Practice Session \# 5

1. For an arbitrary ring $R, R[[x]]$ denotes the ring of formal power series with coefficients in R. Verify the following.
(1) $f=\sum_{k=0}^{\infty} a_{k} x^{k}$ is a unit if and only if $a_{0} \in R$ is a unit.
(2) If f is nilpotent then a_{k} is nilpotent for all $k \geq 0$.
(3) ${ }^{* *}$ If a_{k} is nilpotent for all $k \geq 0$, then f is nilpotent.
2. Let k be an arbitrary field, and let $k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ be the ring of formal power series in n variables and coefficients in k.
(1) For $f \in\left(x_{1}, \ldots, x_{n}\right)$ verify that the formal expansion

$$
\frac{1}{1+f}=1-f+f^{2}-f^{2}+\ldots
$$

gives a well-defined element of $k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$.
(2) Show that $k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ is a local ring with $\left(x_{1}, \ldots, x_{n}\right)$ as its unique maximal ideal.
3. If $k=\mathbb{R}$ or \mathbb{C}, then one can define the ring $k\left\{x_{1}, \ldots, x_{n}\right\}$ of convergent power series with coefficients in k. Verify that $k\left\{x_{1}, \ldots, x_{n}\right\}$ is a local ring with $\left(x_{1}, \ldots, x_{n}\right)$ as its unique maximal ideal.
4. Let \mathcal{F} be a sheaf of rings on the topological space $X, x \in X$. Check that the stalk \mathcal{F}_{x} is indeed a ring.
5. Let $\phi: \mathcal{F} \rightarrow \mathcal{G}$ be an isomorphism of sheaves of rings on $X, x \in X$. Verify that the induced morphism $\phi_{x}: \mathcal{F}_{x} \rightarrow \mathcal{G}_{x}$ is again an isomorphism.
6. Let $\phi: \mathcal{F} \rightarrow \mathcal{G}$ be a morphism of sheaves. We define that presheaf kernel and the presheaf image of ϕ by $U \mapsto \operatorname{ker} \phi(U)$, and $U \mapsto \operatorname{im} \phi(U)$, respectively. Show that the presheaf kernel of ϕ is a sheaf, but the presheaf image is only a presheaf.

Homework

7. Let $r \in R$ be a nilpotent element. Prove that $r+1 \in R$ is a unit. Generalizing this, show that the sum of a nilpotent element and a unit is a unit.
8. Consider an arbitrary ring R, and the ring of polynomials $R[x]$ with coefficients in R, let

$$
f=a_{n} x_{n}+\ldots a_{1} x+a_{0} \in R[x] .
$$

Verify the following claims.
(1) f is a unit in $R[x]$ if and only if $a_{0} \in R^{\times}$and a_{i} is nilpotent for $i \geq 1$.
(2) f is nilpotent precisely if all of its coefficients are nilpotent.
(3) f is a zero-divisor if and only if there exists a non-zero element $r \in R$ such that $r f=0$.
9. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f(x)= \begin{cases}e^{-\frac{1}{x^{2}}} & \text { ha } x \geq 0 \\ 0 & \text { ha } x \leq 0\end{cases}
$$

Show that $f \in \mathcal{C}^{\infty}(\mathbb{R})$, and compute its Taylor series at $x=0$. Determine the set of points in which the Taylor series converges to f.
10. For a morphism of sheaves $\phi: \mathcal{F} \rightarrow G$ and a point $x \in X$, prove that

$$
\operatorname{ker}\left(\phi_{x}\right)=(\operatorname{ker} \phi)_{x} .
$$

11. Let X be a variety over an algebraically closed field k, Y a closed subset of X. We define $\mathcal{I}_{Y / X}$ the sheaf of ideals of Y in X as follows. For $U \subseteq X$ open, set

$$
\mathcal{I}_{Y / X}(U) \stackrel{\text { def }}{=} \text { regular functions on } U \text {, which vanish identically on } U \cap Y .
$$

Prove that $\mathcal{I}_{X / Y}$ is indeed a sheaf, and it is a subsheaf of \mathcal{O}_{X}.
Definition. Let R be an integral domain, M an R-module, $x \in M$. We call x a torsion element of M, if there exists $r \neq 0$ in R for which $r x=0$. The set of torsion elements of M is called the torsion submodule of M, and denoted by $T(M)$. If $T(M)=0$, then M is torsion-free.
12. Prove the following claims about torsion submodules.
(1) $T(M)$ is indeed a submodule of M.
(2) The quotient module $M / T(M)$ is torsion-free.
(3) If $f: M_{1} \rightarrow M_{2}$ is an R-module homomorphism, then $f\left(T\left(M_{1}\right)\right) \subseteq T\left(M_{2}\right)$.
(4) If the sequence

$$
0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M^{\prime \prime} \longrightarrow 0
$$

is exact, then so is

$$
0 \longrightarrow T\left(M^{\prime}\right) \longrightarrow T(M) \longrightarrow T\left(M^{\prime \prime}\right) \longrightarrow 0 .
$$

(5) If $S \subseteq R$ is a multiplicative subset, then $S^{-1}(T(M))=T\left(S^{-1}(M)\right)$.
(6) Being torsion-free is a local property (more precisely, show that M is torsion-free \Leftrightarrow M_{P} is torsion-free for all prime ideals $P \subseteq R \Leftrightarrow M_{\mathfrak{m}}$ is torsion-free for all maximal ideals $\mathfrak{m} \subseteq R$).

