ⊆ f−1(V ). But then f−1(V ) ⊆ X is open as

f−1(V ) =
⋃

x∈f−1(V )

Ux ,

i.e. it can be written as a union of open sets. �

The definition below is fundamental for the whole of topology.
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Definition 1.34. A function f : X → Y between topological spaces is said to be a
homeomorphism, if it is bijective, and both f and f−1 are continuous. Two topo-
logical spaces X and Y are called homeomorphic is there exists a homeomorphism
from one to the other. This relation is denoted by X ≈ Y .

Remark 1.35. The identitiy map id : X → X is a homeomorphism. If f : X → Y
is a homeomorphism then so is f−1 : Y → X. If f : X → Y and g : Y → Z are
homeomorphisms, then so is g ◦ f : X → Z.

This implies that the relation ’being homeomorphic’ is reflexive, symmetric, and
transitive, hence an equivalence relation.

Exercise 1.36. Fill in the details in Remark 1.35.

Example 1.37. Note that a bijective continuous function is not necessarily a home-
omorphism. We will see many examples of this phenomenon later, here are two
simple ones. First, one can quickly check that if X is a trivial topological space
(i.e. the only open sets in X are ∅ and X itself) then every function from every
topological space to X is continuous.

Consider now a topological space (X, τ) where τ is not the trivial topology. Then
the identity function id : (X, {∅, X})→ (X, τ) is not continuous.

An analogous construction follows from the fact that every function from a dis-
crete topological space to an arbitrary topological space is continuous.

If two topological spaces are homeomorphic, then not only their respective sets
of points, but also their collections of open sets are in a one-to-one correspondence.
Homeomorphisms show us when two topological spaces should be considered to be
the same in the eye of topology. More precisely, we cannot distinguish homeomorphic
topological spaces based on their topological structure.

In general it is not easy to show that two topological spaces are homeomorphic to
each other; however, it can be equally difficult to prove that two topological spaces
are not homeomorphic. We will see various methods both simple and hard that help
us with such questions.

For now, let us get back to our investigation of open sets. As there can be many
more open sets than we can easily handle in a random topological space, it is often
very useful to come up with a small selection of open subsets that determine the
whole topology.

Definition 1.38. Let (X, τ) be a topological space, B ⊆ P (X). The collection B

is called a basis for the topology τ , if the open sets in X are precisely the unions of
sets in B.

A collection S ⊆ P (X) is called a subbasis for the topology τ if the set B(S)
consisting of finite intersections of elements of S forms a basis for τ .

As the exercise below shows, if X is an arbitrary set, then any collection of subsets
S ⊆ P (X) is a subbasis for some topology on X.
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Exercise 1.39. Let S ⊆ P (X) be an arbitrary set of subsets of X; define τ as the
collection of arbitrary unions of finite intersections of elements of S. Prove that τ
is a topology on X. Also, show that if τ ′ is a topology on X such that S ⊆ τ ′, then
τ ⊆ τ ′.

The topology defined above is called the topology generated by S. It is the smallest
(with respect to inclusion of subsets of P (X)) topology where the elements of S are
open. Note that the topology generated by a collection S might contain many more
open sets than the elements of S (in fact often it contains many more than one would
expect).

Example 1.40. LetX = {1, 2, 3} be a set with just three elements. We will consider
various sets of subsets, and calculate the corresponding generated topologies. First
take S = {{1}}. Then the set of finite intersections is B(S) = {X, {1}}, hence the
topology generated by S (that is, the collection of arbitrary unions of elements of
B(S)) is {∅, X, {1}}.

Next, choose S = {{1, 2} , {2, 3}}. Then the set of finite intersections is B(S) =
{X, {1, 2} , {2, 3} , {2}}, hence the generated topology is {∅, X, {1, 2} , {2, 3} , {2}}.
Exercise 1.41. Show that S = {{x} | x ∈ X} generates the discrete topology on an
arbitrary set X.

Exercise 1.42. How many pairwise non-homeomorphic topologies are there on the
set X = {1, 2, 3}?

Example 1.43. Let X = R1, and S =
{(

p
q
, r
s

)
| p, q, r, s ∈ Z, q, s 6= 0

}
. Prove that

S generates the Euclidean topology on R1.

There are several ways to measure how ’large’ a topological space is. Here is a
pair of notions based on the cardinality of sets.

Definition 1.44. A topological space (X, τ) is called first countable, if every point
x ∈ X has a countable neighbourhood basis. The topological space (X, τ) is second
countable, if τ has a countable basis.

Exercise 1.45. Is a discrete topological space first countable? Second countable?

Exercise 1.46. Does second countability imply first countability?

Example 1.47. Euclidean spaces are second countable. The following collection
gives a countable basis {

B(x,
1

m
) |x ∈ Qn, m ∈ N

}
.

Example 1.48. As evidenced by the collection{
B(x,

1

m
) |m ∈ N

}
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every metric space is first countable.
However, not every metric space is second countable. As an example we can take

any uncountable set (X = R for instance) with the discrete topology. We have seen
earlier that the discrete topology is induced by a metric. In this topology every
singleton set {x} is open, hence they need to belong to any basis for the topology;
however there are uncountably many such sets.

The next two notions we will only need later; this is nevertheless a good place to
introduce them.

Definition 1.49. Let f : X → Y be a function between topological spaces; f is
called open if for every open set U ⊆ X the image f(U) ⊆ Y is open as well.

We can define closed functions in a completely analogous fashion.

Remark 1.50. Note that being open or closed is not the same as being continuous.
It is true however that every homeomorphism is open and closed at the same time.

Later we will see examples that show that an open map is not necessarily closed,
and vice versa.

Exercise 1.51. Come up with a definition for convergence and Cauchy sequences
in metric spaces.

Exercise 1.52. (i) Show that the functions s, p : R2 −→ R given by

s(x, y) = x+ y

p(x, y) = xy

are continuous.
(ii) Let f, g : X −→ R be continuous functions. Then all of f±g, f ·g are continuous;
if g(x) 6= 0 for all x ∈ X, then f

g
is continuous as well.

Exercise 1.53. (i) Is the function f : R2 − {(0, 0)} −→ R2

f(x, y) =

(
x

x2 + y2
,− y

x2 + y2

)
continuous on R2 − {(0, 0)}?
(ii) Is there a continuous function g : R2 −→ R2 for which

g|R2−{(0,0)} = f ?

Exercise 1.54. Let α, β, γ be arbitrary real numbers. Then the so-called open half-
space

H =
{

(x, y, z) ∈ R3 |αx+ βy + γz > 0
}

is indeed open.
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Exercise 1.55. Prove that the set{
(x, y) ∈ R2 |x2 + y2 ≥ 10

}
is closed.

Exercise 1.56. Is the set consisting of all point of the form 1
n

, n a natural number,
open/closed in R?

Exercise 1.57. Give examples of infinitely many open sets in R , the intersection
of which is (i) open (ii) closed (iii) neither open nor closed.

Exercise 1.58. Show that the closed ball

D(x.δ) = {y ∈ Rn | |x− y| ≤ δ}
is indeed a closed subset of Rn.

Exercise 1.59. Prove that

d1(f, g) =

∫
[a,b]

|f − g|dx

is a metric on C[a, b]. Is this still true if we replace continuous functions by Riemann
integrable ones?

Definition 1.60. Let p ∈ Z be a fixed prime number. For an arbitrary nonzero
integer x ∈ Z let

ordp(x)
def
= the highest power of p which divides x ,

while we define ordp(0)
def
= ∞.

If α =
x

y
∈ Q×, then we set

ordp(α) = ordp(
x

y
)

def
= ordp(x)− ordp(y) .

Note that the ordp(α) does not depend on the choice of x and y.

Exercise 1.61. Show that for every x, y ∈ Q
(1) ordp(xy) = ordp(x) + ordp(y)
(2) ordp(x+ y) ≥ min{ordp(x), ordp(y)} with equality if ordp(x) 6= ordp(y).

Compute the p-adic order of 5, 100, 24,− 1
48
,−12

28
for p = 2, 3, 5.

Definition 1.62. With notation as so far, let α, β ∈ Q. Then we set

dp(α, β)
def
=

{
0 if α = β ,

1
pordp(α−β) otherwise.

This is called the p-adic distance of α and β.
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Exercise 1.63. Prove that (Q, dp) is a metric space, which is in addition non-
archimedean, that is, for every x, y, z ∈ Q one has

dp(x, y) ≤ max{dp(x, z), dp(z, y)} .

Conclude that in (Q, dp) every triangle is isosceles.

Exercise 1.64. Let f : X → Y be a continuous map. If X is first/second countable,
then so is f(X).

Exercise 1.65. Let f : X → Y be a function between topological spaces. Show that
f is continuous if and only if

f(A) ⊆ f(A)

for every subset A ⊆ X.

Exercise 1.66. If f : X → Y is a continuous surjective open map, then F ⊆ Y is
closed exactly if f−1(F ) ⊆ X is closed.

2. Constructing topologies

2.1. Subspace topology. In this section we will start manufacturing new topolo-
gies out of old ones. There are various ways to do this, first we discuss topologies
induced on subsets.

Definition 2.1. Let X be a topological space, A ⊆ X an arbitrary subset. The
relative or subspace topology on A is the collection of intersections with open sets in
X.

In other words, a subset U ⊆ A is open in the subspace topology if and only if
there exists an open subset V ⊂ X such that U = V ∩ A.

Notation 2.2. To facilitate discussion and formalize the above definition, we intro-
duce some notation. Let (X, τ) be a topological space, A ⊆ X a subset. We denote
the subspace topology on A by

τA
def
= {A ∩ V |V ∈ τ} .

Remark 2.3. Here is another way of thinking about the subspace topology. Let
(X, τ) be a topological space, A ⊆ X a subset, i : A ↪→ X the inclusion function.
Then τA is the smallest topology which makes i continuous.

The following is a related notion, which will play an important role in later de-
velopments.

Definition 2.4. A pair is an ordered pair (X,A), with X a topological space, and
A ⊆ X an arbitrary subset equipped with the subspace topology. A continuous map
of pairs f : (X,A)→ (Y,B) is a continuous map f : X → Y for which f(A) ⊆ B.
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Example 2.5. Let [0, 1] ⊆ R. Open subsets in R are unions of open intervals.
Therefore elements of τA are arbitrary unions of sets of the form [0, 1] ∩ (a, b) with
a, b ∈ R. For example [0, 1

2
) = [0, 1] ∩ (1

2
, 2) is open in [0, 1].

Remark 2.6. A subset U ⊆ A ⊆ X which is open in the subset topology in A will
typically not be open in X.

Exercise 2.7. Prove the following statements.

(1) If f : X → Y is a map, A ⊆ X a subspace, then

f |A : A −→ Y

given by f |A(x) = f(x) whenever x ∈ A, is a continuous function.
(2) Let X, Y be topological space, Y1 ⊆ Y2 ⊆ Y subspaces, f : X → Y2 a

continuous function. Then f as a function X → Y is also continuous. If
f(X) ⊆ Y1, then f as a function from X to Y1 is continuous as well.

Proposition 2.8. Let (X, τ), (Y, τ ′) be topological spaces, A,B ⊆ X closed subsets
such that X = A ∪ B. Assume we are given continuous functions f : (A, τA)→ Y ,
g : (B, τB)→ Y such that

f |A∩B = g|A∩B .

Then there exists a unique continuous function h : X → Y for which

h|A = f and h|B = g .

Proof. Set

h(x)
def
=

{
f(x) if x ∈ A
g(x) if x ∈ B .

This gives a well-defined function h : X → Y by assumption.
Let F ⊆ Y be a closed subset. Observe that

h−1(F ) = f−1(F ) ∪ g−1(F ) .

Because f is continuous, f−1(F ) ⊆ A is closed, but then f−1(F ) ⊆ X is also closed,
since A was closed in X. By the same argument, g−1(F ) ⊆ X is closed, too. But
then h−1(F ) ⊆ X is again closed. �

With the help of the subspace topology we will generalize the familiar notions of
the interior, boundary, and closure of a subset.

Proposition 2.9. Let (X, τ) be a topological space, A ⊆ X an arbitrary subset.

(1) there exists a largest (with respect to inclusion) open (in X) set U ⊆ A. This
is called the interior of A, and denoted by intX(A), int(A), or A◦.

(2) There exists a smallest ( with respect to inclusion ) closed ( in X ) subset

F ⊇ A. This is called the closure of A, and denoted by A
X

or simply A.
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(3) If A ⊆ Y ⊆ X, then

A
Y

= A
X ∩ Y .

If Y ⊆ X is closed, then A
Y

= A
X

.

Proof. (1) Consider the union of all subsets U ⊆ A which are open in X. This
is by construction the largest open (in X) subset contained in A, and is
uniquely determined.

(2) Analogously to the previous case, the closure of A is the intersection of all
subsets F ⊇ A that are closed in X. Again, by construction it is uniquely
determined.

(3) Based on the construction of the closure of A in X we have

A
X ∩ Y =

( ⋂
A⊆F,X−A∈τ

F

)
∩ Y

=
⋂

A⊆F,X−A∈τ

(F ∩ Y )

=
⋂

A⊆F∩Y,Y−F∈τY

F ∩ Y

= A
Y

due to the definition of the subspace topology on Y . If Y ⊆ X is closed,

then A
X ⊆ Y , hence the result.

�

Exercise 2.10. In the situation of the Proposition, show that a point x ∈ X lies in
the closure of A if and only if every open neighbourhood of x in X intersects A.

Remark 2.11. Even if A ⊆ X seems naively relatively large (think Q ⊆ R for
example) it can happen that intA = ∅. In a similar vein, although Q ⊆ R is in a
way smaller, we have Q = R.

Exercise 2.12. Prove that A
X

= X − intX(X − A).

Proposition 2.13. With notation as above, let Y ⊆ X, B a basis for the topology
τ . Then

BY
def
= {B ∩ Y |B ∈ B}

is a basis of the subspace topology τY .
In a similar fashion, if x ∈ Y ⊆ X is an arbitrary point, Bx ⊆ τ a neighbourhood

basis of x, then (Bx)Y
def
= {N ∩ Y |N ∈ Bx} is a neighbourhood basis of x in τY .

Proof. Left as an exercise. �
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Definition 2.14. Let again be (X, τ) a topological space, A ⊆ X a subset. The
boundary of A denoted by ∂A is defined as

∂A
def
= A ∩X − A .

Exercise 2.15. Show that ∂A = A− intX A.

Definition 2.16. A subset A ⊆ X of a topological space is called dense, if A = X.
A subset A ⊆ X is callled nowhere dense, if intA = ∅.

As immediate examples observe that Q ⊆ R is dense, while Z ⊆ R is nowhere
dense. Another simple situation is of course the discrete topology: in this case no
subset different from X is dense, and no non-empty subset is nowhere dense.

Exercise 2.17. Is there an uncountable nowhere dense set in [0, 1]?

Definition 2.18 (Limit point). Let (X, τ) be a topological space, A ⊆ X arbitrary.
A point x ∈ X is a limit point or accumulation point or cluster point of A, if
x ∈ A− {x}.

A point x ∈ A is an isolated point of A if there exists an open (in X) neighbour-
hood U of x for which U ∩ A = ∅.

A limit point x of A may or may not lie in A.

Remark 2.19. Note that a point x is a limit point of A if and only if every neigh-
bourhood of x intersects A in a point different from x.

Exercise 2.20. List all limit points of the following sets: (0, 1] ⊆ R,
{

1
n
|n ∈ N

}
⊆

R,(0, 1) ∪ {3} ⊆ R, Q ⊆ R.

It is intuitively plausible that there is a close relation between the closure of a
subset and its limit points.

Proposition 2.21. Let (X, τ) be a topological space, A ⊆ X a subset, denote A′

the set of limit points of A. Then

A = A ∪ A′ .
Proof. First we prove that A∪A′ ⊆ A. The containment A ⊆ A is definitional. Let
x ∈ A′. Then every neighbourhood of x intersects A, hence x ∈ A.

For the other direction, let x ∈ A − A. As x ∈ A, every open neighbourhood
intersects A, as x 6∈ A, the intersection point must be a point of A other than x.
Therefore x ∈ A′. �

Corollary 2.22. A subset A ⊆ X is closed if and only if A contains all of its limit
points.

A fundamental and closely related notion is the convergence of sequences. Since
in general it behaves rather erraticly and certainly not according to our intuition
trained in Euclidean spaces, it is rarely discussed in this generality, in spite of the
fact that there is nothing complicated about it.
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Definition 2.23. Let (X, τ) be a topological space, (xn) a sequence of points in
X, x ∈ X arbitrary. We say that the sequence xn converges to x if for every
neighbourhood B of x there exists a natural number MB such that xn ∈ B whenever
n ≥MB. This fact is denoted by xn → x.

The limit point of a subset of a topological space and the limit of a convergent
sequence are different (although admittedly closely related) notions, and one should
exercise caution not to confuse them.

It is routine to check using the neighbourhood basis of a point consisting of open
balls that the above definition is equivalent to the usual one in a metric space.
It is very important to point out that in a general topological space the limit of a
convergent sequence is not unique. One reason for this is that if U ⊆ X is a minimal
open set (i.e. it contains no other non-empty open sets) and x ∈ U is the limit of a
sequence (xn), then so is any other element y ∈ U . In extreme cases a sequence may
converge to all points of the given topological space X (this happens for example in
a trivial topological space, where every sequence of points converges to every point).

Worse, continuity can no longer be characterized with the help of convergent
sequences.

Example 2.24 (Non-uniqueness of limits of sequences). Let X = {1, 2, 3}, τ =
∅, {1, 2} , X. It is easy to see using the definition that all sequences in X converge
to 3, while sequences with eventually only 1’s and 2’s in them converge to 1,2, and
3.

Exercise 2.25. Let X be a second countable topological space, A ⊆ X an uncount-
able set. Verify that uncountably many points of A are limit points of A.

Exercise 2.26. Prove that a subset U ⊆ X is open if and only if ∂U = U \ U .

Exercise 2.27. Prove that if a topological space X has a countable dense subset,
then every collection of disjoint open subsets is countable.

Exercise 2.28. Let f : X −→ Y be a homeomorphism, xk a sequence in X. Then
xk is convergent in X if and only if f(xk) is convergent in Y .

2.2. Local properties. As we have seen, forming the interior and/or closure be-
haves well with respect to taking complements. It can make life difficult, however,
that the same cannot be said about taking intersections. Another problem one faces
is that knowing the interior or the closure of subspace is not enough to ’reconstruct’
the subspace itself. There are plenty of subsets A ⊆ R for example with empty
interior and closure the whole of R.

Proposition 2.29. Let U ⊆ X be an open subset, A ⊆ R arbitrary. Then

A ∩ UX ∩ U = A
X ∩ U .
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Corollary 2.30. A subset F ⊆ U is closed in U if and only if

U ∩ F ∩ UX
= F ∩ U .

Exercise 2.31. Prove that if U ⊆ X is the interior of a closed subset F ⊆ X, then
int(U) = U .

Proof. We start with unwinding the definitions. On this note, observe that

A
X ∩ U =

( ⋂
F⊇A,F⊆X closed

F

)
∩ U =

⋂
F⊇A,F⊆X closed

F ∩ U ,

while

F ∩ UX ∩ U =

( ⋂
F⊇A∩U,F⊆X closed

F

)
∩ U =

⋂
F⊇A∩U,F⊆X closed

F ∩ U

What we need to prove now is that⋂
F⊇A,F⊆X closed

F ∩ U =
⋂

F⊇A∩U,F⊆X closed

F ∩ U .

Since all closed sets F that occur on the left-hand side show up on the right-hand
side as well,

(1)
⋂

F⊇A,F⊆X closed

F ∩ U ⊇
⋂

F⊇A∩U,F⊆X closed

F ∩ U

is immediate.
Suppose now that there exists an element x ∈ X such that

x ∈
⋂

F⊇A,F⊆X closed

F ∩ U but x 6∈
⋂

F⊇A∩U,F⊆X closed

F ∩ U .

This means that there exists a closed subset F ′ ⊆ X with F ′ ⊇ A ∩ U such that
x 6∈ F ′. As x belongs to the left-hand side of (1), x ∈ U , hence x ∈ U − (F ∩ U).

Consider now the subset G
def
= (X − U) ∪ (U ∩ F ′) ⊆ X. Being the complement of

the open set U − U ∩ F ′ in X, G is closed, moreover x 6∈ G.
However, since A = (A∩U)∪ (A−U) ⊆ (F ′ ∩U)∪ (X −U) = G, we have found

a term on the left-hand side of (1) which does not contain x, a contradiction. �

Exercise 2.32. Find examples of open subsets in R that are not the interiors of
their closures.

Taking this route a bit further, we arrive at the following result, which motivates
the local study of topologies. A collection {Uα |α ∈ I} of open subsets of X whose
union is X is called an open cover of X.
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Proposition 2.33. Let X be a topological space, A ⊆ X an arbitrary subspace,
(Uα |α ∈ I) an open cover of X. Then A is closed in X if and only if A ∩ Uα is
open in Uα for every α ∈ I.

