TOPOLOGY A (TOPA) / ALEX KÜRONYA / FALL 2009

REVIEW PROBLEMS

Consider the following topological spaces.

- (1) X arbitrary set, $\tau = \{\emptyset, X\}$ (2) X arbitrary set, $\tau = 2^X$
- (3) X arbitrary set, $\tau = \{ U \subseteq X \mid X \setminus U \text{ is finite } \} \cup \{ \emptyset \}$
- (4) X arbitrary set, $\tau = \{ U \subseteq X \mid X \setminus U \text{ is countable } \} \cup \{ \emptyset \}$
- (5) $X = \mathbb{R}, \tau =$ the topology generated by the intervals [x, y) and (x, y] for all $x, y \in \mathbb{R}$
- (6) $X = [0,1], \tau = \text{the topology whose closed subsets are } \left\{ [0,\frac{1}{n}] \mid n \in \mathbb{N}^{>0} \right\} \cup \left\{ \{0\} \} \cup \{\emptyset\}$
- (7) $X = \mathbb{N}, \tau = \{[n, \infty) \mid n \in \mathbb{N}\} \cup \{\emptyset\}$
- (8) $X = \mathbb{N}, \tau =$ the topology whose closed subsets are $\{[n, \infty) \mid n \in \mathbb{N}\} \cup \{\emptyset\}$
- (9) $X = \mathbb{R}, \tau =$ the classical topology
- (10) $X = \mathbb{Q}, \tau =$ the classical topology
- (11) $X = [0, 1], \tau =$ the classical topology
- (12) $X = (0, 1), \tau =$ the classical topology
- (13) $X = (X_1, \tau_1) \times (X_2, \tau_2)$ where X_1 and X_2 are arbitrary sets, and both τ_1 and τ_2 have the cofinite topology.
- (14) $[0,1] \times (0,1), \tau =$ the product of the classical topology on both factors.
- (15) $X = \mathbb{R}^2 \setminus \{(0,0)\}, \tau =$ the classical topology.
- 1. In each case, check whether the given collection of subsets is indeed a topology.
- 2. For each topological space (X, τ) on the list decide, decide whether it is
 - (1) connected
 - (2) path-connected
 - (3) totally disconnected
 - (4) discrete
 - (5) compact
 - (6) irreducible
 - (7) locally connected
- 3. For every topological space above, find the largest *i* for which (X, τ) is T_i .