Algebraic combinatorics / Fall 2009 / Alex Küronya

PROBLEM SESSION #2

- 1. Determine the Schur polynomials in three variables belonging to the partitions (2, 1), (2, 1, 1).
- 2. Add the element 2 to the Young tableau below using row insertion.

1	2	2	3	5
2	3	6	6	
4	4	7	7	
5	6			

3. Prove that whenever we are given a Young tableau with the location of the new box, we can recover the tableau before the row-insertion and the value we had added.

4. Multiply the following two tableaux via iterated row insertion.

5. Let G be a finite group, V a finite-dimensional vector space (over an arbitrary field), $\rho: G \to GL(V)$ a representation of G. We define the dual representation of ρ via

$$\rho^*: G \to GL(V^*) ,$$

$$\rho^*(g) = \rho(g^{-1})^T .$$

Verify that ρ^* is indeed a representation of G. Furthermore, if $\langle f^*, e \rangle = f^*(e)$ with respect to some basis, then

$$\langle \rho^*(g)(v^*), \rho(g)(v) \rangle = \langle v^*, v \rangle$$
.

6. Prove that the functions below are representations of the symmetric group S_3 .

- (1) $\alpha: S_3 \to GL(\mathbb{C}), \ \alpha(g)(v) \stackrel{\text{def}}{=} \operatorname{sgn}(g)v.$ (2) If x_1, x_2, x_3 are coordinates on \mathbb{C}^3 , then

$$\beta(g)((x_1, x_2, x_3)) = (x_{g^{-1}(1)}, x_{g^{-1}(2)}, x_{g^{-1}(3)}) .$$

In the latter case find the maximal invariant subspace. Does \mathbb{C}^3 have a subspace with the property that β restricted to that subspace is irreducible?

Homework

7. Add the element 3 to the tableau via row insertion.

1	1	1	1	5
2	2	6	6	
4	5	7	7	
5	8			

8. Calculate the Schur polynomial in four variables associated to the partition (2, 2).

9. (Schur lemma) Let V,W be irreducible representations of the finite group $G,\,\phi:V\to W$ a $G\text{-module homomorphism. Then$

- (1) Either $\phi = 0$ or ϕ is an isomorphism;
- (2) if V = W and $\phi \neq 0$, then $\phi = \lambda I_V$ for some $\lambda \in \mathbb{C}$.
- 10. Compute the product of the two tableaux using iterated row insertion.