Proof. The set A is closed in X if and only if X −A is open in A. Since all the Uα’s
are open in X, X − A is open in X if and only if Uα ∩ (X − A) is open in Uα for
every α ∈ I. �

We say that being closed is a local property, as it can be tested on some (any)
open cover of X. Note that it is very important that we take a cover of X, and not
one of A.

Definition 2.34. A subset A ⊆ X is called locally closed in X, if every a ∈ A has
an open neighbourhood Ua ∈ X such that A ∩ Ua is closed in Ua.

Example 2.35. The subset (−1, 1)× {0} ⊆ R2 is locally closed.

Note that every open set is locally closed in any topological space by definition.
Luckily it turns out that the structure of locally closed subsets is actually simpler
than one might guess.

Proposition 2.36. A subspace A ⊆ X of a topological space is locally closed if and
only if A = F ∩ U , where F ⊆ X is closed, and U ⊆ X is open.

Proof. Assume first that A has the shape A = F ∩U , with F closed, and U open in

X. Then we can verify that A is locally closed immediately by taking Ua
def
= U for

all a ∈ A in the definition of local closedness.
Conversely, let A be locally closed, and (Ua | a ∈ A) an collection of suitable open

subsets of X. Set U
def
= ∪a∈AUa. Then A ⊆ U , and the fact that being closed is a

local property does the trick. �

Proposition 2.37. Let f : X → Y be a function between topological spaces, U ⊆ τX
a collection, such that the union of some of its elements equals X. Then f is
continuous if and only if f |Uα : Uα → Y is continuous for every Uα ∈ U.

Proof. To come. �

2.3. Product topology. We are looking for a way to put a topology on the Carte-
sian product X × Y of two sets that is in a way ’natural’. The product of the two
sets does not come alone, but with two projection functions πX : X × Y → X,
πX(x, y) = x, and πY : X × Y → Y , πY (x, y) = y.

X × Y
πX

{{wwwwwwwww πY

##GGGGGGGGG

X Y
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We will require that both projection functions prX and prY be continuous. As
we will see, this defines a unique topology on the Cartesian product, the minimal
(containing the least number of open sets) for which the continuity of the projections
holds.

Let us have a look, which open sets are needed. Let U ⊆ X be an open set. Then

π−1
X (U) = U × Y ⊆ X × Y

has to be open, and analogously for open subsets V ⊆ Y . Moreover, since

π−1
X (U) ∩ π−1

Y (V ) = (U × Y ) ∩ (X × V ) = U × V ,

all subsets of the form U × V are open when U ⊆ X and V ⊆ Y are open. It is
quickly checked that the intersection of such sets is again of the same form, and
hence form the basis of a topology.

Definition 2.38. Let X, Y be topological spaces. The product topology on the set
X×Y consists of arbitrary unions of subsets of the form U×V , with U ⊆ X,V ⊆ Y
open.

It is important to point out that not all subsets of the product topology are
products of open sets. The same definition holds for the product of finitely many
topological spaces. All our results for two topological spaces will hold for arbitrary
finite products. However, we will mostly content ourselves with the case of two
spaces for ease of notation.

Remark 2.39. We can define analogously the product of infinitely many topologi-
cal spaces. If {Xα |α ∈ I} is a collection of topological spaces, then the product
topology on ×α∈IXα is given by the basis of open sets

×α∈IUα
where Uα ⊆ Xα are open for all α ∈ I, and Uα = Xα for all but finitely many α’s.

Lemma 2.40. Let (X, τX) and (Y, τY ) be topological spaces, U and V bases for τX
and τY , respectively. Then the collection of sets

W
def
= {S × T |S ∈ U, T ∈ V}

forms a basis of the product topology on X × Y .

Proof. Let U ∈ τX , V ∈ τY be arbitrary open sets. It is then enough to prove that
U × V can be written as a union of elements of W. To this end, write

U =
⋃
α∈I

Uα , V =
⋃
β∈J

Vβ ,

where Uα ∈ U, and Vβ ∈ V for every α ∈ I, β ∈ J . Then

U × V =
⋃

α∈I,β∈J

Uα × Vβ ,
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a union of elements of W. �

Remark 2.41. Observe whenever we have topological spaces (X, τX), (Y, τY ) and
subsets A ⊆ X,B ⊆ Y , then there are two natural ways to put a topology on
A×B. Namely, we can first take the subspace topologies on A and B induced from
that of X and Y , respectively, and then form the product space of A and B. Or, we
can consider A× B as a subset of X × Y and equip it with the subspace topology
coming from X × Y . The way out of this apparently unfortunate situation is that
these two constructions produce the same result.

This can be seen as follows. We will denote the topology on A×B by first taking
subspaces and then products by τ1, and the topology obtained by taking the product
first and then the subspace topology by τ2. Now we show that the collection

U
def
= {(U ∩ A)× (V ∩B) |U ∈ τX , V ∈ τY }

is a basis for both τ1 and τ2, hence τ1 = τ2.
Let U ⊆ X, V ⊆ Y be open sets. Since such subsets form a basis for the topology

of X×Y , subsets of the form (U ×V )∩ (A×B) will provide a basis of the subspace
topology on A×B inherited from X × Y . However,

(U × V ) ∩ (A×B) = (U ∩ A)× (V ×B) ,

thus proving that U is a basis for τ1. On the other hand,

{U ∩ A |U ∈ τX} , {V ∩B |V ∈ τY }
are bases for (τX)|A and (τY )|B, respectively. Since the products of two bases form
a basis for the product topology, U is indeed a basis for τ2.

The following result characterizes products up to a unique homeomorphism. The
proof works with minimal changes in the infinite case, but we will only deal with
the finite case now.

Proposition 2.42. Let X and Y be topological spaces. Then the product space
X × Y has the following property: for every topological space Z with continuous
maps fX : Z → X and fY : Z → Y there exists a unique map g : Z → X × Y such
that the following diagram commutes.

Z

fX

��4444444444444444
fY

))SSSSSSSSSSSSSSSSSSSS
g

##GGGGGGGGG

X × Y
πY //

πX
��

Y

X

In addition, X × Y equipped with the product topology is the only such space up to
a unique homeomorphism.
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The commutativity of the diagram means that πX ◦ g = fX and πY ◦ g = fY .

Remark 2.43. By general algebra Proposition 2.42 implies that the product topology
on X × Y is in fact unique up to a unique homeomorphism.

Proof of Proposition 2.42. Let Z be a topological space as in the statement with
maps fX and fY . Then the continuity of the diagram determines uniquely the
set-theoretic function g : Z → X × Y via

g(z) = (fX(z), fY (z)) .

We need to prove that g is continuous. To this end, fix an open set U ⊆ X × Y .
Then

U =
n⋃
i=1

Vi ×Wi

with Vi ⊆ X and Wi ⊆ Y being open sets for every 1 ≤ i ≤ n. Hence

g−1(U) = g−1

(
n⋃
i=1

Vi ×Wi

)

=
n⋃
i=1

g−1(Vi ×Wi)

=
n⋃
i=1

(
g−1(π−1

X (Vi) ∩ π−1
Y (Wi))

)
=

n⋃
i=1

(
f−1
X (Vi) ∩ f−1

Y (Wi)
)
,

which shows that g−1(U) ⊆ Z is indeed open.
�

Exercise 2.44 (Products of metric spaces). Let N : Rm → R be any norm with
the property that it is monotonically increasing function in every coordinate while
keeping all others fixed. Consider finitely many metric spaces (X1, δ1), . . . , (Xm, dm).
Show that the function

dN((x1, . . . , xm), (y1, . . . , ym))
def
= N(d1(x1, y1), . . . , dm(xm, ym))

defines a metric on the Cartesian product set X1 × · · · × Xm. Prove that all such
metrics dN are bounded by above and below by a positive multiple of each other, and
each one gives rise to the product of the metric topologies on X1 × · · · ×Xm.

Theorem 2.45. Let X,Y and Z be topological spaces, f : Z → X × Y be an
arbitrary function. Let fX = πX ◦ f and fY = πY ◦ f ( we will call them ’coordinate
functions’ ). For any point z ∈ Z, the function f is continuous at z if and only if
both functions fX and fY are continuous at z.
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Proof. If f is continuous, then so are fX = f ◦ πX and fY = f ◦ πY since they are
both compositions of continuous functions.

Assume now that fX and fY are continuous. Then Proposition 2.42 implies the
existence of a unique continuous map g : Z → X × Y whose compositions with the
appropriate projection maps are fX and fY . But this implies f = g, and hence f
must be continuous. �

Exercise 2.46. Show that the projection maps πX : X × Y → X and πY : X × Y
are open maps.

Exercise 2.47. Let A ⊆ X,B ⊆ Y be subspaces of the indicated topological spaces.
Verify that

A×B = A×B
inside X × Y .

Exercise 2.48. Let f : X → Y and g : W → Z be open maps. Show that f × g :
X ×W → Y × Z is open as well.

2.4. Gluing topologies. It happens often that one tries to construct topological
spaces from small pieces, that somehow match and can be used to glue things
together. We take on this method now systematically.

For starters, consider the following situation. Let X be a topological space,
{Uα | i ∈ I} an open cover of X. For a subset U ⊆ X to be open is a local property,
that is, U is open in X if and only U ∩ Uα is open in Uα for every α ∈ I.

We can play a similar game with morphisms: continuing from the previous para-
gaph, let f : X → Y be a continuous map; by restricting to the elements of the
open cover we obtain continuous maps fα : Uα → Y that agree on the intersections,
i.e.

fα|Uα∩Uβ = fβ|Uα∩Uβ
Conversely, assume we are given continuous maps fα : Uα → Y for every α ∈ I

that agree on the overlaps, i.e. fα|Uα∩Uβ = fβ|Uα∩Uβ , then they fit together to give
a unique (set-theoretic) function f : X → Y satisfying f |Uα = fα for every α ∈ I;
moreover this function f is continuous. To see why this is so, take any open set
V ⊆ Y . Then f−1(V ) ⊆ X is open, since f−1(V ) ∩ Uα = f−1

α (V ) ⊆ Uα is open, and
openness is a local property.

The moral of the story is that once there is an open cover {Uα | i ∈ I} of X
given, one can view continuous maps f : X → Y as collections of continuous maps
fα : Uα → X that are compatible on the overlaps. Now we will run this procedure
in reverse.

Theorem 2.49. Let X be an arbitrary set, {Xα |α ∈ I} a collection of subsets of
X whose union is X. Assume that for each α ∈ I there is given a topology τα on
Xα such that for every α, β ∈ I the subset Xα ∩ Xβ is open in both Xα and Xβ;
moreover, the induced topologies on Xα ∩Xβ from τα and τβ coincide.
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Then there is a unique topology τ on X inducing upon each Xα the topology τα.

Definition 2.50. We say that the topology τ constructed in Theorem 2.49 is ob-
tained by gluing the topologies on the Xα’s.

Note that it is not in general clear what properties of the Xα’s get inherited by
X. For example if we glue together a compatible collection of Hausdorff topological
spaces, then the result will not be in general Hausdorff, as the following example
shows.

Example 2.51. Let X be the real line with the origin counted twice, that is,
X = (R − 0) ∪ {01} ∪ {02}, X1 = (R − {0}) ∪ {01}, X2 = (R − {0}) ∪ {02}. Give
both Xi’s the topology of the real line, and X the one obtained by gluing X1 and
X2 along their common open subset R − {0i}. Then the images of the two origins
in X are different points, it is not however possible to separate them with disjoint
open sets (any open set containing one of these points will contain an open interval
around it).

Proof of Theorem 2.49. We deal with uniqueness first. Let τ be a topology on X
inducing the τα’s on the Xα’s, and making all Xα ⊆ X open. Since the Xα’s form
an open cover of X, a subset U ⊆ X is open if and only if U ∩Xα is open for the
topology τ |Xα for every α ∈ I, if and only if U ∩Xα is open in τα for every α ∈ I.
This last condition however only depends on the Xα’s , hence uniqueness.

We will use the argument in reverse to construct τ . Define

τ
def
= {U ⊆ X |U ∩Xα ∈ τα ∀α ∈ I} .

First we show that τ is indeed a topology on X. Obviously, ∅ and X belong to τ .
Let now {Uj | j ∈ J} be an arbitrary collection of elements of τ , we want to prove
that their union U lies again in τ . Thus, we need that U ∩Xα ⊆ Xα is open. But

U ∩Xα =
(⋃
{Uj | j ∈ J}

)
∩Xα =

⋃
j∈J

(Uj ∩Xα) ,

hence U ∩Xα is open in Xα, since all intersections Uj∩Xα are open in Xα by choice,
and τα is a topology on Xα. A completely analogous reasoning takes care of finite
intersections.

We are left with showing that τ indeed induces τα on Xα. Take a subset U ⊆ Xα;
we have to show that U is in τα if and only if it is in τ |Xα . Since Xα is τ -open in
X, it is enough to prove that U ∈ τα if and only if U ∈ τ .

By definition of τ , U ∈ τ if and only if U ∩Xβ ∈ τβ for every β ∈ I, in particular
U ∩Xα = U is τα-open.

To settle the other direction, we need to prove that U ∩Xβ ⊆ Xβ is τβ-open for
all β ∈ I. We are assuming that Xα ∩Xβ inherits the same topology from both Xα

and Xβ, and it is open in each, therefore the subset U ∩Xβ ⊆ Xα ∩Xβ is open in
Xβ if and only if it is open for τβ|Xα∩Xβ . This latter topology is however the same as
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τα|Xα∩Xβ by the compatibility assumption on the τa’s, so since U∩Xβ = U∩Xα∩Xβ,
it follows that U ∩ (Xα ∩Xβ) is indeed open in Xα ∩Xβ for the topology induced
by τβ. �

3. Connectedness

Here we formulate the mathematical version of the naive notion that a space is
connected.

Definition 3.1. A topological space X is connected if it cannot be written as the
union of two disjoint nonempty open sets. Otherwise X is called disconnected. A
subset A ⊆ X is called clopen if A is both open and closed.

Remark 3.2. The complement of a clopen subset is also clopen. X is connected if
and only if the only clopen subsets in X are the empty set and itself.

Definition 3.3. A discrete-valued map is a map f : X → D with D a discrete
topological space.

Proposition 3.4. A topological space X is connected if and only if every discrete-
valued map on X is constant.

Proof. Assume first that X is connected. For every d ∈ D, the set {d} ⊆ D is
clopen, hence so is its inverse image f−1(d) ⊆ X. Therefore f−1(d) is either empty
or the whole of X. As these are pairwise disjoint, there is exactly one d for which
f−1(d) = X; hence f is constant.

Next, assume that every discrete-valued map from X is constant. Suppose that
X is disconnected, that is, X = U ∪ V the union of two disjoint clopen sets. Then
the function

f(x)
def
=

{
0 if x ∈ U
1 if x ∈ V .

is discrete-valued and continuous, a contradiction. �

Proposition 3.5. If f : X → Y is a continuous function of topological spaces and
X is connected, then so is f(X).

Proof. We will show that every discrete-valued map d : f(X)→ D is constant. Pick
such a map d, then the composition d ◦ f : X → D is a discrete valued map from
X, hence constant. As f is surjective onto f(X), d must be constant as well. This
means that f(X) is connected. �

Proposition 3.6. If {Yi | i ∈ I} is a collection of connected subsets in a topological
space X (all equipped with the subspace topology ), and no two of the Yi’s are disjoint,
then ∪i∈IYi is connected.
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Proof. Let d : ∪i∈IYi → D be a discrete-valued map. Fix two arbitrary points
p, q ∈ ∪i∈IYi. Without loss of generality we can assume that p ∈ Y1 and q ∈ Y2.
Pick an arbitrary point r ∈ Y1 ∩ Y2 6= ∅. As d is constant on both Y1 and Y2,
d(p) = d(r) = d(q). Since the points p and q were chosen in an arbitrary way, d is
constant. �

Consider the following relation: write p ∼ q if p and q belong to a connected
subset of X. Proposition 3.6 shows that ∼ is an equivalence relation.

Definition 3.7. The equivalence classes of this equivalence relation are called the
connected components of X.

Proposition 3.8. Connected components of X are in fact connected and closed.
Each connected set is contained in a connected component. The components are
either equal or disjoint, and fill out X.

Proof. The fact the the components fill out X follows from the observation that
they are equivalence classes of an equivalence relation.

For x ∈ X the component of x is the union of all connected sets containing x,
and therefore connected by Proposition 3.6. This also implies that a connected
sets is contained in a component. Connected components are closed according to
Lemma 3.9. �

Lemma 3.9. If A ⊆ X is a connected subset, A ⊆ B ⊆ A arbitrary, then B is
connected as well.

Proof. The crucial observations linking the connectedness of B to that of A is the
following: for an open set U ⊆ X, U ∩ A 6= ∅ is equivalent to U ∩ A 6= ∅ and hence
equivalent to U ∩B 6= ∅.

Suppose that there exist open subsets U, V ⊆ X such that

(U ∩B) ∪ (V ∩B) = B

and U ∩ V ∩B = ∅.
But then the same holds for A : (U ∩A)∪ (V ∩A) = A and U ∩V ∩A = ∅. As A

is connected, one of the sets U ∩A or V ∩A must be empty; say U ∩A = ∅. This is
equivalent to A ⊆ X − U , which implies A ⊆ X − U , hence B ⊆ X − U . But then
U ∩B = ∅, and so B is connected. �

Example 3.10 (Connected components are not necessarily open). Consider Q ⊆ R
with the subspace topology. Then the only connected subsets of Q are the one-
element sets. The connected components are one-element sets, hence closed but not
open. To show this, let A ⊆ Q be an arbitrary subset with at least two points p < q.
Pick an irrational number p < α < q. Then

A = (A ∩ {t < α}) ∪ (A ∩ {α < t})
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provides a separation of A into two disjoint, non-empty open sets. This argument
shows that no subset with more than one element in Q is connected.

To see that one-point sets in Q are not open, observe that any non-empty open
set in R contains an open interval, hence has infinitely many rational numbers; thus
any non-empty open set in Q must be infinite.

Definition 3.11. A topological space X is totally disconnected if the only connected
subsets of X are one-element sets.

So far we have seen many disconnected spaces, yet we owe ourselves proving that
those spaces of which we feel that are connected, are indeed so.

Theorem 3.12. The subset [0, 1] ⊆ R is connected.

Proof. Suppose that [0, 1] is disconnected, that is, there exist open subsets A,B ⊆ R
such that A ∩ B ∩ [0, 1] = ∅, (A ∩ [0, 1]) ∪ (B ∩ [0, 1]) = [0, 1], and both A ∩ [0, 1]
and B ∩ [0, 1] are nonempty.

Without loss of generality we can assume that there exists a ∈ A and b ∈ B with
a < b. Therefore we can write

[a, b] = (A ∩ [a, b]) ∪ (B ∩ [a, b])

as the union of two non-empty open subsets.

The question is, where could c
def
= sup(A ∩ [a, b]) belong?

Suppose first that c ∈ A ∩ [a, b]. Then c 6= b, hence either c = a, or a < c < b.
Since A∩[a, b] ⊆ [a, b] is open, in any case there exists a half-open interval [c, c+ε) ⊆
A ∩ [a, b]. But this means that c < c +

ε

2
∈ A ∩ [a, b], hence c cannot be a lower

bound of A ∩ [a, b], therefore c 6= sup(A ∩ [a, b]).
Hence we are bound to suppose that c ∈ B ∩ [a, b]. Analogously to the previous

case, since c 6= a and B ∩ [a, b] ⊆ [a, b] is open, we can find a half-open interval

(c− ε, c] ⊆ B ∩ [a, b]. This however means that c− ε

2
< c is also an upper bound of

A ∩ [a, b], so c cannot be the least upper bound of A ∩ [a, b], a contradiction.
We have established that c cannot belong to any of A and B, hence our assumption

that [0, 1] is disconnected was false. �

Connectedness has many important consequences, the following is one of the most
important.

Theorem 3.13 (Intermediate value theorem). Let X be a connected topological
space, f : X → R a map. If a, b ∈ X, f(a) < γ < f(b) for some γ ∈ R, then there
exists c ∈ X for which f(c) = γ.

Proof. Let A
def
= f(X) ∩ (−∞, γ) and B

def
= f(X) ∩ (γ,+∞). Then A ∩B = ∅, both

A and B are non-empty and open in f(X). Suppose that there does not exist c ∈ X
with f(c) = γ. Then f(X) = A ∪ B is the disjoint union of two non-empty open
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subsets, hence disconnected. This however contradicts the fact that f(X) being the
continuous image of a connected space is itself connected. �

The connectedness notion we have introduced is not the only one imaginable.
Intuition provides an alternate viewpoint: we would like to call a topological space
connected if we can ’go’ from any of its points to any other point. This version is
made precise in the definition below.

Definition 3.14. ) Let (X, τ) be a topological space, x, y ∈ X arbitrary (not
necessarily different) points. A path in X from x to y is a map γ : [0, 1]→ X with
γ(0) = x and γ(1) = y.

The topological space X is called path-connected or arcwise connected if for every
pair of points x, y in X there exists a path γ in X joining x to y.

Remark 3.15. A path connected topological space is connected; this can be seen as
follows: suppose X = A∪B is a separation of X, let a ∈ A,b ∈ B and f : [0, 1]→ X
a path from a to b. The image f([0, 1]) is connected, hence must lie either completely
in A or completely in B. But this contradicts the choice of a and b.

