Algebraic combinatorics / Fall 2009 / Alex Küronya

Practice Session \# 3.

1. Let $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}\right)$ be a partition, m a positive integer. The generalized elementary/complete symmetric polynomials in m variables are defined as follows.

$$
\begin{aligned}
e_{\lambda}(X) & \stackrel{\text { def }}{=} e_{\lambda_{1}}(X) \cdots \cdots e_{\lambda_{k}}(X), \\
h_{\lambda}(X) & \stackrel{\text { def }}{=} h_{\lambda_{1}}(X) \cdots \cdots h_{\lambda_{k}}(X) .
\end{aligned}
$$

Check that e_{λ} and h_{λ} are indeed symmetric polynomials. Show that the set

$$
\left\{e_{\lambda}(X) \mid \lambda \text { is a partition }\right\}
$$

is a system of free generators of the ring of symmetric polynomials in m variables over R.
2. Verify the following identities in the polynomial ring $R\left[X_{1}, \ldots, X_{m}, T\right]$.

$$
\begin{aligned}
& \prod_{i=1}^{m} \frac{1}{1-X_{i} T}=\sum_{n \geq 0} h_{n}(X) T^{n} \\
& \sum_{k=0}^{n}(-1)^{k} e_{k}(X) h_{n-k}(X)=0 .
\end{aligned}
$$

Using these results show that

$$
R\left[h_{1}(X), \ldots, h_{n}(X)\right]=R\left[e_{1}(X), \ldots, e_{n}(X)\right] .
$$

Prove that the complete symmetric polynomials generate the ring of symmetric polynomials over R.
3. Let $p_{n}\left(X_{1}, \ldots, X_{m}\right) \stackrel{\text { def }}{=} X_{1}^{n}+\cdots+X_{m}^{n}$ be the $n^{\text {th }}$ power sum. Check the relations below.

$$
\begin{aligned}
n e_{n}(X)-p_{1}(X) e_{n-1}(X)+p_{2}(X) e_{n-2}(X)-\cdots+(-1)^{n} p_{n}(X) & =0 \\
n h_{n}(X)-p_{1}(X) h_{n-1}(X)-p_{2}(X) h_{n-2}(X)-\cdots-p_{n}(X) & =0
\end{aligned}
$$

Definition. Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a representation of the finite group G. A subspace $W \subseteq V$ is invariant, if

$$
\rho(g)(W) \subseteq W
$$

holds for every $g \in G$. The representation ρ is called irreducible, if V has no non-trivial invariant subspaces.
4. Show that all irreducible representations of an abelian group G are one-dimensional.
5. Verify the following identities for polynomials in three variables.

$$
e_{2}(X)=\left|\begin{array}{ll}
h_{1}(X) & h_{2}(X) \\
h_{0}(X) & h_{1}(X)
\end{array}\right|, e_{3}(X)=\left|\begin{array}{lll}
h_{1}(X) & h_{2}(X) & h_{3}(X) \\
h_{0}(X) & h_{1}(X) & h_{2}(X) \\
0 & h_{0}(X) & h_{1}(X)
\end{array}\right|
$$

Definition. The content $\mu=\left(\mu_{1}, \mu_{2}, \ldots\right)$ of a Young tableau T is the sequence of natural numbers for which the number of 1's in T is μ_{1}, the number of 2's in T is μ_{2}, and so on.

If λ, μ are partitions, then the Kostka number $K_{\lambda, \mu}$ is the number of Young tableaux T with shape λ and content μ.
6. Let λ, μ be partitions. Prove the following statements.
(1) If $|\lambda| \neq|\mu|$ then $K_{\lambda, \mu}=0$.
(2) $K_{\lambda, \lambda}=1$.
(3) If $\mu \not \leq \lambda$ with respect to the lexicographic order ${ }^{1}$, then $K_{\lambda, \mu}=0$.
(4) $K_{\lambda, \mu} \neq 0$ exactly if

$$
\mu_{1}+\cdots+\mu_{i} \leq \lambda_{1}+\cdots+\lambda_{i}
$$

holds for every $i \geq 1$.
(5) Calculate $K_{\lambda, \mu}$ when $\lambda=(3,2)$ and $\mu=(1,1,1,1,1)$.

Homework

7. Prove the relation below for polynomials in three variables.

$$
s_{(2,1)(X)}=\left|\begin{array}{ll}
h_{2}(X) & h_{3}(X) \\
h_{1}(X) & h_{1}(X)
\end{array}\right|
$$

8. The tableau below is the result of a row insertion. If the new box is the circled one, what was the original tableau and the element we inserted?

1	2	2	3	5
2	3	6	6	
4	4	7	7	
5	6			

9. ${ }^{* *}$ Verify the Jacobi-Trudi formula for an arbitrary partition $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{k}\right)$.

$$
s_{\lambda}\left(X_{1}, \ldots, X_{m}\right)=\operatorname{det}\left(h_{\lambda_{i}+j-i}(X)\right)_{1 \leq i, j \leq k} .
$$

10. ${ }^{* *}$ Prove the following form of the Jacobi-Trudi identity (this was the original definition of Schur polynomials).

$$
s_{\lambda}\left(x_{1}, \ldots, x_{m}\right)=\frac{\operatorname{det}\left(X_{j}^{\lambda_{i}+m-j}\right)_{1 \leq i, j \leq m}}{\operatorname{det}\left(X_{j}^{m-i}\right)_{1 \leq i, j \leq m}}
$$

[^0]
[^0]: ${ }^{1} \mu \leq \lambda$ in the lexicographic order if $\mu_{i}<\lambda_{i}$ for the first index where $\mu_{i} \neq \lambda_{i}$.

