Practice Session \# 6

1. Describe the following tensor products.
(1) $\mathbb{Z} /(n) \otimes_{\mathbb{Z}} \mathbb{Z} /(m)$, where $m, n \in \mathbb{Z}$.
(2) $k\left[x_{1}, \ldots, x_{n}\right] \otimes_{k} k\left[y_{1}, \ldots, y_{m}\right]$ for an arbitrary field k.
(3) $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$.
2. Let V, W be finite-dimensional vector spaces over a field k. Show that there is a natural map

$$
V^{*} \otimes_{k} W^{*} \longrightarrow\left(V \otimes_{k} W\right)^{*}
$$

establishing an isomorphism between the two sides.
3. Consider the real vector space $V=\mathbb{R}^{2}$ with the standard basis $e_{1}=(1,0)$ and $e_{2}=(0,1)$. Let $\phi, \psi: V \rightarrow V$ be linear maps given by the matrices

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right), B=\left(\begin{array}{ll}
-4 & -3 \\
-2 & -1
\end{array}\right)
$$

with respect to the ordered basis e_{1}, e_{2}. Compute the matrices of the linear maps $\phi \otimes \psi$ and $\psi \otimes \phi$ with respect to the ordered basis $e_{1} \otimes e_{1}, e_{1} \otimes e_{2}, e_{2} \otimes e_{1}, e_{2} \otimes e_{2}$.
4. Let $f: X \rightarrow Y$ be a morphism of affine varietes, $f^{*}: k[Y] \rightarrow k[X]$ the induced k-algebra homomorphism. Show that f^{*} is surjective if and only if f is injective.
5. Let $f: X \rightarrow Y$ be a regular map,

$$
\Gamma_{f} \stackrel{\text { def }}{=}\{(x, f(x) \mid x \in X\}
$$

the graph of f. Prove that $\Gamma_{f} \subseteq X \times Y$ is a closed subvariety, and $\Gamma_{f} \simeq X$.
6. For affine varieties X and Y, the regular map $p r_{Y}: X \times Y \rightarrow Y, p r_{Y}(x, y) \stackrel{\text { def }}{=} y$ is called projection to Y.
(1) If $Z \subseteq Y$ is a closed subset, $f: X \rightarrow Y$ a regular map, then show that

$$
f(Z)=p r_{Y}\left(\Gamma_{f} \cap Z\right)
$$

(2) Prove that any regular map $f: X \rightarrow Y$ between affine algebraic sets factors as the composition of an inclusion and a projection. More precisely, show that for f as above, there exists a regular map $g: X \rightarrow X \times Y$ mapping X isomorphically onto a closed subset of $X \times Y$, and $f=p r_{Y} \circ g$.
7. Check that if $U \subseteq X$ is an open subset of a prevariety, then $\left(U,\left.\mathcal{O}_{X}\right|_{U}\right)$ is a prevariety as well.

Homework

8. Let V be a finite-dimensional vector space $1 \leq i, j, k, l \leq n$ over an arbitrary field k, v_{1}, \ldots, v_{n} a basis of V. Show that $\sum_{1 \leq i, j \leq n} \alpha_{i j} v_{i} \otimes v_{j} \in V \otimes V$ is an elementary tensor if and only if $\alpha_{i j} \alpha_{k l}=\alpha_{i l} \alpha_{k j}$ for every combination of indices $1 \leq i, j, k, l \leq n$.
9. Show that the underlying topological space of a prevariety is noetherian.
10. Let $X, Y \subseteq \mathbb{A}^{n}$ be algebraic sets, and consider $\Delta \stackrel{\text { def }}{=} V\left(x_{1}-y_{1}, \ldots, x_{n}-y_{n}\right) \subseteq \mathbb{A}^{2 n}$ and $X \times Y \subseteq \mathbb{A}^{2 n}$. Prove that the regular map

$$
\phi: X \cap Y \rightarrow(X \times Y) \cap \Delta, x \mapsto(x, x)
$$

is an isomorphism.
11. Consider the following collection of algebraic sets (all defined over the complex numbers). Which one of them are isomorphic? Justify your answer.
(1) $V\left(X^{2}+Y^{2}-1\right)$
(2) \mathbb{A}^{1}
(3) \mathbb{A}^{2}
(4) $V(X Y) \subseteq \mathbb{A}^{2}$
(5) $V\left(X^{2}-Y^{3}\right)$
(6) $V\left(Y^{2}-X^{3}-X^{2}\right) \subseteq \mathbb{A}^{2}$
(7) $V\left(Y-X^{2}, Z-X^{3}\right) \subseteq \mathbb{A}^{3}$
12. Is it true that the image of an algebraic set under a regular map is again an algebraic set? How about the preimage?
13. The aim of this exercise is to define the field of rational functions on an arbitrary prevariety. Let X be a prevariety, (U, f) an ordered pair with $U \subseteq X$ open, and $f \in \mathcal{O}_{X}(U)$. Two such pairs (U, f) and $\left(U^{\prime}, f^{\prime}\right)$ will be called equivalent (and denoted $(U, f) \sim\left(U^{\prime}, f^{\prime}\right)$), if there exists a non-empty open subset $V \subseteq U \cap U^{\prime}$ of X for which

$$
\left.f\right|_{U}=\left.f^{\prime}\right|_{U^{\prime}}
$$

(1) Verify that \sim is indeed an equivalence relation.
(2) Explain with the difference from the equivalence relation we used to define the local ring of X at a point.
(3) Show that the equivalence classes of \sim form a field. How can you define the field operations? This field is called the field of rational functions of X or the function field of X. It is denoted by $k(X)$.
(4) If X is an affine variety, then check that our new definition coincides with the old one.
(5) If $U \subseteq X$ is a non-empty open set, then $k(U)=k(X)$.
14. Let $Y \subseteq X$ be an irreducible closed subset of a prevariety $\left(X, \mathcal{O}_{X}\right)$. For $U \subseteq X$ we set $\mathcal{O}_{Y}(U)$ to be the ring of k-valued functions f on U such that for every point $x \in Y$ there exists an open neighbourhood V of x in X and an element $f \in \mathcal{O}_{X}(V)$ for which

$$
\left.F\right|_{U}=f .
$$

Prove that \mathcal{O}_{Y} with the pointwise restriction maps is a sheaf, and $\left(Y, \mathcal{O}_{Y}\right)$ is a prevariety.