A connected topological space need not be path-connected, but it is not easy to
construct such examples.

Example 3.16. Let X = [0, 1]× [0, 1], make it into a partially ordered set with the
help of the lexicographic order. Then X with the order topology is connected, but
not path-connected.

Example 3.17 (Topologists’ sine curve). Consider the subset

S
def
=
{

(x, sin 1
x
) | 0 < x ≤ 1

}
⊆ R2 ,

which is the graph of the function x 7→ sin
1

x
over the half-open interval (0, 1]. As

we will see shortly, the closure of S in R2 equals

S = S ∪ {0} × [−1, 1] .

We will show that S ⊆ R2 with the subspace topology is connected, but not path-
connected.

Proposition. With notation as above,

(1) S = S ∪ {0} × [−1, 1],
(2) S is connected,
(3) S is not path-connected.

Proof. The connectedness of S is simple: the subset S ⊆ R2 is connected as the
image of the connected set (0, 1]; but then so is S, being the closure of a connected
subset of R2. Proof of the other two claims is to come. �

Exercise 3.18.
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(1) Show that no two of (0, 1), (0, 1], and [0, 1] are homeomorphic.
(2) Prove that Rn 6≈ R whenever n > 1.

Exercise 3.19. Show that every continuous map f : [0, 1]→ [0, 1] has a fixed point
(i.e. there exists c ∈ [0, 1] such that f(x) = x). Give an example to illustrate that
the same does not hold for [0, 1).

Definition 3.20. Let X be a topological space. The equivalence classes of the
relation between points of X given by “there is a path from x to y” are called path
or arc components of X.

Theorem 3.21. The path components of a topological space X are disjoint path-
connected subspaces whose union is X. Each path-connected subspace intersects
exactly one path component.

Proof. About the same as for connectedness. �

Definition 3.22. A topological space (X, τ) is locally connected at a point x ∈ X, if
x has a neighbourhood basis consisting of connected subsets. The space X is called
locally connected if it is locally connected at every x ∈ X.

The topological spaceX is locally path connected at a point x ∈ X, if x has a neigh-
bourhood basis consisting of path-connected subsets; X is locally path-connected if
it is locally connected at every x ∈ X.

Proposition 3.23. X is locally connected if and only if for every open subset U ⊆
X, each component of U is open in X.

Proof. Let U ⊆ X be an open set, C ⊆ U a connected component of U . Pick a
point x ∈ C, and choose a connected neighbourhood V of x such that V ⊆ U . Now
C is connected hence V ⊆ C, and so C ⊆ X is open.

For the other direction, assume that the components of open sets in X are them-
selves open. Fix x ∈ X, an open neighbourhood U of x, and let C be the connected
component of U containing x. Since C is connected and open in X, X is locally
connected at x. �

Exercise 3.24. Show that a topological space X is locally path-connected if and only
if for every open subset U ⊆ X, each path-component of U is open in X.

Theorem 3.25. Let X be a topological space. Each path component of X lies in a
connected component of X. If X is locally path connected then connected components
and path components coincide.

Proof. Let C ⊆ X be a connected component of X, x ∈ C arbitrary. Let P be the
path component of X containing x. Then P is connected, hence P ⊆ C. Suppose
that P 6= C.

We will denote the union of all path components of X that are different from P
but intersect C by Q. Each of these path components lies in C, so C = P ∪Q. As
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X is locally path connected, the path components are open in X. But this means
that P ∪Q is a separation of C, a contradiction. �

Definition 3.26 (Disjoint union/topological sum). Let X, Y be topological space.
Then the disjoint union X

∐
Y of X and Y is defined as follows. As a set it is equal

to (X ×{0})∪ (Y ×{1}), we equip this set with the topology making both X ×{0}
and Y × {1} clopen, and the inclusions

x 7→ (x, 0) X → X
∐

Y

y 7→ (y, 1) Y → X
∐

Y

homeomorphisms onto their images.

The disjoint union of an arbitrary collection of topological spaces can be defined
analogously.

Exercise 3.27. Check that the disjoint union of two topological spaces is a well-
defined topological space.

Exercise 3.28. The relation ”p	 q if for every discrete valued map d on X, d(p) =
d(q)” is an equivalence relation, the equivalence classes of which are called quasi-
components.
(i) Show that quasi-components are either equal or disjoint, and fill out X.
(ii) The quasi-components of a topological space are closed; each connected set is
contained in a quasi-component.

(iii) Let X
def
= { { (0, 0) } , { (0, 1) } } ∪

⋃∞
n=1

{
1
n

}
× [0, 1] ⊆ R2. Then the points

(0, 0) and (0, 1) are components, but not quasi-components.

Exercise 3.29. Let (X, τ), (X, σ) two topologies on the same set, assume that σ ⊆
τ . Does connectivity of a subset with respect to one topology imply anything for
connectivity in the other?

Exercise 3.30. Let Cn be an infinite sequence of connected subspaces of a topological
space X, such that for every n, one has Cn ∩ Cn+1 6= ∅. Show that

⋃∞
n=1Cn is

connected as well.

Exercise 3.31. An infinite set is always connected in the finite complement topology.

Exercise 3.32. Show that a discrete topological space is totally disconnected. Is the
converse true?

Exercise 3.33. Let A ⊆ X be an arbitrary subspace, C ⊆ X connected. Prove that
A ∩ C 6= ∅ and (X − A) ∩ C 6= ∅ together imply ∂A 6= ∅.
Exercise 3.34. If X ⊆ Rn is a convex subset, then X is connected.

Exercise 3.35. Prove that a connected metric space is either uncountable or has at
most one point.
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Exercise 3.36. Show that a connected open set in a locally path connected space is
path connected.

4. Separation axioms and the Hausdorff property

General topological spaces have little in common, since the basic axioms hardly
say anything. Therefore, and also to make topological spaces resemble real life to
some extent, it seems reasonable to put further restrictions on them.

Definition 4.1. A topological space X is a T0-space if for every two points x, y ∈ X
there exists an open subset U with either x ∈ U, y 6∈ U or x 6∈ U, y ∈ U .

Definition 4.2. X is called a T1-space, if for every pair of points x, y ∈ X there
exists an open set U with x ∈ U and y 6∈ U .

Note that a T1-space is certainly a T0-space, but the two properties differ. The
T0 property is equivalent to requiring, that the points of X can be distinguished by
the collections of open sets they lie in. As one can check quickly, the T1 property is
the same as insisting that all one-point sets in X are closed.

Definition 4.3. A topological space X is called Hausdorff or a T2-space, if for every
pair of points x, y ∈ X, there exist open sets U, V ⊆ X such that x ∈ U , y ∈ V , and
U ∩ V = ∅.

Of all the separation axioms that we will encounter, the Hausdorff property is by
far the most important. We point out that a subspace of a Hausdorff space inherits
the Hausdorff property.

Definition 4.4. A topological space is called regular or a T3-space, if for every point
x ∈ X and every closed set F ⊆ X not containing x, there exist disjoint open sets
U, V ⊆ X such that x ∈ U and F ⊆ V .

Definition 4.5. X is called normal or a T4-space if for every pair of disjoint closed
sets F,G ⊆ X there exist disjoint open sets U, V ⊆ X with F ⊆ U and G ⊆ V .

Exercise 4.6. Give examples to show that the Hausdorff property is not implied by
regularity or normality.

Exercise 4.7. Find an example of a topological space that is T0 but not T1, an
example which is T1, but not T2, and so on.

Proposition 4.8. A Hausdorff topological space is regular if and only if the closed
neighbourhoods of any point x form a neighbourhood basis of x.

Proof. First assume that X is a regular Hausdorff topological space. Pick a point

x ∈ X, let V be an open neighbourhood of x, and set C
def
= X − V . By regularity,

there exist disjoint open subsets U,W ⊆ X such that x ∈ U and C ⊆ W .



INTRODUCTION TO TOPOLOGY 31

Therefore X −W is closed, and X −W ⊆ X − C = V , hence any open neigh-
bourhood V of X contains a closed neighbourhood X −W of x.

Now assume that every point x ∈ X has a neighbourhood basis consisting of
closed subsets of X. Pick C ⊆ X arbitrary closed, and x 6∈ C. Let V = X −C. By
assumption, there exists an open set U ⊆ X with U ⊆ V = X − C, x ∈ U . This
implies that C ⊆ X − U , and U ∩ (X − U) = ∅, and so X is regular. �

Corollary 4.9. A subspace of a regular Hausdorff space is regular Hausdorff.

Proof. Let A ⊆ X be a subspace of a regular Hausdorff space. The Hausdorff
propety has already been taken care of; regularity comes from the fact that by
intersecting a closed neighbourhood basis of x ∈ A in X with A, we obtain a closed
neighbourhood basis of x in the subspace A. �

4.1. More on the Hausdorff property. Here we collect some observations on
the Hausdorff separation property, that are important in algebraic geometry and
the theory of manifolds. In particular, we address the issue to what extent can we
control the Hausdorff property upon gluing.

We have seen earlier, that by gluing together Hausdorff topological spaces (even
finitely many) we can lose this important property. To get a better grasp on this
notion, we present an alternate characterization, which might be at first unusual-
looking, but has far-reaching consequences. Let X be a topological space. The key
tool is the so-called diagonal map ∆X : X → X ×X given by x→ (x, x).

Exercise 4.10. Construct the diagonal map using the universal property of the
product topology. Show that ∆X : X → X ×X is indeed continuous, even better, it
is a homeomorphism onto its image.

Proposition 4.11. A topological space X is Hausdorff if and only if ∆X(X) ⊆
X ×X is a closed subset.

In other words, X is Hausdorff if and only if ∆X is a homemorphism onto a closed
subset of X ×X.

Proof. The subset ∆X(X) ⊆ X ×X is closed if and only if U
def
= X ×X −∆X(X) ⊆

X×X is open. A pont (x, x′) ∈ X×X is in U if and only if x 6= x′. By definition of
the product topology, U is open if and only if for every point (x, x′) ∈ U there exist
open sets V,W ⊆ X such that (x, x′) ∈ V ×W , and V ×W ⊆ U = X×X−∆X(X).
This latter property translates into (V ×W )∩∆X(X) = ∅. Equivalently, we require
that (x, x′) ∈ V ×W and V ∩W = ∆−1

X (V ×W ) = ∅, which is the same as asking
that x ∈ V , x′ ∈ W , and V ∩W = ∅. �

Theorem 4.12. Let Y be a Hausdorff, X an arbitrary topological space, f, g : X →
Y continuous maps. If f |S = g|S for a dense subset S ⊆ X, then f = g.

The example with the real line with the origin doubled illustrates that the Haus-
dorff property is crucial.
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Proof. We consider the product map f ×g : X → Y ×Y . The subset of X on which
f and g agree is equal to (f × g)−1(∆Y (Y )). Since Y is Hausdorff, this set is closed,
on the other hand it contains the dense subset S. Therefore (f×g)−1(∆Y (Y )) = X,
and so f = g. �

One of the most important applications of Proposition 4.11 is a criterion for the
Hausdorffness of a topological space glued together from open pieces.

Theorem 4.13. Let (X, τ) be the topological space obtained by gluing together the
collection {(Xα, τα) |α ∈ I}. Then X is Hausdorff exactly if each Xα is Hausdorff,
and ∆X(Xα ∩Xβ) is closed in Xα ×Xβ for every α, β ∈ I.

Proof. Since {Xα} forms an open cover, the open subsets Xα×Xβ cover the product
space X ×X. Recall that closedness is a local property, hence a subset A ⊆ X ×X
is closed if and only if A ∩Xα ∩Xβ ⊆ Xα ∩Xβ is closed.

Let us identify X and its image ∆X(X) via the diagonal map (which is a
homeomorphism). Under this identifications ∆X(X) ∩ (Xα × Xβ) corresponds to
Xα∩Xβ ⊆ X. Therefore, ∆X has closed image in X×X if and only if the restriction
of the diagonal map Xα ∩Xβ → Xa ×Xβ has closed image for every α, β ∈ I.

If α = β, then this just says that Xα is closed in Xα×Xα (via the diagonal map),
that is, Xα is Hausdorff. For α 6= β we obtain the condition in the Theorem. �

Exercise 4.14. Check what happens for the real line with the origin doubled.

Exercise 4.15. Show that in a Hausdorff topological space a sequence can have at
most one limit.

Exercise 4.16. Prove that a subspace of a Hausdorff topological space is itself Haus-
dorff with respect to the subspace topology.

Exercise 4.17. Decide whether the product of two Hausdorff spaces is Hausdorff.

5. Compactness and its relatives

The notion of a compact space is a vast generalization of closed bounded sets in
Euclidean spaces. As we will see, it has far-reaching consequences, among others, a
real-valued function on a compact topological space takes on its extremal values.

As it turns out, even weak versions of compactness like local compactness or
paracompactness prove to be fundamental for much of geometry.

Definition 5.1. A covering or cover of C of a topological space X is a collection of
subsets of X whose union is X. A covering C is called open, if all of its elements are
open subsets of X. A subcover of a covering C is a subset of C such that the union
of its elements is still X.

Definition 5.2 (Compactness). A topological space X is compact, if every open
cover of X has a finite subcover.
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This is called the Heine–Borel property. Now we will work on a useful character-
ization in terms of closed subsets.

Definition 5.3 (Finite intersection property). Let C be an arbitrary collection of
subsets of X. We say that C has the finite intersection property or FIP for short, if
the intersection of any finite subcollection of C is non-empty.

Proposition 5.4. A topological space X is compact if and only if for every collection
C of closed subsets of X with the finite intersection property the intersection of all
sets in C is non-empty.

Proof. Let us assume that X is compact, and let

C
def
= {Cα |α ∈ I}

a collection of closed subsets of X with the finite intersection property, suppose that⋂
α∈I

Cα = ∅ .

Consider

U
def
= {X − Cα |α ∈ I} ,

the collection of the complements of the elements of C. Then

X = X − ∅ = X −

(⋂
α∈I

Cα

)
=
⋃
α∈I

(X − Cα) ,

that is, U is an open cover of X. By compactness, U has a finite subcover X −
Cα1 , . . . , X − Cαk . This means that

X =
k⋃
i=1

(X − Cαi) = X −
k⋂
i=1

Cαi .

Therefore
⋂k
i=1Cαi = ∅, which contradicts the finite intersection property of C.

The other direction is completely analogous. �

Theorem 5.5. Any compact subspace of a Hausdorff topological space is closed.

Proof. Let X be a T2-space, C ⊆ X a compact subset, x ∈ X − C. For a ∈ C let
Ua, Va be disjoint open subsets of X such that a ∈ Ua and x ∈ Va. Note that⋃

a∈C

(Ua ∩ C) = C

is an open cover of C, hence by compactness we can find finitely many points
a1, . . . , ak for which

k⋃
i=1

(Ua ∩ C) = C .
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Let U(x)
def
= Ua1 ∪ · · · ∪ Uak , and V (x)

def
= Va1 ∩ · · · ∩ Vak . Then U(x), V (x) ⊆ X are

open sets, U(x) ⊇ C, and V (x) ∩ C = ∅. Therefore

x ∈ V (x) ⊆ X − U(x) ⊆ X − C .

Since this holds for any x 6∈ C, we have

X − C =
⋃
x 6∈C

V (x) ,

which means that X − C is open, hence C ⊆ X is closed. �

Proposition 5.6. The image of a compact topological space under a continuous
map is compact.

Proof. Look at the inverse images of an open cover of the target. �

Proposition 5.7. Let X be a compact topological space, A ⊆ X a closed subset.
Then A with the subspace topology inherited from X is compact as well.

Proof. Let C = {Vα |α ∈ I} an arbitrary open cover of A. By the definition of the
subspace topology, there exists a collection C′ = {Uα |α ∈ I} of open sets in X such
that Uα ∩ A = Vα; as C covers A, so will C′.

Consider the open cover {X − A} ∪ C′ of X. Since X is compact, {X − A} ∪ C′

has a finite subcover U1, . . . Uk. If X−A shows up in this finite collection, discard it.
The remaining ones will all belong to C′, and will still cover A (as X −A is disjoint
from A) hence their intersection with A will produce a finite subcover of C. �

We have explicitly pointed out earlier, that a continuous bijection between topo-
logical spaces is in general not a homemorphism. Here is one common situation,
however, when it is. This result will prove to be very useful in many contexts.

Proposition 5.8. Let X be a compact topological space, Y Hausdorff, f : X → Y
a continuous bijection. Then f is a homemorphism.

Proof. What we need to show is that f−1 : Y → X (which is a function now since
f is bijective) is a continuous function. This is equivalent to requiring that f be a
closed map.

Let A ⊆ X be a closed subset. Since X is compact, A is compact as well. The
image f(A) ⊆ Y is also compact; a compact subset of a Hausdorff topological space
is closed, therefore we are done. �

Roughly speaking, compact topological spaces have ’few’ open sets, while Haus-
dorff ones have ’many’ open sets. A not very convincing argument for this rule of
thumb is to look at the two extremes: a trivial topological space is always com-
pact (but never Hausdorff unless X is empty), a discrete topological space is always
Hausdorff, but only compact, if X has finitely many elements. In this sense, com-
pact Hausdorff spaces represent a happy middle ground. Another way to look at
this idea is the following.
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Exercise 5.9. Let X be a set, τ1, τ2 two topologies on X such that (X, τ1) and
(X, τ2) are both compact Hausdorff spaces. Then τ1 6⊆ τ2 and τ2 6⊆ τ1.

Theorem 5.10. I
def
= [0, 1] ⊆ R is compact.

Proof. Let U be an open cover of I, set

S
def
= {α ∈ I | [0, α] is covered by a finite subcollection of U} ,

and let β
def
= supS. Observe that S must be an interval [0, β) or [0, β].

Assume that S = [0, β), take U ∈ U with β ∈ U. As an open set in R is a union
of finite open intervals, U must contain an interval of the form [α, β]. But then we
can consider the hypothetical finite cover of [0, α] and U to obtain a finite cover of
[0, β] with elements of U . Therefore S = [0, β].

A very similar argument shows that β must be equal to 1. �

As any two finite closed intervals are homeomorphic to each other (you can find
a linear function doing the job), [a, b] is compact for every a, b ∈ R.

Corollary 5.11. A subset X ⊆ R is compact if exactly if it is closed and bounded.

Proof. Assume first that X is compact. Then it is also closed since it R is Hausdorff
in the Euclidean topology. For boundedness, consider the open cover

{(−n, n) |n ∈ N} .
To go in the other direction, take a subset X ⊆ R, which is closed and bounded.
Boundedness is equivalent to saying that X ⊆ [−n, n] for some n. But then X is a
closed subspace of the compact topological space [−n, n], hence itself compact. �

Remark 5.12. As we will see later, closed and bounded subspaces of a metric space
will typically not be compact, one needs stronger hypotheses.

Theorem 5.13 (Extremal value theorem). If f : X → R is a continuous function,
X compact, then f assumes a smallest and a largest value on X.

Proof. Since X is compact, so is f(X) ⊆ R. But then f(X) is closed and bounded,
hence sup f(X) < ∞, and so sup f(X) ∈ f(X). Same argument holds for the
infimum. �

The following closely related notions mimic the Bolzano–Weierstrass version of
compactness.

Definition 5.14. A topological space X is limit point compact if every infinite
subset of X has an a limit point. X is said to be sequentially compact if every
sequence of points in X has a convergent subsequence.

One has to watch out, as in a general topological space the non-uniqueness of
limits of sequences leads to the fact the sequential compactness is fairly different
from compactness.
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Proposition 5.15. A compact topological space X is limit point compact.

Proof. Let A ⊆ X be an infinite subset of the compact space X. Suppose for a
contradiction that A has no limit point. Then A contains all of its limit points,
hence A is closed.

For an arbitrary a ∈ A an open subset a ∈ Ua ⊂ X such that Ua ∩A = X. Then

X = (X − A) ∪
⋃
a∈A

Ua

is an open cover of X. Since X is compact, the above cover has a finite subcover.
Only finitely many of the Ua’s can show up in the finite subcover. As (X−A)∩A∅,
all the points of A are contained in the finitely many Ua’s. But every one of them
contains exactly one common point with A. Therefore A is finite. �

Proposition 5.16. Let f : Z → W be a closed perfect map. Then f is also proper.

For the proof we will need the following lemma.

Lemma 5.17. If f : X → Y is a closed map, then for every y ∈ Y and every open
set f−1(y) ⊆ U ⊆ X there exists an open set W ⊆ Y with y ∈ W and f−1(W ) ⊆ U .

Proof. Let y ∈ Y and f−1(y) ⊆ U ⊆ X be arbitrary. Then X − U ⊆ X is closed,
hence f(X −U) ⊆ Y is closed as well, f being a closed map. Moreover f(X −U)∩
{y} = ∅.

Set W
def
= Y − f(X − U) ⊆ Y . Then W is an open subset of Y containing y.

