Algebraic combinatorics / Fall 2009 / Alex Küronya
 Problem Session \#2

1. Determine the Schur polynomials in three variables belonging to the partitions $(2,1),(2,1,1)$.
2. Add the element 2 to the Young tableau below using row insertion.

1	2	2	3	5
2	3	6	6	
4	4	7	7	
5	6			

3. Prove that whenever we are given a Young tableau with the location of the new box, we can recover the tableau before the row-insertion and the value we had added.
4. Multiply the following two tableaux via iterated row insertion.

1	2	2	3
3	4		
5	5		

1	3
2	

5. Let G be a finite group, V a finite-dimensional vector space (over an arbitrary field), $\rho: G \rightarrow G L(V)$ a representation of G. We define the dual representation of ρ via

$$
\begin{aligned}
\rho^{*}: G & \rightarrow G L\left(V^{*}\right), \\
\rho^{*}(g) & =\rho\left(g^{-1}\right)^{T} .
\end{aligned}
$$

Verify that ρ^{*} is indeed a representation of G. Furthermore, if $\left\langle f^{*}, e\right\rangle=f^{*}(e)$ with respect to some basis, then

$$
\left\langle\rho^{*}(g)\left(v^{*}\right), \rho(g)(v)\right\rangle=\left\langle v^{*}, v\right\rangle .
$$

6. Prove that the functions below are representations of the symmetric group S_{3}.
(1) $\alpha: S_{3} \rightarrow G L(\mathbb{C}), \alpha(g)(v) \stackrel{\text { def }}{=} \operatorname{sgn}(g) v$.
(2) If x_{1}, x_{2}, x_{3} are coordinates on \mathbb{C}^{3}, then

$$
\beta(g)\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(x_{g^{-1}(1)}, x_{g^{-1}(2)}, x_{g^{-1}(3)}\right) .
$$

In the latter case find the maximal invariant subspace. Does \mathbb{C}^{3} have a subspace with the property that β restricted to that subspace is irreducible?

Homework

7. Add the element 3 to the tableau via row insertion.

1	1	1	1	5
2	2	6	6	
4	5	7	7	
5	8			

8. Calculate the Schur polynomial in four variables associated to the partition (2,2).
9. (Schur lemma) Let V, W be irreducible representations of the finite group $G, \phi: V \rightarrow W$ a G-module homomorphism. Then
(1) Either $\phi=0$ or ϕ is an isomorphism;
(2) if $V=W$ and $\phi \neq 0$, then $\phi=\lambda I_{V}$ for some $\lambda \in \mathbb{C}$.
10. Compute the product of the two tableaux using iterated row insertion.

1	5	5	5
3	6		
7	8		

1	2
5	

