Algebraic combinatorics / Fall 2009 / Küronya Alex

Problem Session \#1

Let R be an arbitrary ring (commutative with an identity). We call a polynomial $f \in R[X]$ formally of degree n, if $\operatorname{deg} f \leq n$. The resultant of the polynomials f and g of formal degree m and n, respectively, is defined as follows: if

$$
f(X)=a_{m} X^{m}+\cdots+a_{1} X+a_{0} \text { és } g(X)=b_{n} X^{n}+\cdots+b_{1} X+b_{0},
$$

then

$$
\operatorname{res}(f, g) \xlongequal{\text { def }}\left|\begin{array}{cccccccccc}
a_{m} & a_{m-1} & \cdot & \cdot & a_{0} & & & & \\
& a_{m} & a_{m-1} & \cdot & \cdot & a_{0} & & & \\
& & \ldots & \ldots & \ldots & \ldots & \ldots & & \\
& & & & a_{m} & a_{m-1} & \cdot & \cdot & a_{0} & \\
b_{n} & b_{n-1} & \cdot & \cdot & b_{0} & a_{m} & a_{m-1} & \cdot & \cdot & a_{0} \\
& b_{n} & b_{n-1} & \cdot & \cdot & b_{0} & & & & \\
& & \cdots & \cdots & \ldots & \ldots & \ldots & & \\
& & & & b_{n} & b_{n-1} & \cdot & \cdot & b_{0} & \\
& & & & & b_{n} & b_{n-1} & \cdot & \cdot & b_{0}
\end{array}\right| .
$$

All elements which are not named or represented by a dot are considered to be zero.
If $f \in R[X]$ is a non-constant monic polynomial of degree n, then the discriminant of f is given by the following formula:

$$
\Delta_{f} \stackrel{\text { def }}{=}(-1)^{n(n-1) / 2} \cdot \operatorname{res}\left(f, f^{\prime}\right),
$$

where f^{\prime} denotes the derivative of f.

1. Verify the following properties of resultants.
(1) If $r, s \in R$ then $\operatorname{res}(r f, s g)=r^{n} s^{m} \cdot \operatorname{res}(f, g)$.
(2) $\operatorname{res}(g, f)=(-1)^{m n} \operatorname{res}(f, g)$.
(3) Let $\phi: R \rightarrow S$ be a ring homomorphism; we will denote by $\phi \circ f$ and $\phi \circ g$ the images of f and g in $S[X]$. Then

$$
\operatorname{res}(\phi \circ f, \phi \circ g)=\phi \circ \operatorname{res}(f, g) .
$$

2. Prove the following classical results on discriminants of polynomials.
(1) If $f=X^{2}+p X+q$ then $\Delta_{f}=p^{2}-4 q$.
(2) If $f=X^{3}+p X^{2}+q X+r$ then $\Delta_{f}=p^{2} q^{2}+18 p q r-4 p^{3} r-4 q^{3}-27 r^{2}$.
(3) If $f=X^{m}+a X+b$ and $m \geq 2$ then $\Delta_{f}=(-1)^{m(m-1) / 2}\left((1-m)^{m-1} a^{m}+m^{m} b^{m-1}\right)$.
3. Write the symmetric polynomial $X_{1}^{3}+X_{2}^{3}+X_{3}^{3} \in R\left[X_{1}, X_{2}, X_{3}\right]$ as a polynomial in the elementary symmetric polynomials in three variables.
4. Consider the polynomial ring $R[X]$, and let

$$
h=a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0} \in R[X]
$$

be such that $a_{n} \in R^{\times}$.
(i) Think it through whether one has division with remainder for h in $R[X]$.
(ii) Show that every $f \in R[X]$ can be written uniquely in the form

$$
f=f_{n-1} X^{n-1}+\cdots+f_{1} X+f_{0}
$$

with $f_{i} \in R[h]$. Furthermore, every f_{i} has a unique expression as

$$
f_{i}=\sum_{j \geq 0} a_{i j} h^{j}, a_{i j} \in R .
$$

(iii) Prove that h is algebraically independent over R, and $\left\{1, X, X^{2}, \ldots, X^{n-1}\right\}$ is a free generating system of $R[X]$ as an $R[h]$-module.

Homework

5. Compute the following resultants (where m and n denote the formal degree of f and g, respectively).
(1) $m=1, g \in R$.
(2) $m=n=1, f=a_{1} X+a_{0}, g=b_{1} X+b_{0}$.
(3) $f=a_{2} X^{2}+a_{1} X+a_{0}, g=b_{2} X^{2}+b_{1} X+b_{0}$.
6. Verify that whenever $f, g \in R[X]$ are monic polynomials, we always have

$$
\Delta_{f g}=\Delta_{f} \cdot \Delta_{g} \cdot \operatorname{res}(f, g)^{2}
$$

7. Decide whether the following claim holds: if $f \in R[X]$ is a monic polynomial, $c \in R$, then

$$
\Delta_{f}=\Delta_{f(X+c)}
$$

8. Let M be a free R-module (that is, assume that M has a free system of generators over R). Prove that any free generating system of M over R has the same cardinality. This common cardinality is called the rank of M over R.
9. Let k be a field, $\phi \in k\left(X_{1}, \ldots, X_{n}\right)$ a symmetric rational function. Show that $\phi \in k\left(s_{1}, \ldots, s_{n}\right)$, that is, that ϕ can be expressed as a rational function of the elementary symmetric polynomials.
10. Let $R \subseteq S, S \subseteq T$ be ring extensions, $\mathcal{G}_{1} \subseteq S$ a free generating system of S over $R, G_{2} \subseteq T$ a free system of generators of T over S. Show that

$$
\mathcal{G}_{1} \mathcal{G}_{2} \stackrel{\text { def }}{=}\left\{g_{1} g_{2} \mid g_{1} \in \mathcal{G}_{1}, g_{2} \in \mathcal{G}_{2}\right\}
$$

is a free generating system of T over R.
11. For a non-zero polynomial $f \in k[X], \alpha \in k$ is a multiple zero of f exactly if $f^{\prime}(\alpha)=0$.