We are left with showing that f−1(W ) ⊆ U : if w ∈ f−1(W ), then f(w) ∈ W ,
hence f(w) 6∈ f(X − U), and so w ∈ U (since w 6∈ U implies w ∈ X − U hence
f(w) ∈ f(X − U), a contradiction). �

Proof of Proposition 5.16. We will prove that Y compact implies X compact, the
general case follows by restriction.

Consider an arbitrary open cover U of X. The plan is to somehow cook up an
open cover of Y using U, and use the compactness of Y to find a finite subcover of
U Here is the construction of an open cover of Y : as f is perfect, f−1(y) ⊆ X is
compact for every y ∈ Y . Therefore there exist finitely many elements Uy,1, . . . Uy,ky

of U covering f−1(y). Consider the open set Uy
def
= Uy,1 ∪ · · · ∪ Uy,ky ⊇ f−1(y).

By the Lemma there exists an open set y ∈ Wy ⊆ Y such that f−1(Wy) ⊆ Uy.
Then Y − f(X), and the Wy’s form an open cover of the compact topological space
Y . Therefore there exists a finite subcover; the corresponding Uy’s form a finite
subcover of U. �

Proposition 5.18. If X is a compact topological space, then πY : X × Y → Y is a
closed map.

Proof. Let y ∈ Y − πY (C), that is, let y be an element of Y such that for every
x ∈ X, the pair (x, y) 6∈ C.
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Then for every x ∈ X there exists open sets Ux ⊆ X and Vx ⊆ Y such that x ∈ Ux
and y ∈ Vx and (Ux × Vx) ∩ C = ∅.

Since X is compact, there exist finitely many points x1, . . . , xk ∈ X such that

Ux1 ∪ · · · ∪ Uxk = X. Let V
def
= Vx1 ∩ · · · ∩ Vxk . Then

(X × V ) ∩ C = (Ux1 ] ∪ · · · ∪ Uxk)× ((Vx1 ∩ · · · ∩ Vxk) ∩ C) = ∅ .
Therefore y ∈ V ⊆ Y − πY (C), V ⊆ Y open. Hence Y − πY (C) ⊆ Y is open, and
so πY (C) ⊆ Y is closed. �

Corollary 5.19. Let X,Y be topological spaces, X compact. Then π : X × Y → Y
is proper.

Proof. �

Definition 5.20. A map f : X → Y between topological space is called proper if
the inverse image of every compact subset of Y is compact in X. The map f is
called perfect if the inverse image of every one-point set is compact.

Proposition 5.21. If X is compact, then πY : X × Y → Y is proper.

Proof. As πY is a closed map according to Proposition 5.18, Proposition 5.16 implies
that it is proper once it is perfect. But the preimage of any one-point set in Y is
X, which is compact. Therefore πY is proper. �

Corollary 5.22. The product of two compact topological spaces is compact.

Proof. Consider the perfect map πY : X × Y → Y . Since Y is compact, so is
π−1
Y (Y ) = X × Y . �

Corollary 5.23. If X1,. . . , Xk are compact topological spaces, then X1 × · · · ×Xk

is compact as well.

Proof. Use induction on the number of factors. �

Remark 5.24. A surprising non-trivial result known as Tychonoff’s theorem says the
an arbitrary product of compact topological spaces is compact. The proof requires
advanced tools from set theory.

Corollary 5.25. The n-dimensional cube [0, 1]n ⊆ Rn is compact.

Corollary 5.26. A subset X ⊆ Rn is compact if and only if it is closed and bounded.

Proof. Assume first that X is compact. Then it is automatically closed. Cover X by
intersections with B(0, k), where k runs through all natural numbers. Compactness
implies that finitely many of them covers X, as they are nested, the largest one
contains X, hence X is bounded as well.

For the other direction, let X ⊆ Rn be a closed and bounded subset. Then
X ⊆ B(0, k) for some positive k, which is in turn contained in [−k, k]n, a compact
set. Then X being a closed subset of a compact set is itself compact. �
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Exercise 5.27 (Tube lemma). Let X be an arbitrary, Y a compact topological space,
x0 ∈ X an arbitrary point, N ⊆ X ×Y an open subset containing {x0 }×Y . Prove
that there exists an open neighbourhood of W of x0 in X such that N ⊇ W × Y .

Exercise 5.28. Take two disjoints compact subspaces F,G ⊆ X, where X is Haus-
dorff. Prove that there exist disjoint open sets U, V ⊆ X for which F ⊆ U and
G ⊆ V .

Exercise 5.29. Let X be a non-empty compact Hausdorff space with no isolated
points. Show that X must be uncountable.

5.1. Local compactness and paracompactness. Here we treat two very useful
weakenings of compactness. As it turns out, one finds many more spaces in practice
that are locally compact or paracompact, than that are actually compact. More
often than not, local compactness and paracompactness are discussed in the presence
of the Hausdorff property.

Definition 5.30 (Local compactness). Let X be a topological space, x ∈ X. We
say that X is locally compact at x, if there exists a compact subset C ⊆ X which
contains a neighbourhood of x. The space X is called locally compact if it is locally
compact at every one of its points.

In other words, a topological space is compact precisely if every point has a com-
pact neighbourhood. Under these circumstances, every point has an open neigh-
bourhood, whose closure is compact.

Exercise 5.31. Prove that Rn is locally compact, but Q is not.

Proposition 5.32. Let X be a locally compact Hausdorff space, x ∈ X an arbitrary
point. Then each neighbourhood of x contains a compact neighbourhood of x.

Proof. Let x ∈ C ⊆ X be a compact neighbourhood of x, U ⊆ X an arbitrary
neighbourhood of x, which without loss of generality we can take to be open in X.
Let V ⊆ C ∩ U be an open set in X (since C is a neighbourhood of x in X, it
contains an open neigbourhood of x, take such a set and intersect it with U). Then
V ⊆ C is a compact Hausdorff space, hence it is regular as well. Therefore, there
exists a neighbourhood N ⊆ V of x in C, which is closed in x, whence closed in X
as well. Since N is closed in the compact topological space C, it is itself compact.
The subspace N is a neighbourhood of x in V , moreover, as N = N ∩ V , it is a
neighbourhood of x in the open set V , and so in X as well. �

Given that compact topological spaces have many desirable properties, it is im-
portant to know how more general spaces can be embedded as hopefully ’large’
parts of a compact space. Thus, one might need a procedure that produces from a
topological space X a compact space by adding as little ’extra stuff’ as necessary.

The least amount of extra stuff one can imagine is of course one point. Although
it might seem dubious that we can indeed produce a compact space by adding a
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single point, when properly done, it works under fairly general circumstances. This
is one place where local compactness comes in handy.

Definition 5.33 (One-point compactification). Let (X, τ) be a locally compact
Hausdorff topological space, and set

X+ def
= X ∪ {∞} ,

where the symbol ∞ stands for an arbitrary point not in X.
We define a topology τ+ on X+ in the following way. U ⊆ X+ is open with

respect to τ+ if either U ⊆ X and U ∈ τ (that is, U is an open subset of X), or if
U = X+ − C, where C ⊆ X is compact.

The space (X+, τ+) is called the one-point compactification of X.

Theorem 5.34. With notation as above, (X+, τ+) is a compact Hausdorff topo-
logical space. The topology τ+ is the only one making the set X+ into a compact
Hausdorff space with τ+|X = τ .

Proof. First of all, note that ∅ ∈ τ implies ∅ ∈ τ+, and X+ ∈ τ+ since ∅ ⊆ X is
compact.

Next we check that the intersection of two open sets in X+ is open as well. Let
U, V ⊆ X+ be open sets. According to the definition of τ+, there are three cases,
depending on how many of the two come from open subsets of X. If both, then
U ∩ V ∈ τ ⊆ τ+, and we are done. If none, then we are again fine, since the union
of two compact subsets of X is again compact. Let us now deal with the case when
U ⊆ X is open, and V ⊆ X+ has compact complement C. Then U ∩ V = U − C,
which is open in X, as C ⊆ X is closed; note that here we make use of the fact that
X is Hausdorff.

Let now {Uα |α ∈ I} be an arbitrary collection of open subsets of X+. If all the
Uα’s are open subsets of X, then their union is certainly open. Assume that there
exists β ∈ I whose complement Cβ ⊆ X is compact. Then

X+ − U =
⋂
α∈I

(X+ − Uα) = C ∩

( ⋂
α∈I , α 6=β

(X − Uα)

)
is a closed subspace of C, hence compact. Therefore arbitrary unions of open sets
in X+ are open, and so τ+ is indeed a topology.

The next step if to prove that (X+, τ+) is compact. Let {Uα |α ∈ I} again be an
open cover of X+, then there exists β ∈ I for which∞ ∈ Uβ. By definition X+−Uβ
is compact, and hence covered by a finite subcollection of the other open sets Uα,
hence X+ is compact.

For the Hausdorff property, it is enough to separate ∞ from points of X. To this
end, let x ∈ X be an arbitrary point. Since X is locally compact, we can find a
neighbourhood U ⊆ X of x (relative to τ) such that U ⊆ X is compact. But then
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U , and the open neighbourhood X+ −U of ∞ ∈ X+ are disjoint open sets giving a
separation of x and ∞.

We will now prove that τ+ is the only topology onX+ with the required properties.
To this end, choose any topology σ on X+ such that (X+, σ) is a compact Hausdorff
topological space with σ|X = τ . Let U ∈ σ be any open set. Then its complement

C
def
= X − U ⊆ X+ is closed, hence compact. If C ⊆ X, then U ∈ τ+ by definition.

If C 6⊆ X, then U ⊆ X, moreover U ∈ τ , so U ∈ τ+ as well. This means that
σ ⊆ τ+.

For the other containment between the topologies, take an open set U ∈ τ . As
X ⊆ X+ has the subspace topology, there exists an open set U ′ ∈ σ such that
U ′ ∩ X = U . Since points are closed in a Hausdorff space, X ⊆ X+ is open with
respect to σ, hence U = U ′∩X ∈ σ. Last, let C ⊆ X be a compact subset in τ , then
it is also compact in σ (compactness does not depend on the space C is contained
in), hence C is closed with respect to σ. But then X+ − C is open in σ. Therefore
σ = τ+, and we are done. �

In the case when X was compact to begin with, X+ = X ∪ {∞}, where ∞ is an
isolated point of X+; both subsets X and {∞} are clopen in X.

Let us have a look at how continuous functions extend to one-point compactifi-
cations.

Proposition 5.35. Let X,Y be locally compact Hausdorff spaces, f : X → y a
continuous map. Then f extends to a continuous map f+ : X+ → Y + by setting
f+(∞X) =∞Y if and only if f is proper.

Recall that f proper means that the inverse image of a compact subset of Y is
compact in X. Before proceeding with the proof, let us unwind what the extension
f+ means. One says that f+ is an extension of f , if f+ : X+ → Y + is a continuous
functions with f+(X) ⊆ Y , and with the restriction f+|X = f .

Proof. Assume first that the map f is proper. Observe that independently of the
conditions, f+ : X+ → Y + exists as a function between sets, hence we only need to
check that it is continuous. Take an open subset U ⊆ Y +. If U ⊆ Y , then we are
done since

(f+)−1(U) = f−1(U) ⊆ X

is open in X, hence it is open in X+ as well. Suppose that U = Y +−C, with C ⊆ Y
compact. In this case

(f+)−1(U) = X+ − f−1(C)

is open in X+, as f−1(C) ⊆ X is compact by the properness of f . But X+ is
Hausdorff, hence X+ − f−1(C) ⊆ X+ is closed In the other direction, if f+ extends
f with f+(∞X) = ∞Y , then (f+)−1(∞Y ) = ∞X , hence (f+)−1(Y ) = X. For a
compact subset C ⊆ Y , we have that C ⊆ Y is closed, thus (f+)−1(C) = f−1(C) ⊆
X is closed, and so compact. This means that f is proper. �
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Corollary 5.36. A proper map f : X → Y between locally compact Hausdorff
spaces is closed.

Proof. By Proposition 5.35 there exists a continuous extension f+ : X+ → Y +. Let
F ⊆ X be an arbitrary closed subset. Then F ∪ {∞} ⊆ X+ is also closed, hence
compact. Therefore f+(F ∪{∞}) ⊆ Y + being the image of a compact space is again
compact, hence closed in Y +, since Y + is Hausdorff. This implies that

f(F ) = F ∪ {∞} ∩ Y
is a closed subset of Y . �

Theorem 5.37. Let X be a Hausdorff space. Then the following are equivalent.

(1) X is locally compact.
(2) X is a locally closed subspace of a compact Hausdorff space.
(3) X is a locally closed subspace of a locally compact Hausdorff space.

Proof. As we have seen, a locally compact Hausdorff space is an open subset of its
one-point compactification, which is compact and Hausdorff; therefore (1) implies
(2). The implication (2) ⇒ (3) is clear.

For the remaining statement, let X ⊆ Y be a locally closed subset of the locally
compact Hausdorff topological space, F ⊆ Y closed, U ⊆ Y open, and X = F ∩ U .
Then F is locally compact, and X ⊆ F is open, hence it is locally compact as well.
This proves (3) ⇒ (1). �

We proceed to an area of topology which is of utmost importance for the con-
struction and good properties of differentiable manifolds.

Lemma 5.38. Let X be a second countable locally compact Hausdorff space. Then
it admits a countable base of open sets with compact closures.

Proof. Since X is second countable, it has a countable base of open sets {Vn}. For
every point x ∈ X there exists an open set Ux ⊆ X whose closure is compact. The
collection {Vn} is a basis, so there is an integer n(x) such that Vn(x) ⊆ Ux. The

closure of Vn(x) is a closed subspace of the compact set Ux, hence itself compact.
Therefore the collection of Vn’s with compact closure forms a countable basis for the
topology of X. �

Definition 5.39. Let U,V be open covers of the topological space X. We say that
U refines V, if every element Uα ∈ U is contained in some element Vβ ∈ V.

Naturally, a subcover of a cover is always a refinement, but the converse does not
hold. It can easily happen that no element of a refinement belongs to the original
cover.

Definition 5.40. An open cover U of X is called locally finite, if every point x ∈ X
has a neighbourhood, which is disjoint from all but finitely many elements of U.
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Example 5.41. The open cover {(n− 1, n+ 1) |n ∈ N} of the real line is locally
finite, but neither the open cover {(−∞, a) | a ∈ Z}, nor {(−n, n) |n ∈ N} is locally
finite.

Definition 5.42. A topological space X is called paracompact, if every open cover
U of X has a locally finite refinement.

Remark 5.43. Note that very often the Hausdorff property is included in the defi-
nition of paracompactness. This is due the fact that paracompactness is primarily
used in the Hausdorff setting.

By checking the definition, it is immediate that the disjoint union of an arbitrary
collection of compact sets is paracompact. It must be pointed out, however, that
paracompactness is often hard to check, and does not behave nicely.

Exercise 5.44. Show that a closed subset of a paracompact topological space is again
paracompact.

Remark 5.45. An open subset of a paracompact topological space is not necessarily
paracompact.

A classic example of a paracompact topological space is the Euclidean space Rn.
Although this will follow from results we will prove later on, it is important enough
to discuss it on its own as well.

Proposition 5.46. Rn is a paracompact.

Proof. Let {Uα |α ∈ I} be an open cover of Rn. Pick a point x ∈ Rn, then there
exists an open ball B(x, rx) with radius rx < 1 contained in some Uα(x). For every
natural numberN finitely many of the balls B(x, rx) are enough to cover the compact

set B(0, N)−B(0, N−1), let these be B(xN,1, rxN,1), . . .B(xN,iN , rxN,iN ). Let us write
VN,j for the finitely many corresponding open sets.in the cover.

The collection VN,j (with N ∈ N and 1 ≤ j ≤ iN) cover Rn, moreover, they
refine {Uα |α ∈ I} in the sense that every VN,j lies in some element of this cover. In
addition, as we will now show, the VN,j’s form a locally finite cover, that is, every
x ∈ Rn has a neighbourhood which intersects only finitely many of the VN,j’s. To

see this, note that VN,j is a ball of radius ≤ 1 touching B(0, N)−B(0, N − 1). The
triangle inequality then implies that any bounded region of Rn meets only finitely
many of the balls VN,j.

�

Our main result regarding paracompactness is the following.

Theorem 5.47. A second countable locally compact Hausdorff topological space is
paracompact.

Exercise 5.48. If a topological space X is paracompact, then it is normal as well.
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The significance of paracompactness for geometry stems from the existence of
partitions of unity, an absolutely fundamental tool in real differential geometry.

Definition 5.49. Let X be a topological space, f : X → R an arbitrary real-valued
function. The support of f is defined as

Supp f
def
= {x ∈ X | f(x) 6= 0} .

Definition 5.50. Let {Uα |α ∈ I} be an open cover of the space X; a partition of
unity subordinate to this cover is a collection of continuous maps

{gα : X → [0, 1] |α ∈ I}
satisfying the properties

(1) ∑
α∈I

fα = 1 ,

(2) there exists a locally finite open refinement {Vα |α ∈ I} such that

Supp fα ⊆ Vα

for each α ∈ I.

Theorem 5.51. Let X be a paracompact topological space, U an arbitrary open
cover of X. Then there exists a partition of unity subordinate to the cove rU.

5.2. Compactness in metric spaces. This subsection contains a standard ac-
count of the various equivalent characterizations of compact metric spaces. As we
will see, these characterizations mostly conform to our intuition trained on closed
and bounded subspaces of Rn. In this subsection (X, d) always denotes a metric
space equipped with the topology induced from d.

Definition 5.52. A sequence (xn) in X is a Cauchy sequence, if for every ε > 0
there exists a natural number Nε such that d(xn, xm) < ε whenever m,n ≥ N . The
metric space X is called complete, if every Cauchy sequence converges.

Note that it is a standard fact from multivariable calculus that Rn with its stan-
dard metric is a complete metric space.

Lemma 5.53. The metric space X is complete precisely if every Cauchy sequence
has a convergent subsequence.

Proof. One direction is easy, ifX is complete, then every Cauchy sequence converges,
hence it trivially has a convergent subsequence (itself).

For the converse, consider a Cauchy sequence (xn) in X with (xnk) → x being a
convergent subsequence. We show that the entire sequence xn converges to x. Fix
ε > 0 arbitrary, and pick Nε to be large enough so that d(xn, xm) < ε/2 whenever
n,m ≥ Nε. Such a natural number exists by virtue of the fact that (xn) is a Cauchy
sequence.
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Next, choose an integer N ′ε for which d(xnk , x) < ε/2 holds whenever nk ≥ N ′ε.
This we can do since the sequence xnk converges to x. If n ≥ maxNε, N

′
ε, then we

have
d(xn, x) ≤ d(xn, xnk) + d(xnk) ≤ ε ,

hence xn → x. �

Exercise 5.54. Prove that a convergent sequence in a metric space is a Cauchy
sequence. Give an example to show that the converse does not hold in general.

To be able to characterize compact metric spaces, we need a more restrictive ver-
sion of boundedness. It turns out that while perfectly adequate in Rn, boundedness
as we know it is too weak in general.

Definition 5.55. A metric space X is totally bounded, if for every ε > 0 X can be
covered by finitely many balls of radius ε.

Exercise 5.56. Show that boundedness and total boundedness are equivalent con-
cepts in (finite-dimensional) Euclidean spaces.

Example 5.57. Let X be a discrete metric space (that is, one where the metric
induces the discrete topology on X), we can take for example

d(x, y)
def
=

{
0 if x = y

1 if x 6= y .

Then X is bounded in any case, but it is only compact if and only if it is finite.
To see this, observe on the one hand that once X is finite, any open cover of X
consists of finitely many sets (the power set of X being finite), hence compactness
is satisfied no problem.

On the other hand, consider the open cover of X consisting of all one-element
sets. As every point of X is contained in exactly one subset, this cover has no
proper subcover. Therefore it possesses a finite subcover precisely if it is itself finite,
i.e. X has finitely many elements.

Definition 5.58. Let A ⊆ X be an arbitrary subset of the metric space (X, d);
then we define the distance of a point x from A by

d(x,A)
def
= inf {d(x, a) | a ∈ A} .

In a similar vein, one defines that diameter of A to be

diam(A)
def
= sup {d(a1, a2) | a1, a2 ∈ A} .

Furthermore, we set the ε-neighbourhood of A to be

B(A, ε)
def
= {x ∈ X | d(x,A) < ε} .

Proposition 5.59. With notation as above, the function d(·, A) : X → R is con-
tinuous.
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Proof. Let x, y ∈ X and a ∈ A be arbitrary points. Observe that by definition, and
the triangle inequality

d(x,A) ≤ d(x, a) ≤ d(x, y) + d(y, a) ,

hence
d(x,A)− d(x, y) ≤ d(y, a) .

By varying a all over A, we obtain that

d(x,A)− d(x, y) ≤ inf
a∈A

d(y, a) = d(y, A) ,

that is,
d(x,A)− d(y, A) ≤ d(x, y) .

After interchanging the roles of x and y, we arrive at

d(y, A)− d(x,A) ≤ d(x, y) ,

which implies
|d(x,A)− d(y, A)| ≤ d(x, y) .

It follows immediately that d(·, A) is continuous. �

Exercise 5.60. Prove the following properties of the distance function from a subset
A 6= ∅.

(1) d(x,A) 6= 0 precisely if x ∈ A.
(2) If the subset A ⊆ X is compact, then there exists a ∈ A for which

d(x,A) = d(x, a) .

(3) B(A, ε) =
⋃
a∈A B(a, ε).

(4) Let A ⊆ X be a compact subset, U ⊇ A an arbitrary open subset of X. Then
there exists ε > 0 such that B(A, ε) ⊆ U . Show that this does not hold in
general if A is only assumed to be closed.

Theorem 5.61. Let (X, d) be a metric space. Then the following are equivalent.

(1) X is compact;
(2) X is limit point compact;
(3) X is sequentially compact;
(4) X is complete and totally bounded.

The most difficult part is to show that sequential compactness/limit point com-
pactness imply compactness. This depends largely on the following non-trivial re-
sult.

Lemma 5.62 (Lebesuge number lemma). Let U be an open covering of the compact
metric space (X, d). Then there exists a positive constant δ > 0 (depending on (X, d)
and U), such that for every subset Z ⊆ X having diameter less than δ, there exists
an element U ∈ U such that Z ⊆ U .
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Proof. Consider first the case when X ∈ U. Then any positive number is a Lebesgue
number. Therefore we can assume without loss of generality that X 6∈ U.

Let U1, . . . , Un be a finite subcover of U, such a cover exists by the compactness
of X. Set

Ci
def
= X − Ui

for all 1 ≤ i ≤ n, and define

f(x)
def
=

1

n

n∑
i=1

d(x,Ci) .

The continuity of the distance function then implies that f : X → R is a continuous
function. We will now prove that f(x) > 0 for every point x ∈ X. Indeed, fix x ∈ X
arbitrary, and let 1 ≤ i ≤ n such that x ∈ Ui. Choose a positive real number ε such

that B(x, ε) ⊆ Ui. Then d(x,Ci) ≥ ε for every 1 ≤ i ≤ n, and hence f(x) ≥ ε

n
.

The function f being continuous, it takes on a minimal value δ = f(y), which is
then bound to be strictly positive, since f is strictly positive at every point of X.
We verify that this δ satisfies the requirements of being a Lebesgue number for X
and U. To this end, consider an arbitrary subset S ⊆ X of diameter < δ, pick a
point x0 ∈ S. Observe that

B ⊆ B(x0, δ) ,

and
δ ≤ f(x0) ≤ d(x0, Ci)

for every 1 ≤ i ≤ m. But then

B(x0, δ) ⊆ Ui0 ∈ U ,

where i0 is the index between 1 and n with the largest d(x0, Ci). �

Lemma 5.63. If X is sequentially compact, then the Lebesgue number lemma holds
in X.

Proof. Let U be an open cover of X, suppose that U does not have a Lebesgue
number, that is, there does not exist δ > 0 such that each subset of X with diameter
less than δ would be contained in an element of U.

In this case, there exists a set Cn of diameter less than 1
n

not contained in any
element of U for every natural number n. For every n ∈ N, fix a point xn ∈ Cn, and
consider the sequence (xn). By hypothesis, every sequence in X has a convergent
subsequence, hence so does (xn), let (xnk)→ x denote such a subsequence.

Since U covers X, there exists U ∈ U containing x; as U ⊆ X is open, there exists
an open ball B(x, ε) ⊆ U . If k is large enough so that

1

nk
<

ε

2
, and d(xnk , x) <

ε

2
,

then Cnk ⊆ B(xnk ,
ε
2
), and B(xnk ,

ε
2
) ⊆ B(x, ε), and so Cnk ⊆ U , a contradiction. �



INTRODUCTION TO TOPOLOGY 47

Proof of Theorem 5.61. We verify to begin with that the first three characterizations
are equivalent. It has been shown earlier that compactness implies limit point
compactness.

Assume now that X is limit point compact, we aim at proving that it is sequen-
tially compact as well. Let (xn) be a sequence in X, consider the associated subset

A
def
= {xn |n ∈ N} .

If #A < ∅ then there exists a subsequence (xnk) which is constant, hence convergent.
If A is infinite, then A has a limit point a. We will inductively construct a convergent
subsequence of (xn).

Let n1 be a positive integer such that

xn1 ∈ B(x, 1) .

Assume that xn1 , . . . , xnk−1
have already been defined. Since the ball B(x, 1

k
) has

infinitely many points in common with A, there is an index nk > nk−1 with that
property that

xnk ∈ B(x,
1

i
) .

Then the subsequence (xnk) converges to x as k →∞.
We will now prove that if X is sequentially compact, then it is complete and

totally bounded. Let (xn) be a Cauchy sequence in X. By sequential compactness,
(xn) has a subsequence (xnk) converging to some point x ∈ X. This means that for
every ε > 0, there exists a natural number Nε such that

d(xnk), x) < ε

whenever nk > Nε. The definition of a Cauchy sequence provides us with a similar
set of inequalities: for every ε > 0 we have a natural number Mε > 0 such that

d(xn, xm) < ε

provided n,m > Mε. Therefore,

d(xn, x) ≤ d(xn, xnk) + d(xnk , x) <
ε

2
+
ε

2
def
= ε

if n > maxNε/2,Mε/2, hence the whole sequence (xn) converges to x.
Next assume that X is sequentially compact. We prove that X is totally bounded.

Suppose that it is not, and let ε > 0 be such that X cannot be covered by a finite
number of ε-balls. Then one can construct a sequence (xn) in X, such that for every
m < n, one has d(xm, xn) ≥ ε; that is, any two points in this sequence are at least
ε distance apart. But then (xn) cannot have a convergent subsequence.

With all this in mind, let U be an arbitrary open cover of X. Because the Lebesgue
number lemma holds in X by Lemma 5.63, the open cover U has a Lebesgue number
δ. By total boundedness we can cover X by a finite number of open balls of radius
δ/3. Since each of this balls has a diameter at most 2δ

3
, every one of them lies in an



48 ALEX KÜRONYA

element of U. Picking such an element of the open cover U for each of these balls,
we arrive at a finite subcover of U.

Finally, we prove that the first three conditions are in fact equivalent to X being
complete and totally bounded. Assuming (1)-(3) hold, X must be complete, since
every Cauchy sequence has a convergent subsequence by sequential compactness.
We have also seen above that sequential compactness implies total boundedness.

To finish off the proof, we show that completeness and total boundedness imply
sequential compactness for X. Let (xn) be an arbitrary sequence in X. The plan is
first to construct a subsequence which is Cauchy, whence convergent. To this end,
cover X by balls or radius 1. This is possible since X is totally bounded. Then at
least one of these balls, call it B1 contains infinitely many elements of the sequence.
Let I1 ⊆ N be the set of indices for which this holds.

Continuing this process in an inductive fashion, assuming the existence of an
infinite set Ik−1 ⊆ N for which xn ∈ Bk−1 with the latter being an open ball with
radius 1

k−1
, we can find an infinite set of positive integers Ik ⊆ Ik−1 for which there

exists a ball Bk of radius 1
k

with the property that xn ∈ Bk whenever n ∈ Ik.
Pick n1 ∈ I1, and given nk−1, choose nk ∈ Ik such that nk > nk−1. Since all

the sets Ik are infinite, we can always do this. By construction (more precisely, by
virtue of the fact that Ik−1 ⊇ Ik for every k), for all i, j ≥ k, the elements xni and
xnk belong to Bk, a ball of radius 1

k
. Therefore, the subsequence (xnk) is Cauchy,

and since X is complete, it is convergent as well. �

Corollary 5.64. If (X, d) is a compact metric space, then for any ε > 0 there can
only be finitely many points x1, . . . , xn such that their pairwise distances are all at
least ε.

Definition 5.65. A function f : (X, dX)→ (Y, dY ) between metric spaces is called
an isometry, if for any x, x′ ∈ X one has

dX(x, x′) = dY (f(x), f(x′)) .

Remark 5.66. We note here that in the literature an isometry if often required to
be surjective.

Proposition 5.67. Let (X, d) be a metric space, f : X → X an isometry. Then f
is a continuous function. If in addition X is compact, then f is a homeomorphism.

Proof. �

Theorem 5.68. Every metric space is locally compact.

Exercise 5.69. Let (X, d) be a metric space, f : X → X a contraction; that is, f
is a continuous map for which there exists a real number 0 < c < 1 such that for
every x, y ∈ X one has

d(f(x), f(y)) < c · d(x, y) .

Show that if X is compact, then f has a unique fixed point (i.e. a point x ∈ X for
which f(x) = x).
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Exercise 5.70. Let X be a compact topological space, {Aα |α ∈ I} a collection of
closed subsets of X, which is closed under finite intersections. If an open set U ⊆ X
contains ∩α∈IAα, then there exists an index α ∈ I such that Aα ⊆ U .

6. Quotient spaces

6.1. Quotient topology. Forming quotient spaces with respect to various struc-
tures (equivalence relations, group actions, etc.) is a fundamental tool in topology.
It is in many ways the most cumbersome of the methods for constructing topologies
we have seen.

Definition 6.1. Let (X, τ) be a topological space, Y a set f : X → Y a surjective
function. We define a topology on Y called the topology induced by f or the quotient
topology by specifying V ⊆ Y to be open if and only if f−1(V ) ⊆ X is open.

Note that Y is a bare set with no additional structure, f is a function of sets. The
topology on Y induced by f is the largest (that is, containing the largest number of
open sets) that makes f continuous.

Definition 6.2. Let X be a topological space, ∼ an equivalence relation on X,

Y
def
= X/ ∼ the set of equivalence classes of ∼, π : X → Y = X/ ∼ the function

sending every x ∈ X to its equivalence class.
Then Y with the topology induced by π is called the quotient space of X by ∼.

It is important to remember that the quotient topology is a very tricky device,
one has to be very careful when working with it. The point is, that while forcing
various points in the space to ’get near’ to each other, many other points might get
near that we had not originally expected.

Here is an example.

Example 6.3. Consider the real line R with the equivalence relation x ∼ y if
x− y ∈ Q. Then R/ ∼ has uncountably many points, but has the trivial topology.

The next statement can be paraphrased as ’the quotient space of a quotient space
is a quotient space’.

Proposition 6.4. Let (X, τ) be a topological space, Y ,Z sets,

X
f
� Y

g
� Z

surjective functions. Let σ be the topology on Y induced by f , τ be the topology on
Z induced by g from (Y, σ), and let µ′ be the topology on Z induced by g ◦ f from
(X, τ). Then µ = µ′, that is, the two induced topologies on Z coincide.

Proof. �

Definition 6.5. A continuous map of topological spaces f : X → Y is called an
indentification map if it surjective, and Y has the quotient topology with respect to
f as a function.
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Identification maps have the following interesting universal property.

Proposition 6.6. A surjective continuous map f : X → Y between topological
spaces is an identification map if and only if for every function g : Y → Z the
composition g ◦ f is continuous precisely if g is continuous.

Proof. First let f : X → Y be an identification map, g : Y → Z an arbitrary
function. If g is a continuous map, then so is the composition g ◦ f . Assume now
that g◦f is continuous, i.e. for every V ⊆ Z open, f−1(g−1(V ) = (g◦f)−1(V ) ⊆ X is
open. Consider g−1(V ) ⊆ Y . Since f is an identificication map, Y has the quotient
topology with respect to f . This means that g−1(V ) ⊆ Y is open if and only if
(g ◦ f)−1(V ) ⊆ X is open, hence we are done.

Assume now that f has the property in the proposition, let (Y, σ) denote the
topology of Y . Let us specialize to the case Z = Y as sets. Now take the function

g = id : Y −→ Z ,

and give Z the topology induced by g from Y . Observe that the function g ◦ f :
X → Z is continuous, as

(g ◦ f)−1(V ) = f−1(g−1(V ) = f−1(id−1(V ) = f−1(V )

is open in X for every open set V ⊆ Z in the induced topology from id. Therefore g
is continuous as well by the universal property. But the function g−1 is continuous
as well, since (g ◦ f) ◦ g−1 = f , hence g is a homeomorphism, Y ≈ Z, and f an
identification map. Then j ◦ f = g ◦ i also as required, hence the diagram above
commutes. �

The following extended example is very important.

Example 6.7 (Real projective plane RP2). The real projective plane RP2 is tradi-
tionally defined as the quotient R3 − 0/ ∼, where x ∼ y if and only if x = λy for
some nonzero λ ∈ R. Here we will take an alternate route leaving the proof that
the former definition gives a homeomorphic result.

Let S2 ⊆ R3 denote the unit sphere in Euclidean three-space; we define the
equivalent relation ∼ on S2 by

x ∼ y ⇐⇒ x = −y ,

that is, we make antipodal points equivalent. The equivalence classes are the two-
element sets {x,−x}.

Consider i : D2 ↪→ S2 embedded as the northern hemisphere. Define the equiva-
lence relation � on D2 in the following fashion: every point in the interior forms its
own equivalence class, points on the boundary (one the ’equator’ so to speak) form
two-element classes along with their antipodal pairs.
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Look at the diagram

(2) D2

f
��

i // S2

g

��
D2/ �

j // S2/ ∼ .

Here f and g are the appropriate identification maps, and j the induced function

j : D2/ �−→ S2/ ∼ ,

the unique function making the diagram commute, whose existence we need yet to
prove.

Set j([x])
def
= i(x) for every x ∈ D2/ �. If x is in the strict upper hemisphere

(i.e. the third coordinate of x is positive), then the equivalence class [x] consists
of one element only, hence j([x]) is automatically well-defined as the image of x in
S2/ ∼. If x is on the equator, then [x] = {x,−x}, however, both points are mapped
to elements of the same equivalence class of ∼, hence again, j([x]) is well-defined,
and we have a function j : D2/ �→ S2/ ∼. It can also be seen quickly that j is
one-to-one and onto.

Next, the continuity of j. Let U ⊆ S2/ ∼ be an open subset, then g−1(U) ⊆ S2 is
open by definition of the quotient topology. The inclusion i is continuous, hence

(gi)−1(U) = i−1(g−1(U)) ⊆ D2

is open. By the commutativity of the diagram 2,

f−1(k−1(U)) = (kf)−1(U) = (gi)−1(U) ⊆ S2

is again open. This means that j−1(U) ⊆ D2/ � is open by the definition of the
quotient topology, hence j is a continuous map.

Observe that D2/ � is compact (as D2 is, being a closed and bounded subset
of R3), S2 can easily be seen to be Hausdorff, therefore the continuous bijection
j : D2/ �→ S2/ ∼ is a homeomorphism.

Example 6.8 (Torus). Let X = [0, 1] × [0, 1] ⊆ R2 with the subspace topology.
Consider the following partition of X giving an equivalence relation ∼:

• one-point sets {(x, y)} for every point (x, y) with 0 < x, y < 1,
• {(x, 0), (x, 1)} if 0 < x < 1,
• {(0, y), (1, y)} if 0 < y < 1,
• {(0, 0), (0, 1), (1, 0), (1, 1)}.

The corresponding quotient space X/ ∼ is called the torus.

An often used special case of the quotient topology is the ’collapsing’ of a subspace.

Definition 6.9. Let X be a topological space, A ⊆ X arbitrary. Then X/A denotes
the quotient space obtained via the equivalence relation whose classes are A, and
the sets {x}, x ∈ X − A.
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We collapse A to a point, so to speak.

Example 6.10. Consider the cylinder Sn×I (with I = [0, 1] being the unit interval),
and define

f : Sn × I −→ Dn+1

(x, t) 7→ tx .

Then f carries Sn × {0} to the origin, hence f ’factors through’ Sn × I/Sn × {0}.
This means that there exists a continuous map g

Sn × I
f //

π

((QQQQQQQQQQQQ Dn+1

Sn × I/Sn × {0} .

g

OO�
�
�

One can show that g is bijective, which, together with the facts that its source is
compact and its target Hausdorff, gives that g is a homemorphism.

Exercise 6.11. Show that Dn/Sn−1 ≈ Sn.

Definition 6.12. If A ⊆ X is an arbitrary subspace, ∼ an equivalence relation on
X, then the saturation on A with respect to ∼ is the subspace

{x ∈ X | ∃a ∈ A x ∼ a} .

Proposition 6.13. Let A ⊆ X be an arbitrary subspace, ∼ an equivalence relation
on X such that every equivalence class intersects A. Then the induced map

k : A/ ∼−→ X/ ∼
is a homeomorphism if the saturation of every open set of A is open in X.

Proof. Consider the following commutative diagram

A

f
��

i // X

g

��
A/ ∼ k // X/ ∼ ,

where f and g are the respective identification maps. If U ⊆ A/ ∼ is open, then
g−1(k(U) is the saturation of f−1(U). Moreover, by definition U ??? k(U) ⊆ X/ ∼
open. Also, k is bijective and continuous. �

Definition 6.14. Let X,Y be topological spaces, A ⊆ X a closed subset, f : A→ Y
a continuous map. Then attaching Y to X along f is defined as

X
∐

Y/ ∼ ,

where ∼ is the equivalence relation generated by the pairs a ∼ f(a) for all a ∈ A.
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Remark 6.15. Note that the equivalence relation generated by all pairs a ∼ f(a),
a ∈ A consists of the following pairs: for u, v ∈ X,

u ∼ v ⇐⇒


u = v , or

u, v ∈ A and f(u) = f(v) , or

u ∈ A and v = f(u) ∈ Y .

Example 6.16 (The mapping cone and the mapping cylinder).

Lemma 6.17. Let f : X → Y be a continuous closed surjective map. Then f is a
quotient map.

Proof. If U ⊆ Y is open, then so is f−1(U) ⊆ X by the continuity of f . In the
other direction, let V ⊆ Y an arbitrary subset such that f−1(V ) ⊆ X is open. Then
f(X − f−1(V )) ⊆ Y is closed, and since f is surjective,

f(X − f−1(V )) = V .

�

Here we will present a condition under which the quotient space with respect to
an equivalence relation is Hausdorff. This fact will be used when we will deal with
topological group actions.

Proposition 6.18. Let X be a topological space, ∼ an equivalence relation on X.
If X/ ∼ is Hausdorff, then the graph G of ∼ is closed in X ×X. If the relation ∼
is open as well, then this condition is also sufficient.

Proof. As usual, we denote the canonical map taking an element of X to its equiv-
alence class by π : X → X/ ∼. With this notation G is the inverse image of
∆ ⊆ Xsim × X/ ∼ under the continuous map π × π : X × X → Xsim × X/ ∼.
Hence, if X/ ∼ is Hausdorff, then ∆ is closed, but then so is G ⊆ X ×X.

If ∼ is open, then

X/ ∼ ×X/ ∼≈ (X ×X)/(∼ × ∼)

in which case ∆ can be identified with the image of G (which is saturated with
respect to ∼ × ∼. Therefore ∆X is closed, so X is Hausdorff. �

6.2. Group actions on topological spaces. One particularly common form of
quotient spaces occurs when a group acts on some topological space. In order to be
able to describe this phenomenon in detail, first we need to recite group actions on
sets. Although this is not at all necessary in general, here we will first restrict our
attention to the case when the group carries no geometric information, ie. it has
the discrete topology.

For starters, we discuss the set-theoretic case.
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Definition 6.19. Let X be an arbitrary set, G a group. A left action of G on X
is a set function

α : G×X −→ X

such that

α(1, x) = x

for every x ∈ X, and

α(g, α(h, x)) = α(gh, x)

for every g, h ∈ G. When it is clear from the context, the action α is often sup-
pressed, one simply writes g.x or just gx for α(g, x).

Note the following simple but important consequence of the definition: since 1 ∈ G
acts as the identity function on X, the elements g and g−1 act as mutually inverse
self-maps:

g−1.(g.x) = (g−1g).x = 1.x = x

g.(g−1.x) = (gg−1).x = 1.x = x .

Therefore, for every g ∈ G, the function α(g, ·) : X → X is bijective.
Whence, one can restate the notion of a left-action of a group in the following way.

Let Aut(X) denote the group of bijective self-maps of the set X, with composition
of functions as multiplication, the identity function as identity element, and the
inverse function serving as the inverse element in the group. Then, a left action of
G on X is a group homomorphism

ρ : G −→ Aut(X) .

That the two definitions coincide follows from the observation that (gh).x = g.(h.x)
amounts to the same as ρ(gh) = ρ(g) ◦ ρ(h).

Exercise 6.20. Check the details of the previous paragraphs very carefully.

To elucidate the notion of group actions on sets, we will consider a handful of
examples.

Example 6.21. First we will consider the simples examples. Let X be any set.
Then the group of bijections Aut(X) acts on X by the evaluation action:

ev : Aut(X)×X −→ X

(φ, x) 7→ φ(x) .

In an equally simplistic way, if X is a set, G an arbitrary group, then the trivial
action is given by

triv : G×X −→ X

(g, x) 7→ x .
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Example 6.22. Consider Sn ⊆ Rn+1. The antipodal action taking x 7→ −x can be
described in terms of an action of the two-element group Z2 on S2: the only element
different from 1 will take x to −x. The interested reader should check the properties
required for this assignment to be a group action are indeed satisfied.

Example 6.23. Let now X = Rn, and fix a basis e1, . . . , en of Rn. Consider

L
def
=

{
n∑
i=1

aiei | ai ∈ Z , ∀1 ≤ i ≤ n

}
,

which is called the lattice generated by e1, . . . , en. Let each λ ∈ L act on X by the
translation

αλ(x) = λ+ x .

Again, it is easily verified that we have defined a group action on X:

0 + x = x

λ+ (λ′ + x) = (λ+ λ′) + x .

Example 6.24. Consider the translation action of the additive group of Z on R.
Then we can identify the quotient (as a set, later we will see that this is true in the
sense of topology as well) R/Z with the unit circle S1 ⊆ R using trigonometry. For
any t ∈ R we map

t 7→ (cos(2πt), sin(2πt)) .

By periodicity of the trigonometric functions, this association depends exactly on
the Z-orbit of the point t (in other words: the respective images of t, t′ ∈ R are
equal if and only they lie in the same Z-orbit, that is to say, iff 2π(t− t′) ∈ Z). This
mapping gives a well-defined bijection from R/Z to S1.

Note that it is also customary to use the action of the additive group 2πZ on R,
which gives a bijection from R/2πZ to S1.

Definition 6.25. Let α : G ×X → X be a left action on the set X. The G-orbit
of x ∈ X is defined as

Gx def
= {α(g, x) | g ∈ G} .

For a subset of points S ⊆ X, the G-translate of S is

G.S
def
= {g.s | g ∈ G, s ∈ S} .

The stabilizer or isotropy subgroup of a point x ∈ X is

Gx
def
= {g ∈ G | g.x = x} .

The set-theoretic quotient X/G is the set of G-orbits of X, with the quotient map

π : X −→ X/G

x 7→ G-orbit of x .
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If X,X ′ are two sets both endowed with left G-actions, then a function f : X → X ′

is called G-equivariant, provided

f(g.x) = g.f(x)

for every point x ∈ X and group element g ∈ G.
A subset S ⊆ X is called G-stable (or α-stable, if we want to be more precise), if

G.S = S, that is, if g.s ∈ S for every g ∈ G and s ∈ S.

Remark 6.26. G-stable sets are exactly the ones to which one can restrict the given
G-action. In the definition of a G-stable set, it is enough to require that G.S ⊆ S,
since S ⊆ G.S in any case.

Exercise 6.27. Prove that the G-orbits of X form the equivalence classes of the
equivalence relation x ∼G y if and only if there exists g ∈ G such that g.x = y.

Exercise 6.28. Work out the equivalence classes of the given G actions in all the
examples above.

Remark 6.29. Any G-equivariant function f : X → X ′ carries the G-orbit of an
element x ∈ X into the G-orbit of f(x) ∈ X ′, hence there exists a well-defined
function

f : X/G −→ X ′/G

sending Gx ∈ X/G to Gf(x) ∈ X ′/G. Also, note that the the functions f and f are
compatible with the projections π,π′ giving rise to a commutative diagram

X
f //

π
��

X ′

π′

��
X/G

f ′ // X ′/G

with f ◦ π = π′ ◦ f . We call f the function induced by f .

Example 6.30. Let X = R, and G = 2πZ acting by additive translations. Consider
the function

f : R −→ R
x 7→ x+ c

for some fixed c ∈ R (where both copies of R are taken with the same G-action.
The function f is G-equivariant, and the induced map

f : S1 −→ S1

is rotation thru an angle of c.

Let us now reintroduce topology into the picture. In what follows the group G
will always have the discrete topology.
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Definition 6.31. Let X be a topological space, G a discrete group acting on X via
α : G×X → X (G×X is given the product topology). The left-action α is called
continuous, if it is continuous as a function.

The action α is free, if Gx = {1} for every x ∈ X; it is said to be properly
discontinuous if every element x ∈ X admits an open neighbourhood Ux ⊆ X, such
that

g.Ux ∩ Ux = ∅
for all but finitely many g ∈ G.

Naturally, all actions by finite groups are properly discontinuous.

Remark 6.32. The fact that α : G×X → X as above is continuous is equivalent to
requiring that

α(g, ·) : X → X

is a continuous map for every g ∈ G.

Properly discontinuous actions are particularly useful in the context of locally
Hausdorff spaces.

Exercise 6.33. Let α : G × X → X be a free and properly discontinuous action,
S ⊆ X is a G-stable subset equipped with the subspace topology. Show that the
restricted action α : G× S → S is also free and properly discontinuous.

Definition 6.34. A topological space X is locally Hausdorff, if every point x ∈ X
has a neighbourhood which is Hausdorff in the subspace topology inherited from X.

Proposition 6.35. Let X be a locally Hausdorff topological space, α : G×X → X
a properly discontinuous left-action. Then every point x ∈ X has an open neigh-
bourhood Ux such that for every g ∈ G

g.Ux ∩ Ux 6= ∅ ⇐⇒ g.x = x .

Consequently, if the action α is free as well, then

g.Ux ∩ Ux 6= ∅ ⇐⇒ g = 1 .

Proof. Let Vx be a neighbourhood of x ∈ X such that

g.Vx ∩ Vx 6= ∅
holds for only finitely many group elements g1, . . . gm. By shrinking Vx is necessary,
we can assume without loss of generality that Vx ⊆ X is open and Hausdorff.

We show that for every 1 ≤ i ≤ m such that gi.x ∈ Vx \ {x}, there exists
an open subset Ui ⊆ Vx with gi.Ui ∩ Ui = ∅. By the Hausdorff property of Vx,
whenever gi.x ∈ Vx \ x, there exist disjoint open subsets Vi, V

′
i ⊆ Vx around x,

and gi.x, respectively. By continuity of the action of gi on X, there is an open set

x ∈ Wi ⊆ X for which gi.Wi ⊆ V ′i . Thus, Ui
def
= Wi ∩ Vi is disjoint from V ′i , and

satisfies gi.Ui ⊆ V ′i , hence Ui ∩ gi.Ui = ∅.
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With this in hand, we can take

Ux
def
= U1 ∩ · · · ∩ Um .

�

Exercise 6.36. Prove the following coverse: if α : G×X → X is a left-action such
that for every x ∈ X there exists a neighbourhood Ux around x for which

g.U ∩ U 6= ∅ ⇐⇒ g = 1 ,

then α is free and properly discontinuous.

Example 6.37. Fix a non-zero natural number m, set X = R2. Let G = Z/mZ be
the group of modulo m residue classes with respect to addition. We let the element
a mod m ∈ G act on R2 via counterclockwise rotation by an angle of 2πa

m
. As it is

known, this action does not actually depend on the representative a ∈ Z, only on
the residue class a mod m.

For any nonzero x ∈ R2, the orbit of x consists of m distinct points on the circle Sx
of radius ‖x‖ centered at the origin. An open ball B(x, ε) of sufficiently small radius
the translates of B(x, ε) by non-identity elements of G are disjoint from B(x, ε). In
other words, rotating B(x, ε) about the origin by an angle of 2πa

m
produces a set

disjoint from B(x, ε) except when m|a. So, on R2 \ (0, 0), the rotation action of
Z/mZ is free and properly discontinuous.

However, the situation differs largely at (0, 0) ∈ R2 if m > 1. The origin is fixed by
every element of G, hence every one of its neighbourhoods meets every its translates
by any element of G. Therefore, the action of G on R2 is not free, although it is
still properly discontinuous.

Example 6.38. Another simple example is the so-called split action. Let X ′ be a

topological space, G any group, and consider the product X
def
= G × X ′ (equipped

with the product topology, where G is taken to be discrete, as always). One can
check that

X =
∐
g∈G

X ′ ,

that is, X is by definition the disjoint union of copies of X ′ indexed by elements of
the group G. We will say that {g} ×X ′ ⊆ X is the gth copy of X ′.

The split action of G on X is defined by left multiplication:

g.(h, x)
def
= (gh, x) ,

and is quickly seen to be free and properly discontinuous. One can identify the
quotient X/G with X ′ via the second projection map X = G×X ′ → X ′.

In general, for an arbitrary topological space X and a group G, a continuous
left G-action is defined to be split, if there exists a topological space Y and a G-
equivariant homeomorphism from X to G× Y carrying the G action given on X to
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the split action on G×Y . In other words, this amounts to requiring X to contain an
open subset Y ⊆ X such that the open subsets g.Y for g ∈ G are pairwise disjoint
and cover X.

Theorem 6.39. Let X be a locally Hausdorff topological space, α : G ×X → X a
properly discontinuous and free action on X. Then the quotient map

π : X −→ X/G

is a local homeomorphism. If U ⊆ X is an open subset such that g.U ∩ U = ∅ for
all g 6= 1 ∈ G, then the action of G on π−1(π(U)) is split.

Proof. First we address the issue of π being a local homeomorphism. Let x ∈ X be
arbitrary. By the condition that the action of G is free and properly discontinuous,
there exists an open neighbourhood Ux ⊆ X of x such that

g.Ux ∩ Ux = ∅

for all g ∈ G different from 1 ∈ G. If y, z ∈ Ux are to have the same image in
X/G, then they belong to the same G-orbit, therefore g.y = z for some g ∈ G. This
implies that g.Ux ∩ Ux 6= ∅, so one must have g = 1 ∈ G, and consequently, y = z
We can conclude, that Ux injects into X/G.

Since π|Ux is by construction surjective onto its image, all that is left to show is
π|Ux is an open map, that is, for any open set U ⊆ Ux the image of U ⊆ X/G should
be open. To this end, we need to verify that

π|−1
Ux

(π|Ux(U) ⊆ X

is open. This follows from the fact that

π|−1
Ux

(π|Ux(U)) =
⋃
g∈G

g.U ,

since all sets g.U ⊆ X are open (the maps x 7→ g.x are homeomorphisms of X onto
itself).

Now we can deal with the statement that the action of G is locally split. We will
show that for any open set U ⊆ X with the property that

g.Ux ∩ Ux = ∅

for all g 6= 1, we have that the restricted action map

α : G× U −→ π−1(π(U))

(g.x) 7→ g.x

is a homeomorphism.
Note first that α is surjective: if x ∈ π−1(π(U)), then there exists u ∈ U with

π(x) = π(u), that is, x and u lie in the same G-orbit, hence there exist g ∈ G with
g.u = x. This just says that α(g, u) = x.
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Next, assume that

g1.u1 = g2.u2

for some g1, g2 ∈ G and u1, u2 ∈ U . Then

g−1
2 .(g1.u1) = u2 ,

which, by the associativity propery of group actions amounts to

(g−1
2 g1).u1 = u2 .

Therefore (g−1
2 g1).U ∩ U 6= ∅, and so g−1

2 g1 = 1 ∈ G by the fact that α is free and
properly discontinuous; hence g1 = g2 and u1 = u2. This implies that α is injective.

Since the action is free and properly discontinuous, the translates g.U are disjoint
and open in X, and they cover π−1(π(U)). Hence, as a topological space, we have
the disjoint union decomposition

π−1(π(U)) =
∐
g∈G

g.U .

The bijective map α carries the open subset {g}×U ⊆ G×U (homeomorphic to U)
homeomorphically to the subset g.U ⊆ π−1(π(U)). This means that α is a bijective
map which restricts to homeomorphisms on respective collections of disjoint open
sets covering the spaces G×U and π−1(π(U)). But such a map is a homeomorphism.

�

Lemma 6.40. Let α : G×X → X be a free and properly discontinuous action on
a locally Hausdorff topological space X. Then the quotient X/G is Hausdorff if and
only if the image of the map

α+ : G×X −→ X ×X
(g, x) 7→ (g.x, x)

is closed in ×X.

Proof. This is an elegant application of the diagonal criterion for the Hausdorff
property. According to this, X/G is Hausdorff if and only if the image of

∆X/G : X/G −→ X/G×X/G
is closed. By the properties of the quotient topology, the quotient map π : X → X/G
is open, hence so is the continuous surjective map

π × π : X ×X −→ X/G×X/G .

Hence, X/G has closed diagonal image precisely if the preimage of the diagonal in
X ×X is closed as a subset of X ×X. Observe that a point (x, y) ∈ X ×X gets
mapped to the diagonal of X/G if and only if x and y have the same image in X/G,
in other words, whenever there exists g ∈ G with g.x = y. But then (x, y) is in the
image of the action map (g, x) 7→ (g.x, x). �
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Proposition 6.41. Let S ⊆ X be a G-stable subset. Then the induced map of
quotient sets

ι : S/G −→ X/G

is a homeomorphism onto its image. The image ι(S/G) ⊆ X/G is
open/closed/locally closed precisely if S ⊆ X is open/closed/locally closed.

The function S 7→ S/G is a bijection between the collection of G-stable subsets of
X, and the power set of X/G.

Proof. Note, as a start, that ι is necessarily injective: if s1, s2 ∈ S belong to the
same G-orbit in X, then they are in the same G-orbit in S as well.

Next, pick a point x ∈ X. If x is in the G-orbit of a point s ∈ S, then x ∈ S, as
S was chosen to be G-stable (hence a disjoint union of full orbits). Therefore, if we
denote the quotient map by π : X → X/G, then

S = π−1(π(S)) = π−1(S/G) .

Thus, we can see that the mapping S 7→ S/G is injective. Conversely, if T ⊆ S/G
is an arbitrary subset, then

S
def
= π−1(T )

is a G-stable subset of X, because π(g.x) = π(x) for every x ∈ X, g ∈ G; in addition
S/G = T as subsets of X/G. Thus, we have proved the last statement of the
proposition.

Let now S ⊆ X be a G-stable subset, we will show that S is open/closed if
and only if S/G is open/closed. Since the quotient map π is continuous and S =
π−1(S/G), the subspace S ⊆ X is open/closed provided S/G was. Note that the
same conclusion holds in the case when S/G is assumed to be locally closed. If
S ⊆ X is open, then so is π(S) = S/G, as π is an open map. For the case when S
is closed, note that the complement X \S of S is also G-stable, moreover it is open,
hence

S/G = X/G \ π(X \ S)

is closed in X/G (the equality in the above formula comes from the surjectivity
of π. We can conclude that ι is an open and closed map. To see that it is a
homeomorphism, there is a bit more work to do.

First, ι is continuous, as composition with the quotient map π|S : S → S/G,
which is a local homeomorphism yields a continuous map S → X/G:

S //

π|S
��

X

π
��

S/G
ι // X/G .
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For ι to be a homeomorphism onto its image one needs that every open set V ⊆ S/G
is the inverse image of an open set in X/G. Observe that V is the image of a G-
stable open set U ⊆ S, which just means that there exists an open set W ⊆ X with
U = W ∩ S. That is, V is simply S/G ∩ π(W ).

To finish the proof, let S ⊆ X be a G-stable locally closed subset. In the process
of proving that S/G is locally closed as well, we face the following difficulty: upon
writing S = U ∩ F as an intersection of a open set U ⊆ X and a closed set F ⊆ X,
we might find that none of U and F is G-stable. The way around this problem is as
follows: in any case we have S ⊆ F , hence S = U ∩S. Note that S ⊆ X is G-stable.
The bijective correspondence between G-stable subsets in X and subsets of X/G,
and likewise for closed sets in each implies that the closed subset

S/G = π(S) ⊆ X/G

is exactly the minimal closed subset containing S/G, that is, S/G
X/G

.
Since S ⊆ S is open, applying the proposition (the part of it which we have

proven) to the space S equipped with its inherited free and properly discontinuous
G-action we obtain that S/G ⊆ S/G is an open subset. Note that S/G maps
homeomorphically onto its image, thus S/G ⊆ X/G is an open subset of a closed
subset of X/G, that is, S/G ⊆ X/G is locally closed. �

7. Homotopy

From now on we will slowly venture into the realm of algebraic topology. The
following notion is of central importance. In this section I always denotes the unit
interval [0, 1].

Definition 7.1. Let X,Y be topological spaces. A homotopy of maps from X to Y
is a continuous map

F : X × I −→ Y .

Two maps f0, f1 : X → Y are called homotopic, if there exists a homotopy of maps
F : X × I → Y such that for every x ∈ X

F (x, 0) = f0(x) and F (x, 1) = f1(x) .

The notation is f ' g, where we will typically suppress the actual homotopy F .

If two maps are homotopic, then a homotopy between them is far from unique.
In fact, as we will see later, if there is one homotopy between two maps, then there
will be lots.

Lemma 7.2. Being homotopic is an equivalence relation. More precisely, let f, g, h :
X → Y be maps, then

(1) f ' f ,
(2) if f ' g, then g ' f ,
(3) if f ' g and g ' h, then f ' h.
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Proof. In all three cases we will exhibit a concrete homotopy showing that the

required relation holds. For reflexivity, take the constant homotopy, ie. F (x, t)
def
=

f(x) for all x and t. Then obviously f0 = f1 = f .
For symmetry, let F : X × I → Y be a homotopy, we will turn F around by

specifying

F̃ (x, t)
def
= F (x, 1− t)

for all x ∈ X and t ∈ I. Then F̃ is again a continuous function from X × I →
Y (being the composition of the continuous functions t 7→ 1 − t and F ), hence
a homotopy from F (x, 0) to F (x, 1). By construction however F (x, 0) = g, and
F (x, 1) = f , hence g ' f .

Let us now treat transitivity. Again, f ' g and g ' h mean that there exists
homotopies F : X × I → Y and G : X × I → Y from f to g, and from g to h,
respectively. We want to combine somehow F and G to provide a homotopy from
f to g. Here is one way to do it:

(F ? G)(x, t) =

{
F (x, 2t) if 0 ≤ t ≤ 1

2

G(x, 2t− 1) if 1
2
< t ≤ 1 .

Note that since F (x, 1) = g(x) = G(x, 0), the function F ? G : X × I → Y is
continuous, hence indeed provides a homotopy from f to h. �

The constructions used in the proof merit to be defined separately.

Definition 7.3. Let F,G : X × I → Y be homotopies with F (x, 1) = G(x, 0) for
all x ∈ X. Then we can define the inverse of F to be

F̃ (x, t)
def
= F (x, 1− t) ,

and the concatenation of F and G as

(F ? G)(x, t) =

{
F (x, 2t) if 0 ≤ t ≤ 1

2

G(x, 2t− 1) if 1
2
< t ≤ 1 .

The inverse of F is a somewhat unfortunate concept, as it has nothing to do with
the inverse function or image of F . To make matters more confusing, it is often

denoted by F−1. We will avoid this by using F̃ instead.

Exercise 7.4. Let f, g : X → Y be homotopic maps, h : W → X and k : Y → V
arbitrary continuous maps. Show that

f ◦ h ' g ◦ h and k ◦ f ' k ◦ g .

Definition 7.5 (Homotopy equivalence). A map f : X → Y is called a homotopy
equivalence with homotopy inverse g, if there exists a continuous map g : Y → X
such that

g ◦ f ' idX and f ◦ g ' idY .
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The topological spaces X and Y are called homotopy equivalent to each other or to
have the same homotopy type, if there exists a map f : X → Y which is a homotopy
equivalence.

As can be seen from the definition, if g is a homotopy inverse of f , then f is a
homotopy inverse of g. The homotopy inverse of a map is typically not unique, but
might not exist.

Proposition 7.6. The relation ' is an equivalence relation on topological spaces,
which is refined by ≈.

Proof. The relation ' is reflexive (take f = id,g = id), and symmetric (if f : X → Y
is a homotopy equivalence with homotopy inverse g, then g : Y → X is a homotopy
equivalence with homotopy inverse f).

To check transitivity, let f : X → Y be a homotopy equivalence with homotopy
inverse g : Y → X, and h : Y → Z a homotopy equivalence with homotopy inverse
k : Z → Y . Then

(g ◦ k) ◦ (h ◦ f) = g ◦ (k ◦ h) ◦ f ' g ◦ idY ◦f = g ◦ f ' idX ,

and completely analogously for the other composition. �

The simplest spaces up to homemorphism are spaces with one point only. As
there are not too many of them, this is of little help to us. Luckily, as we will
see, from the point of view of homotopy, there are lots of ’interesting’ spaces falling
under the heading ’simplest’, that is, being homotopy equivalent to a single point.
This gives rise to a substantial and beautiful theory.

Definition 7.7. A topological space X is called contractible, if it is homotopy
equivalent to the one-point space.

By unwinding this seemingly innocent definition, we arrive at the following.

Proposition 7.8. X is contractible if and only if the identity map idX : X → X is
homotopic to a map X → X whose image is a single point.

Proof. Every continuous map ? → X is given by the image of the single point of
?, hence g is determined by g(?) ∈ X. On the other hand, there is exactly one
map X → ?, namely, the one taking every point to ?. Therefore f ◦ g = id?, while
g ◦ f : X → X is the function taking every point of X to g(?).

Using this description it is easy to derive the proposition. Since f ◦ g = id?
anyway, X is contractible, if and only if f ◦ g ' id?. But the former is a map whose
image is one point. �

Example 7.9 (Rn is contractible). Let X = Rn, and define F : Rn × I → Rn via
F (x, t) = tx. Then F is a homotopy from f0, the map taking the whole space to
the origin, and f1 = idRn . Therefore Rn is contractible.
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The previous simple example had the curious property that ft : Rn → Rn is a
homeomorphism for all positive t, while f0 contracts the whole space.

Example 7.10 (Rn − {0} ' Sn−1). Let i : Sn−1 ↪→ Rn − {0} be the inclusion,
r : Rn − {0} → Sn−1 be the central projection

x 7→ x

‖x‖
.

Then r ◦ i = idSn−1 , while i ◦ r ' idRn−{0} via

F (x, t) = tx+ (1− t) x

‖x‖
.

Hence Rn − {0} ' Sn−1.

Challenge. One of our main goals is to develop a machinery which is capable to
decide if S1 (or Sn in general) is contractible.

Definition 7.11. Let A ⊆ X be an arbitrary subspace. A map f : X → A is called
a retraction, if f(a) = a for every a ∈ A. The subspace A is said to be a retract of
X, if a retraction f : X → A exists.

Example 7.12. The map

π : R2 − {(0, 0)} −→ S1

(x, y) 7→

(
x√

x2 + y2
,

y√
x2 + y2

)
is a retraction.

Definition 7.13. A subspace A ⊆ X is called a deformation retract of X, if there
exists a homotopy F : X × I → X such that

F (x, t) =

{
x if t = 0 ,

∈ A if if t = 1 ,

The subspace A is called a strong deformation retract if in addition it is required,
that F (a, t) = a for every t ∈ I and a ∈ A.

In other words, A is a deformation retract, if there is a homotopy F such that
f0 = idX , f1(X) ⊆ A; a strong deformation retract if in addition ft|A = idA for every
t ∈ I. Note that if A is a deformation retract of X, then automatically A ' X.

Definition 7.14. Let A ⊆ X be an arbitrary subspace. A homotopy F : X×I → Y
is said to be relative to A (denoted relA) if for every a ∈ A F (a, t) is independent
of t, that is, ft|A is consant for every t ∈ I.

The next result is a complicated device, which will however make computations
with homotopies quite easy.
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Lemma 7.15 (Reparametrisation Lemma). Let φ1, φ2 : (I, ∂I)→ (I, ∂I) be contin-

uous maps that are equal on ∂I, F : X×I → Y be a homotopy, Gi(x, t)
def
= F (x, φi(t))

for i = 1, 2. Then

G1 ' G2 relX × ∂I .

Proof. We define the homotopy of homotopies H : X × I × I → Y by

H(x, t, s)
def
= F (x, sφ2(t) + (1− s)φ1(t)) .

Then by substituting the appropriate values in the definition of H we obtain

H(x, t, 0) = F (x, φ1(t)) = G1(x, t) ,

H(x, t, 1) = F (x, φ2(t)) = G2(x, t) ,

H(x, 0, s) = F (x, φ1(0)) = G1(x, 0) ,

H(x, 1, s) = F (x, φ2(0)) = G1(x, 1) ,

with the latter two equalities coming from φ1(0) = φ2(0) and φ1(1) = φ2(1). �

Let us denote by C the constant homotopy. Note that C will depend on the
context. For example, in the case of F ? C C is the homotopy for which

C(x, t) = F (x, 1)

for every x ∈ X, while for C ? F the constant homotopy is the one with

C(x, t) = F (x, 0) .

Proposition 7.16. We have

F ? C ' F relX × ∂I ,
C ? F ' F relX × ∂I .

Proof. The statements follow from the Reparametrization Lemma by letting

φ1(t) =

{
2t if t ≤ 1

2

1 if t ≥ 1
2

and φ2(t) = t

in the first case, and

φ1(t) =

{
0 if t ≤ 1

2

2t− 1 if t ≥ 1
2

and φ2(t) = t

in the second. �

Proposition 7.17. For a homotopy F : X × I → Y one has

F ? F̃ ' C relX × ∂I ,
where C(x, t) = F (x, 0) for all x ∈ X and t ∈ I.
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Proof. This again follows from the Reparametrization Lemma by setting

φ1(t) =

{
2t if t ≤ 1

2

2− 2t if t ≥ 1
2

and φ2(t) = 0 .

�

Proposition 7.18. Let F,G,H : X × I → Y be homotopies such that F ? G and
G ? H are defined. Then one has

(F ? G) ? H ' F ? (G ? H) relX × ∂I .
Theorem 7.19. Let f : X → Y be a continuous map, F be the set of homotopies
with f0 = f1 = f . Then F is a group with multiplication and inverse given by ? and
.̃

8. The fundamental group and some applications

8.1. Definition and basic properties. The fundamental group is a very impor-
tant algebraic invariant attached to a topological space. Here we will not go too
deeply into the theory, we will mostly content ourselves with a few simple facts. The
proof of the highly non-trivial result of computing the fundamental group of the cir-
cle S1 will come as a consequence of the theory of covering spaces. Nevertheless, we
will use this fact to derive a number of interesting consequences.

First of all, let us remind ourselves, that a path in a topological space X is a map

f : I → X, where I
def
= [0, 1]. We will keep this piece of notation for the rest of these

notes.

Definition 8.1. A loop f in a topological space X based at a point x0 ∈ X is a
path f : I → X such that f(0) = f(1) = x0

Remark 8.2. A path is nothing else than a homotopy of maps from the one-point
space to X. A loop is a homotopy of maps from a map ∗ → X to itself.

In the language of pointed spaces one can also say that a loop is a map (S1, 1)→
(X, x0).

By the previous remark, we can concatenate loops in the sense of homotopies.
Note that the concatenation of any two loops based at the same point makes sense.
Also, we can form the reverse homotopy just as we have seen in the case of general
homotopies. As a reminder, note that if f, g : (I, ∂I)→ (X, x0) are two loops, then

(f ∗ g)(s)
def
=

{
f(2s) if 0 ≤ s ≤ 1

2
,

g(2s− 1) if 1
2
≤ s ≤ 1 .

On the other hand, the inverse of f is given by

f−1(s)
def
= f(1− s)

for every s ∈ I.



68 ALEX KÜRONYA

Proposition 8.3. The set

π1(X, x0)
def
= {[f ] | f : I → X is a loop based at x0}

forms a group with respect to concatenation and inverse of homotopies. The identity
element is the constant loop based at x0.

Proof. This is a special case of Theorem 7.19. �

Definition 8.4. The group π1(X, x0) is called the fundamental group of X at the
base-point x0.

Note that there is kind of a general disagreement of whether to use additive or
multiplicative notation here. In any case, both 0 and 1 mean the unique group with
one element.

Example 8.5. If X ⊆ Rn is a convex subset, then π1(X, x0) = 1 for every x0 ∈ X.
This follows from the observation that any two loops f0 and f1 based at x0 are
homotopic to each other via the linear homotopy

F (t, s) = (1− t)f0(s) + tf1(s) .

In general it is a non-trivial issue to show that certain spaces have non-trivial
fundamental groups.

The next question we are going to deal with is to investigate the extent to which
the group π1(X, x0) depends on the base point x0.

Remark 8.6. Since π1(X, x0) involves only the path component of x0, we can only
hope to find a relation between fundamental groups π1(X, x0) and π1(X, x

′
0) at

different points, if x0 and x′0 lie in the same path component.

Construction 8.7. Let X be an arbitrary topological space, x0, x
′
0 ∈ X points that

belong to the same path component of X. Let h : I → X be a path from x0 to x′0,
with h−1 denoting the inverse path of h in the sense of homotopies.

To each loop f ′ : (I, ∂I)→ (X, x′0) we can associate the loop

h−1 ∗ (f ′ ∗ h)

based at x0. This way, we establish a well-defined function

τh : π1(X, x
′
0) −→ π1(X, x0)

[f ] 7→ [h−1 ∗ (f ′ ∗ h)] .

Since pre- and postcomposing with maps preserves the relation of being homo-
topic, if f ′t is a homotopy of loops based at x′0, then h−1 ∗ (f ′t ∗h) will be a homotopy
of loops based at x0. Therefore τh is indeed well-defined.

Note that one has a choice between h−1 ∗ (f ′h) and (h−1 ∗f)∗h; although the two
paths are different as maps, they are homotopic, hence end up defining the same
element of π1(X, x0).
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Proposition 8.8. The function of sets

τh : π1(X, x
′
0) −→ π1(X, x0)

is an isomorphism of groups.

Proof. First of all, observe that τh is a homomorphism of groups, since τh takes a
constant loop based at x′0 to a constant loop based at x0, hence it preserves the
identity, on the other hand,

τh[f ∗ g] = [h−1 ∗ ((f ∗ g) ∗ h)]

= [h−1 ∗ f ∗ h ∗ h−1 ∗ g ∗ h]

= [(h−1 ∗ f ∗ h) ∗ (h−1 ∗ g ∗ h)]

= [h−1 ∗ f ∗ h] ∗ [h−1 ∗ g ∗ h]

= τh[f ] ∗ τh[g] .

We will prove that τh is an isomorphism by exhibiting its two-sided inverse homo-
morphism. To this end, we will check that

τh−1 ◦ τh = idπ1(X,x′0) ,

τh ◦ τh−1 = idπ1(X,x0) .

�

Corollary 8.9. If X is a path-connected topological space, then as an abstract group,
π1(X, x0) is independent of the choice of x0.

It is very important to point out that the isomorphism between the fundamen-
tal groups at various base points is not canonical, that is, there is no natural or
distinguished isomorphism between them.

Remark 8.10. The common isomorphism class of the groups π1(X, x0) in case of a
path-connected space is often denoted by π1(X), and called the fundamental group
of X. Note that π1(X) is just an abstract group, it is no longer a set of homotopy
classes of loops.

Definition 8.11. A topological space X is called simply-connected, if it is path-
connected, and has π1(X) = 1.

Proposition 8.12. A topological space X is simply connected if and only if between
any two points x0, x1 of X there is a unique homotopy class of paths connecting x0

to x1.

Proof. Assume first that there exists a unique homotopy class of paths between any
two points of X. Then, in particular, for any two points x, y ∈ X there exists a path
from x to y, consequently, X is path-connected. The set π1(X, x0) consists of one
element only, since by assumption there is only one homotopy class of paths from
x0 to x0. Therefore π1(X, x0) = 1, and X is simply connected.
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To go the other way, assume that X is simply connected. The definition includes
the fact that X is path-connected as well, therefore we only need to worry about
the uniqueness of the homotopy class of paths from a point x to another point y.
To see this, let f, g : I → X be paths from x to y, where x, y ∈ X are arbitrary
points. Then

f ' f ∗ (g−1 ∗ g) ' (f ∗ g−1) ∗ g ' g ,

as f ∗ g−1 is homotopic to the constant loop by the uniqueness of homotopy classes
of paths from x to x. �

8.2. Applications. Let us remind ourselves to the following.

Definition 8.13. Let A ⊆ X be an arbitrary subset; a retraction of X onto A is a
continuous map r : X → A such that

r|A = idA .

If such a map exists, then A is called a retract of X.

Lemma 8.14. Let j : A ↪→ X denote the inclusion of A into X, a0 ∈ A. If A is a
retract of X, then the induced map

j∗ : π1(A, a0) −→ π1(X, a0)

on the fundamental groups is injective.

Proof. If r : X → A is a retraction, then the composition r ◦ j equals the identity
of A. Therefore

1π1(X,a0) = (idA)∗ = (r ◦ j)∗ = r∗ ◦ j∗
by functoriality. But then j∗ must be injective, since it has a left inverse. �

Theorem 8.15. There does not exist a retraction of the 2-dimensional disk D2 to
its boundary ∂D2 ≈ S1.

Proof. We argue by contradiction. Suppose there exists such a retraction r : D2 →
∂D2. By Lemma 8.14 this induces an injective homomorphism

j∗ : π1(∂D2) ↪→ π1(D2) .

However, ∂D2 ≈ S1, hence its fundamental group is the infinite cyclic group, while
D2 has trivial fundamental group, since it is convex, a contradiction. �

Definition 8.16. A map f : X → Y is nullhomotopic, if it is homotopic to a
constant map.

Lemma 8.17. The following statements are equivalent for any topological space X,
and any continuous map f : S1 → X.

(1) f is nullhomotopic.
(2) f extends to a continuous map f : D2 → X.
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(3) The induced homomorphism

f∗ : π1(S1, x0) −→ π1(X, f(x0))

is trivial.

Proof. We will prove the direction (1) implies (2) first. Let H : S1 × I → X be a
homotopy between f and a constant map, let

π : S1 × I −→ D2

(x, t) 7→ (1− t)x .
Then π is continuous, closed and surjective, hence it is a quotient map. It collapses

S × {1} to 0 ∈ D2, but it is otherwise injective. Since H|S1×{1} is continuous, it
induces via π a continuous map g : D2 → X extending f .

Assume now (2), and let us prove that f∗ maps every element of π1(S1, x0) to the
identity of π1(X, f(x0). To this end, let j : ∂D2 ↪→ D2 denote that inclusion of the
boundary of D2. Then f = f ◦ j, so

f∗ = f ∗ ◦ j∗ .
Observe that j∗ is trivial, since π1(D2) is. Therefore f∗ has to be trivial as well.

To conclude it remains to prove that (3) implies (1). Assume accordingly that
the homomorphism of groups

f∗ : π1(S1, x0) −→ π1(X, f(x0))

is trivial, and consider the usual covering map p : R→ S1 given by s 7→ e2πis along

with its restriction p0
def
= p|I : I → S1.

Then [p0] as an element of π1(S1, y) generates π1(S1, y) as it is a loop in S1 whose

lift to R starting at 0 ends at 1. Let x0
def
= f(y). As f∗ is the trivial homomorphism,

the loop k
def
= f ◦p0 represents the identity of π1(X, x0), therefore there exists a path

homotopy F in X between k and the constant path at x0.
The map p0 × I : I × I → S1 × I is a quotient map (one checks easily that it is

continuous, closed, surjective, and injective except at {0} × I and {1} × I), hence
induces a continuous map F1 : S1× I → X, which gives a homotopy between f and
the constant map. �

Theorem 8.18 (Brouwer’s fixed point theorem for D2). If f : D2 → D2 is a con-
tinuous map, then f has a fixed point.

For the proof we will need some preparations.

Definition 8.19. A vector field on D2 is a continuous map v : D2 → R2. A vector
field v on D2 is called non-vanishing, if v(x) 6= 0 for every x ∈ D2.

Lemma 8.20. For every vector field v on D2 there exist points x, y ∈ ∂D2 such that

v(x) = αx , v(y) = −βy
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for some α, β > 0 real numbers.

Proof. Suppose first that there does not exist a point x ∈ ∂D2 with v(x) pointing
directly inwards (ie. v(x) = −βx, β > 0). Consider the restriction

w
def
= v

∣∣
∂D2 .

Because w extends to a map D2 → R2−{(0, 0)}, it is nullhomotopic by Lemma 8.17.
On the other hand, w is homotopic to the inclusion map j : S1 ≈ ∂D2 ↪→ R2 −
{(0, 0)} via

F (x, t)
def
= tx+ (1− t)w(x) .

Observe that F (x, t) 6= 0: this is clearly so for t = 0, 1; if we had F (x, t) = 0 for
some 0 < t < 1, then from

tx+ (1− t)w(x) = 0

we could conclude w(x) = − t
1−tx, that is, w(x) would point directly inwards at x,

which was supposed not to be the case. Therefore F maps into R2 − {(0, 0)}, and
thus provides a homotopy between j and w. This implies that j is null-homotopic,
contradicting the fact that it induces an isomorphism on the fundamental groups.

To show that v points directly outward at some x ∈ ∂D2, replace v by −v. �

Proof. (of Theorem8.18). We will argue by contradiction. Suppose that f(x) 6= x
for every x ∈ D2. Then

v(x)
def
= f(x)− x

defines a nowhere vanishing vector field on D2. Observe that v cannot point directly
outward at any x ∈ ∂D2, since this would imply

f(x)− x = αx (α > 0) ,

f(x) = αx 6∈ D2 ,

which contradicts Lemma8.20. �

Lemma 8.21. Let g : S1 → S1 be the map g(z) = zn. Then

g∗ : π1(S1, 1) −→ π1(S1, 1)

is injective.

Proof. Consider p0 : I → S1 given by s 7→ e2πis; it is a loop, therefore defines an
element of π1(S1, 1). Its image under g∗ is

g∗([p0]) = [g ◦ p0] ,

where g(p0(t)) = e2πint by construction. The path g◦p0 lifts to the path t 7→ nt in the
covering space R → S1. Therefore g∗[p0] corresponds to n ∈ Z as [p0] corresponds
to n.

It follows that g∗ is multiplication by n, hence g∗ is injective. �

Lemma 8.22. The map g̃ : S1 → R2−{(0, 0)} given by z 7→ zn is not nullhomotopic.
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Proof. If j : S1 ↪→ R2 − {(0, 0)} denotes the inclusion map, then we can write

g̃ = j ◦ g .
We have seen in Lemma 8.21 that the homomorphism g∗ is injective. Since S1 is a
retract of R2 − {(0, 0)}, j∗ is injective as well by Lemma 8.14. Therefore g̃∗ is also
injective, hence g̃ cannot be nullhomotopic. �

Theorem 8.23 (The fundamental theorem of algebra). Let f [z] ∈ C[z] be a non-
constant polynomial. Then f has a root in C.

Proof. First we will prove the following simplified version of the theorem: if

f(z) = zn + an−1z
n−1 + · · ·+ a0 ,

where
∑n−1

i=0 |ai| < 1, then f has a root in D2 ⊆ C.
Suppose to the contrary that f has no root in D2, then one can define a continuous

map

k : D2 −→ R2 − {(0, 0)}
z 7→ f(z) .

Since f is supposed to have no roots in D2, the restriction k|S1 extends to D2.
Therefore k|S1 is nullhomotopic.

On the other hand, the homotopy

F : S1 × I −→ R2 − {(0, 0)}
(z, t) 7→ zn + t(an−1z

n−1 + · · ·+ a0)

shows that the nullhomotopic k|S1 is homotopic to z 7→ zn, which is known not to
be homotopic to a constant map by 8.22, a contradiction.

It is important to point out that F indeed maps into R2 − {(0, 0)}, since

|F (z, t)| ≥ |zn| − |t(an−1z
n−1 + · · ·+ a0)|

≥ 1− t(|an−1|+ · · ·+ |a0|)
> 0 .

Hence we have verified that f has a root in D2 provided
∑n−1

i=0 |ai| < 1.
For the general case, drop the restriction on f(z) = zn + an−1z

n−1 + · · ·+ a0, and
choose an arbitrary positive real number c > 0. Write w = z

c
. Then

(cw)n + an−1(cw)n−1 + · · ·+ a0 = 0

if and only if

wn +
an−1

c
wn−1 + · · ·+ a0

cn
= 0 .

This latter equation however has a root in D2 once
n−1∑
i=0

∣∣∣an−i
ci

∣∣∣ < 1 .
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�

Corollary 8.24. Any polynomial f ∈ C[z] of degree n can be written in the form

f(z) = α(z − z1) · . . . · (z − zn) ,

where α, ζ1, . . . , zn ∈ C, and the numbers zi are not necessarily different.

Theorem 8.25. If h : S1 → S1 is an antipode-preserving map, then h is not null-
homotopic.

Proof. Without loss of generality we will assume that h(1) = 1. If this did not hold
initially, then take the rotation ρ : S1 → S1 mapping h(1) to 1, and consider the
antipode-preserving map rho◦h instead of h. If H were a homotopy between h and
a constant map, then ρ◦H would provide a homotopy between ρ◦h and a constant
map.

Consider the map q : S1 → S1, q(z) = z2. This map is continuous, closed, and
surjective, hence it is a quotient map. For every q ∈ S1, one has q−1(w) = {z,−z}
for suitable z ∈ S1.

Because h(−z) = −h(z), one has q(h(−z)) = q(h(z)), therefore q ◦ h induces a
continuous map k : S1 → S1 with k ◦ q = q ◦ h:

S1

q

��

h // S1

q

��
S1 k // S1

.

Note that q(1) = h(1) = 1, so that k(1) = 1; in addition h(−1) = −1.
With this in hand, we will prove that the group homomorphism k∗ is non-trivial.

To this end, observe first of all, that q is a covering map. Now if f̃ is a path in S1

from 1 to −1, then f
def
= q ◦ f̃ is a loop at 1 giving a non-trivial element of π1(S1, 1)

(since f̃ is a lift starting at 1 and ending at −1, a point 6= 1).
Then

k∗[f ] = [k ◦ (q ◦ f̃)] = [q ◦ (h ◦ f̃)] ,

where h ◦ f̃ is a path from 1 to −1, and so q ◦ (h ◦ f̃) gives and non-trivial loop in
S1.

Note that every non-trivial homomorphism Z→ Z is injective, therefore k∗ must
be injective. Since q∗ is injective as well, we obtain that k∗ ◦ q∗ is injective. But this
latter equals q∗ ◦ h◦, therefore h∗ has to be injective, too. �

Theorem 8.26. There does not exist a continuous anti-pode preserving map g :
S2 → S1.

Proof. Contrary to what we need to prove, suppose that g : S2 → S1 is an anti-pode
preserving map. Let E ⊆ S2 be the equator. Since E ≈ S1,

g|E : E → S1
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cannot be null-homotopic by Theorem 8.25.
On the other hand, g|E obviously extends to the northern hemispere, which is
≈ D2, hence must be null-homotopic, a contradiction. �

Theorem 8.27 (Borsuk–Ulam Theorem). If f : S2 → R2 is a map, then there exists
x ∈ S2 for which

f(x) = f(−x) .

Proof. We will again argue by contradiction. Suppose that for every x ∈ S2, one
has f(x) 6= f(−x). Then the function

g : S2 −→ S1

x 7→ f(x)− f(−x)

|f(x)− f(−x)|
is continuous and antipode preserving. But such a map cannot exist by Theo-
rem 8.26.

�

9. Covering spaces

In the course of the current section p : E → B denotes a surjective map of
topological spaces unless otherwise mentioned.

Definition 9.1. Let p : E → B be a surjective map. An open set U ⊆ B is said to
be evenly covered by p if

p−1(U) =
∐
α∈I

Vα

where for every α ∈ I the subset Vα ⊆ E is open, and p|Vα : Vα → U is a homeo-
morphism. We call the collection {Vα |α ∈ I} the partition of p−1(U) into slices.

Definition 9.2. A surjective map p : E → B is called a covering map or a covering
space if every b ∈ B has an open neighbourhood Ub ⊆ B which is evenly covered by
p.

Remark 9.3. Note that if p : E → B is a covering map, then the fibre p−1(b) ⊆ E
has the discrete topology for every b ∈ B. This follows from the observation that
for α ∈ I we have ∣∣Vα ∩ p−1(b)

∣∣ = 1 ,

therefore all points are open in p−1(b).

Next we show a simple but useful property of covering maps.

Proposition 9.4. Every covering map p is open.
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Proof. As required, we will show that the image of an open set A ⊆ E is open in B.
To this end, pick x ∈ p(A), and let U ⊆ B be an evenly covered open neighbourhood
of x with

p−1(U) =
∐
a

Vα

being its partition into slices. There exists y ∈ A with p(y) = x, let Vβ be the unique
slice containing y.

Then Vβ ∩ A ⊆ E is open, therefore Vβ ∩ A ⊆ Vβ is open as well. Because p
maps Vβ homeomorphically onto U , one has that p(Vβ ∩ A) ⊆ U is an open subset
as well. This implies that p(Vβ ∩ A) ⊆ A is also open, hence p(Vβ ∩ A) is an open
neighbourhood of x contained in p(A). It then follows that p(A) ⊆ B is open, which
is waht we wanted. �

The perhaps simplest example of a covering map is the following.

Example 9.5. Let X be an arbitrary topological space, set E
def
= X ×{1, 2, . . . , n},

where this latter set is given the discrete topology. Then the projection

p : E → X , p(x, i) = x

is a covering map.

To avoid such an easy way out, we will usually restrict ourselves to path-connected
covering spaces. The next example is a basic one.

Proposition 9.6. The map

p : R −→ S1

x 7→ e2πix

is a covering map.

One way to illustrate this map is via the composition

R ↪→ R3 −→ S1

where the first map takes x 7→ (e2πix, x), while the second one projects to the plane
spanned by the first two coordinates.

Proof. To begin with, let U ⊆ S1 denote the subset consisting of points with positive
first coordinates. Then

p−1(U) = {x ∈ R | cos 2πx > 0} =
∐
n∈Z

(
n− 1

4
, n+

1

4

)
.

Setting Vn
def
=
(
n− 1

4
, n+ 1

4

)
, note the following.

(1) p|Vn is injective since sin 2πx is strictly monotonously increasing on such
intervals;
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(2) p|Vn : Vn → U and p|Vn : Vn → U are both surjective as a consequence of the
Intermediate Value Theorem;

(3) Vn is compact and U is Hausdorff.

Putting all this together we obtain that p|Vn : Vn → U is a homeomorphism. Since
p maps Vn bijectively onto U , the restriction p|Vn : Vn → U is a homeomorphism as
well. Therefore U is evenly covered by p.

Completely analogous arguments show that the subsets of S1 with negative first
coordinates, positive second coordinates, and negative second coordinates, respec-
tively, are all evenly covered. These four subsets however form an open cover of S1,
therefore p is a covering map as stated. �

Definition 9.7. A map f : X → Y of topological spaces is a local homeomor-
phism, if every x ∈ X has an open neighbourhood U ⊆ X, which gets mapped
homeomorphically by f onto an open subset of Y .

Remark 9.8. By construction every covering map is a local homeomorphism.

Exercise 9.9. Construct a map, which is a local homeomorphism, but not a covering
map. Can you make one, which is surjective?

Example 9.10. We can construct other covering maps of S1 using complex power
maps: define pn : S1 → S1 by sending z → zn. In real coordinates, this map becomes

(cosx, sinx) 7→ (cosnx, sinnx) .

We move on to constructing new covering spaces out of existing ones.

Proposition 9.11. Let p : E → B be a covering map, W ⊆ B an arbitrary subspace,

T
def
= p−1(W ) ⊆ E. Then p|T : T → W is also a covering map.

Proof. Pick w ∈ W arbitrary, let V ⊆ B be an open neighbourhood of w evenly
covered by p. In particular, let

p−1(V ) =
∐
α

Vα

be the partition of its inverse image into slices.
Then V ∩W is an open neighbourhood of w ∈ W , the sets T ∩Vα are disjoint and

open in T , their union equals p−1(V ∩W ); moreover, each of the T ∩Vα’s is mapped
homeomorphically onto V ∩W by p. Therefore V ∩W is an evenly covered open
neighbourhood of w (with respect to the restriction map p|T ). We can conclude that
p|T : T → W is indeed a covering map. �

Next we prove a similar result for products of covering spaces.

Proposition 9.12. If p : E → B and p′ → E ′ → B′ are both covering spaces, then
so is p× p′ : E × E ′ → B ×B′ defined by

(e, e′) 7→ (p(e), p′(e′)) .
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Proof. Fix (b, b′) ∈ B × B′, and let b ∈ U , b′ ∈ U ′ be open neighbourhoods evenly
covered by p and p′, respectively. Write

p−1(U) =
∐
α∈I

Vα , (p′)−1(U ′) =
∐
α′∈I′

V ′α′ .

Then

(p× p′)−1(U × U ′) =
⋃

(α,α′)∈I×I′
Vα × V ′α′

is a partition of (p×p′)−1(U×U ′) into slices, since the Vα×V ′α′ ’s are disjoint open sets
in E×E ′, each of which is mapped homeomorphically onto U ×U ′ under p×p′. �

Example 9.13 (A covering of the torus). Using the covering map p : R → S1

constructed for the circle, we obtain the covering maps

p× p : R× R −→ S1 × S1 ,

which wraps the plane around the torus infinitely many times.

Let now x0
def
= p(0) ∈ S1, and T0

def
= (S1 × {x0}) ∪ ({x0} × S1) the ’figure eight’ on

the torus. Then the inverse image of T0 under p × p is a covering map of T0. This
inverse image is the infinite grid (R× Z) ∪ (Z× R).

Example 9.14. Consider the composition of maps

p× i : R× R+ −→ S1 × R+
≈−→ R2 \ {(0, 0)}

given by

(x, t) 7→ (e2πix, t) 7→ te2πix .

This gives a covering R × R+ −→ R2 \ {(0, 0)}, which is in essence the Riemann
surface corresponding to the complex logarithm function.

Definition 9.15. Let h : Y → Z, f : X → Z be maps of topological spaces. A

lifting of f is a map f̃ : X → Y such that h ◦ f̃ = f .

Y

h
��

X

ef >>~~~~~~~ f // Z

In general liftings of maps do not exist; however, they do in many important
special cases, like in the ones that will follow. These results will prove to be extremely
important.

Proposition 9.16 (Lifting of paths). Let p : E → B be a covering map, e0 ∈ E
arbitrary, b0 = p(e0). Then any path f : [0, 1]→ B starting at b0 has a unique lifting

to a path f̃ in E starting at e0.
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Proof. To begin with, cover E by open sets evenly covered by p. Since the closed
unit interval is compact, by the Lebesgue number lemma there exists a subdivision

0 = s0 < s1 < . . . < sn−1 < sn = 1

of [0, 1] such that f([si, si+1]) lies in an evenly covered open set for every 0 ≤ i ≤
n− 1.

We define f̃ inductively. Let f̃(0) = e0. Assuming now that f̃ is defined on a

closed interval [0, si], define f̃ on [si, si+1] as follows: if f̃([si, si+1]) ⊆ U for an evenly
covered open subset of E, consider

p−1(U) =
∐
α∈I

Vα ,

the partition of p−1(U) into disjoint slices. It is a simple but important observation

that f̃(si) lies in exactly one of the Vα’s, let us denote this by Vα0 . Because

p|Vα0
: Vα0 −→ U

is a homeomorphism, we can set

f̃(s)
def
= (p|Vα0

)−1(f(s)) ,

which is thus uniquely defined for si ≤ s ≤ si+1. Also, f̃[si,si+1] will be continuous.

Proceeding this way we define f̃ on all of [0, 1]. Clearly f̃ : [0, 1]→ E is continuous

and p ◦ f̃ = f by construction.

We are left with proving that uniqueness of f̃ . Suppose that f ′ is another lifting

of f beginning at the point e0. Then of course f ′(0) = f̃(0) = e0. Assume that we
have

f ′
∣∣
[0,si]

= f̃
∣∣
[0,si]

,

and consider the interval [si, si+1], and U , Vα0 as above, ie.

f̃
∣∣
[si,si+1]

=
((
p|Vα0

)−1 ◦ f
) ∣∣

[si,si+1]
.

Since f ′ is a lifting of f ,

f ′([si, si+1]) ⊆ p−1(U) =
∐
α∈I

Vα .

The slices Vα are disjoint and f ′([si, si+1]) is connected, hence it must lie entirely in

one specific Vα. As f ′(si) = f̃(si), this must be Vα0 , in other words, f ′([si, si+1) ⊆
Vα0 , in particular, for every s ∈ [si, si+1], f

′(s) is some point of Vα0 lying in p−1(f(s)).
However, there is only one such point, namely

(p|Vα0
)−1(f(s)) = f̃(s) .

From this we can conclude that

f ′|[si,si+1] = f̃ |[si,si+1] ,
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which proves uniqueness by induction on i. �

Example 9.17. Consider the covering map p : R→ S1 with the path f : [0, 1]→ S1

given by f(s) = (cos πs, sinπs). Set b0 = (1, 0). Then the lift f̃ of f starting at

t = 0 is the path f̃(s) = s
2
.

Proposition 9.18 (Lifting of path homotopies). Let p : E → B be a covering map,
p(e0) = b0, F : I × I → B a continuous map with F (0, 0) = b0. Then there is a

unique lifting F̃ : I × I → E of F such that F̃ (0, 0) = e0.

Moreover, if F is a path homotopy, then so is F̃ .

Proof. The proof will be completely analogous to the case of paths. Given F as in

the Theorem, set F̃ (0, 0)
def
= e0.

Next, use Proposition 9.16 to extend F̃ to the subsets {0}× I and I ×{0}. Once
this is done, choose subdivisions

0 = s0 < s1 < . . . < sn−1 < sm and 0 = t0 < t1 < . . . < tn−1 < tn

of I so that
Ii × Jj

def
= [si−1, si]× [ti−1, ti]

is mapped by F into an evenly covered subset U ⊆ B. Just like in the case of lifting
paths, this is made possible by the Lebesgue number lemma.

We will now define F̃ inductively; first for the rectangles I1×J1, I2×J1, . . . , Im×J1,
then for the Ii× J2’s and so on in lexicographic order. In general, given 1 ≤ i0 ≤ m

and 1 ≤ j0 ≤ n, assume that F̃ is defined all rectangles which have an index smaller
than (i0, j0) in the lexicographic order. Denote the union of all these by A.

Choose an evenly covered open set U ⊇ F (Ii0 × Ij0), and let

p−1(U) =
∐
α∈I

Vα

as customary. By the induction hypothesis, F̃ is defined on C
def
= A ∩ (Ii0 × Jj0), ie.

on the left and bottom edges of Ii0 × Jj0 . Note that C is connected, therefore so

is F̃ (C), hence it must lie entirely in one of the sets Vα, which we will call V0, by
connectedness, V0 will also contain F (Ii0 × Jj0). Let

F̃ (s, t)
def
= (p|V0)

−1(F (s, t))

for (s, t) ∈ Ii0 × Jj0 . By construction, the extended map will be continuous, and lift
F .

The proof of uniqueness goes exactly the same way as in Proposition 9.16.

Suppose now that F is a homotopy of paths; we wish to show that F̃ is a homotopy
of paths as well (ie. it keeps the endpoints fixed). By definition, F carries {0} × I
to a point b0 ∈ B; now since p ◦ F̃ = F , one has

F̃ ({0} × I) ⊆ p−1(b0) .
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Here, we have a connected subset in a discrete topological space, hence F̃ ({0} × I)

must be just one point. A completely similar argument implies that F̃ ({1} × I) is

equal to a point as well, so F̃ is indeed a path homotopy. �

Theorem 9.19. Let p : E → B be a covering map, p(e0) = b0; consider two paths

f, g : I → B from b0 ∈ B to b1 ∈ B. Denote by f̃ and g̃ their respective liftings to
E starting at e0.

If f ∼ g, then f̃ and g̃ end at the same point, and f̃ ∼ g̃.

Proof. Let F : I × I → B be a path homotopy between f and g; then F (0, 0) = b0.

Let F̃ : I × I → E be the lifting of F with F̃ (0, 0) = e0. By Proposition 9.18, F̃ is
a homotopy of paths, therefore

F̃ ({0} × I) = {e0} , F̃ ({1} × I) = {e1} ,

where e1 is defined by the previous equality. The bottom edge F̃ |I×{0} is a path
beginning at e0 lifting F |I×{0}. But the lifted path is unique by Proposition 9.16,
hence

F̃ (s, 0) = f̃(s)

for every 0 ≤ s ≤ 1. In a completely analogous fashion, we obtain that F̃ (s, 1) = g̃(s)

on the whole interval [0, 1]. Since we have seen earlier in the proof that f̃ and g̃

both end at the same point e1, F̃ is indeed a path homotopy between f̃ and g̃. �

The following construction relates the fundamental group to the liftings of homo-
topies and paths we have been studying so far.

Definition 9.20 (Lifting correspondence). Let p : E → B be a covering map;
b0 ∈ B, e0 ∈ p−1(b0) ⊆ E arbitrary points. We define a function of sets

φ : π1(B, b0) −→ p−1(b)

as follows. For an element [f ] ∈ π1(B, b0), let f̃ be the lifting of f to a path in E
starting at e0; now set

φ([f ])
def
= f̃(1) ,

the endpoint of the lift f̃ of f . The function φ is called the lifting correspondence.

Remark 9.21. Note that the Definition makes sense because of Theorem 9.19. Elab-
orate.

Also, it is easy to demonstrate by examples that φ actually depends on the choice
of e0.

Theorem 9.22. With notation as above, if E is path-connected, then the lifting
correspondence

φ : π1(B, b0) −→ p−1(b0)

is surjective. If E is simply connected, then φ is bijective.
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Proof. Assuming E is path-connected, for any given e1 ∈ p−1(b0) there exists a path
f ′ in E from e0 to e1. Then the composition

f
def
= p ◦ f ′

is a loop inB at b0; moreover φ([f ]) = e1 by construction. This shows the surjectivity
of φ.

Assume now that E is simply connected in addition, let [f ], [g] ∈ π1(B, b0) be

homotopy classes of loops such that φ([f ]) = φ([g]), and denote by f̃ and g̃ the lifts

of f and g, respectively, to paths in E beginning at e0. . Then f̃(1) = g̃(1).
Since E is simply connected, any two paths between two points are homotopic,

hence there exists a path homotopy F̃ between f̃ and g̃. Then F
def
= p ◦ F̃ is a path

homotopy in B between f and g, therefore [f ] = [g] as elements of π1(B, b0). �

As a consequence of the theory developed in this section, we will be able to
compute the fundamental group of the circle with ease.

Theorem 9.23. π1(S1) ' Z.

Proof. We will demonstrate this via the lifting correspondence associated to the
covering map p : R→ S1 given by s 7→ e2πis.

Take e0
def
= 0 ∈ R, b0 = p(e0) = (1, 0). Then p−1(b0) = Z ⊂ R. Since R is simply

connected, the lifting correspondence

φ : π1(S1, b0)
∼−→ Z

is a bijective function of sets. Whence, we only need to prove that φ is also a
homomorphism of groups, and we are done.

Let [f ], [g] ∈ π1(S1, b0) be arbitrary elements, f̃ .g̃ the respective lifts of f and g

to R starting at e0 = 0. Then n
def
= f̃(1),m

def
= g̃(1) ∈ Z, moreover

φ([n]) = n , φ([g]) = m .

Let furthermore g′ be the path g′(s)
def
= n+ g̃(s) (0 ≤ s ≤ 1). As

p(n+ x) = p(x)

for every x ∈ R, g′ is the unique lifting of g with starting point n ∈ R. It follows that

the composition of paths f̃ ∗ g′ is defined, and is the unique lift of f ∗ g beginning

at 0. The endpoint of f̃ ∗ g′ is g′(1) = m+ n. Therefore

φ([f ] ∗ [g]) = n+m = φ([f ]) + φ([g]) .

�

Here is a grown-up version of our earlier result on the lifting correspondence.

Theorem 9.24. Let p : E → B be a covering map, p(e0) = b0 arbitrary. Then
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(1) the induced homomorphism

p∗ : π1(E, e0) −→ π1(B, b0)

is injective.

(2) Set H
def
= p∗(π1(E, e0)), then the lifting correspondence φ induces an injective

map of sets

Φ : π1(B, b0)/H −→ p−1(b0) ,

where π1(B, b0)/H denotes the set of right cosets with respect to H. The
function Φ is bijective provided E is simply-connected.

(3) If f is a loop in B based at b0, then [f ] ∈ H precisely if f lifts to a loop in
E based at e0.

Proof. (1) Let h̃ be a loop in E based at e0, suppose

p∗([h̃]) = 1 .

Then there exists a path homotopy F from p ◦ h̃ to the constant loop in B.

If F̃ is the unique lift of F in E with F̃ (0, 0) = e0, then by construction

F̃ is a path homotopy between h̃ and the constant loop at e0. Therefore

[h̃] = 1π1(E, e0).

(2) Next, let f, g be loops in B with respective lifts f̃ , g̃ to E starting at e0. By
construction

φ([f ]) = f̃(1) , φ([g]) = g̃(1) .

We need to show that φ([f ]) = φ([g]) holds if and only if [f ] ∈ H ∗ [g].
Assume first that we have [f ] ∈ H ∗ [g]; then there must exist an element

[h] ∈ H for which [f ] = [h ∗ g], where h = p ◦ h̃ for some loop h̃ in E based

at e0. Hence h̃ ∗ g̃ is defined, and provides a lifting of h ∗ g. As [f ] = [g ∗ h],

the paths f̃ and h̃ ∗ g̃ must end at the same point in E, therefore so must f̃
and g̃. This implies φ([f ]) = φ([g]).

To prove the other implication, note again that φ([f ]) = φ([g]) means

exactly that the paths f̃ and g̃ have the same endpoint. Consequently, the

concatenation f̃ ∗ g̃−1 is defined, and gives a loop h̃ in E based at e0 But

then [h̃ ∗ g̃] = [f̃ ].

If F̃ is a homotopy of paths in E between h̃∗ g̃ and f̃ , then the composition

p ◦ F̃ is a homotopy of paths in B between h ∗ g and f with h = p ◦ h̃.
If E is path-connected, then φ is surjective, but then so is Φ.

(3) The function Φ is injective provided φ([f ]) = φ([g]) and [f ] = H ∗ [g] are
equivalent statements. Apply this observation in the case when g is the
constant loop:

φ([f ]) = Ce0 if and only if [f ] ∈ H .
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The first of these two statements is equivalent to the claim that the lift of f
to E starting at e0 ends there as well.

�

Remark 9.25 (The monodromy representation associated to a covering map). Let
p : E → B be a covering map, b0 ∈ B fixed, choose [f ] ∈ π1(B, b0). Then for every
e ∈ π−1(b0) there is a unique endpoint φe([f ]) attached to e (defined as the endpoint
of the unique lift of f to E starting at e. For arbitrary elements e, e′ ∈ p−1(b), we
have

e = e′ if and only if φe([f ]) = φe′([f ]) .

by the uniqueness of lifts of paths applied to the supposed common endpoint of f
and f−1.

This way, [f ] induces a permutation σf of π−1(b0) by

e 7→ φe([f ]) .

Claim. With notation as above, if p−1(b0) has finitely many, say d elements, then

ρ : π1(B, b0) −→ Sym(p−1(b0)) = Sd

[f ] 7→ σf

If E is connected, then ρ(π1(B, b0)) is a transitive subgroup of Sd, that is, for
every two permutations e1, e2 ∈ p−1(b0) there exists an element σ ∈ im ρ for which
σ(e1) = e2.

For more information see [4, Chapter III., Section 4].

References

[1] [Bredon] Glen Bredon: Topology and Geometry
[2] [Conrad] Brian Conrad: Unpublished notes for a differential geometry course.
[3] [Hatcher] Allen Hatcher: Algebraic Topology
[4] [Miranda] Rick Miranda: Algebraic Curves and Riemann Surfaces.
[5] [Munkres] Munkres: Topology
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