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Abstract

Modeling of biochemical phenomena is based on formal reaction kinetics. This requires the translation of the original reaction
systems into sets of differential equations expressing the effects of the various reaction steps. The temporal behavior of the
system is obtained by solving the differential equations. We present the main concepts on which the formal approach of these
two problems is based and we show how the amount of work needed to treat them can be significantly reduced by using
a mathematical program package (Mathematica). Symbolic and numerical calculations can be performed with the programs
presented and graphic presentations of the behavior of the system be obtained. The basic ideas are illustrated with three examples
taken from the area of signal transduction and ion signaling.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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. Introduction

The theoretical study of reaction kinetics has led to
he development of powerful concepts and methods that

� A Mathematicanotebook containing all the programs pre-
ented in Tables 2–4 and their extended and deconstructed ver-
ions, with more examples and more detailed comments is avail-
ble at the web sitewww.math.bme.hu/∼jtoth. In caseMathematica
.0 or higher is not available, the programMathReaderfor read-

ng Mathematicanotebooks can be downloaded from the web site
ww.wri.com/MathSource.
∗ Corresponding author. Tel.: +33 1 30 83 33 55;

ax: +33 1 30 83 31 19.
E-mail address:rospars@versailles.inra.fr (J.-P. Rospars).

can be of much help for investigating dynamical mo
of biochemical systems. Most problems in bioch
istry can be solved by going through routine steps
are almost independent of the specific system inv
gated. This situation prompted us to try and fill the
between theory and practical needs. The aims of
paper are to present in a concise way the routine
involved and to propose practical solutions base
present day mathematical program packages. Alth
the routine steps may involve hard or complicated
alytical calculations, both exact and approximate,
also extensive numerical investigations, these pack
can help shorten the time needed to do the calcula
and to improve their exactness.

303-2647/$ – see front matter © 2004 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.biosystems.2004.09.013
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For introducing some of these possibilities we have
selected three examples of increasing complexity taken
from the field of receptor-mediated cell responses. Ex-
amples I and II, based partly on our own practice (e.g.
Lánsḱy et al., 2001; Rospars et al., 2000, 2003), are
about the first two steps of cell transduction and involve
only one or two reaction steps. The third one, about cal-
cium oscillations, involves seven reaction steps with
feedback relationships (Meyer and Stryer, 1988). Be-
sides describing chemical reactions these examples in-
volve translocations (Example III), and illustrate sev-
eral properties of chemical dynamic systems, including
the tendency to stationary (Examples I and II) as well as
oscillatory (Example III) behaviors. More technical as-
pects are also presented, such as the description of reac-
tions that, contrary to most steps in all examples, do not
obey the mass-action law (some steps in Example III),
as well as the solution of normal and stiff differential
equations, the numerical handling of the latter present-
ing difficulties. Basic notions of reaction kinetics such
as e.g. stationary point, steady state, equilibrium, stable
equilibrium, detailed balanced equilibrium, or molecu-
larity and order of a reaction step, or solution, trajectory
and selectivity curves of a model, are defined. We show
how the usual questions addressed when studying such
systems can be solved with relatively short programs
which, in the present paper, are written inMathematica.

These examples and programs are intended to be
applicable to as wide a range of systems as possible.
They are easy to generalize. In neurochemistry, for ex-
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negativity, monotonicity, oscillations, coexistence of
chemical species, etc.). This third step is described in
Section4. Details on the programming aspects with
extentions for the qualitative and stochastic studies of
reactions can be found inTóth (2002).

2. Examples of neurochemical reactions

Three example systems taken from the field of cell
signal transduction are presented.

2.1. Example I

The first step in cell signal transduction consists in
the binding of a ligand L, e.g. photon in photoreceptor
cells, odorant molecule in olfactory receptor cells or
neurotransmitter in interneurons, to a receptor protein
borne by the sensory or postsynaptic membrane. It can
be modeled by the reaction

L + R
k−→ CLR, (1)

where CLR stands for the ligand–receptor complex.
This reaction expresses the fact that one “molecule” of
the ligand L binds one molecule of the receptor R and
an activated form CLR of the receptor is formed. The
positive real numberk is the reaction rate coefficient
which, in this case, is a constant that characterizes the
v
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mple, the tools presented can be applied to des
he kinetics of systems as diverse as ion channels
ge dependent or ligand gated, seeHille, 1992), trans-
itter release, or gating of postsynaptic receptors
estexhe et al., 1994).
There are three main logicalsteps of investigation.

i) The first step consists in establishing a set of ch
cal reactions which summarizes the knowledge o
iochemical system studied, including the spee

ransition along each arrow (reaction or translocati
hree examples are presented in Section2 which are
nalyzed in the following sections. (ii) The second s
onsists in translating the system of reactions into
quations, i.e. as a set of differential equations,

or each time-dependent quantity in the system. Th
reated in Section3. (iii) Finally these equations mu
e solved to reveal the time evolution of the system

o study the solutions from other points of view (n
elocity of the reaction (see Section3.2.1). Reaction
1) assumes that the reaction step isirreversible, i.e.
here is no way (at least in the model) for the activa
eceptor to return to its original state. As a consequ
uch a model describes only the initial response o
ystem (Lamb and Pugh, 1992a,b). A reversible reac
ion might be also considered as shown below.

.2. Example II

The next step of the signal transduction cascade
erve as our second example. It consists in the int
ion within the cell membrane of the activated comp
LR with G-proteins, denoted by G, and results in
ctivation of the G-protein as G* according to the re
ction scheme

+ CLR
k1−→ CGLR

k2−→ G∗ + CLR. (2a, b)
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A noteworthy feature of (2) is that CLR is regained
at the end of the process, which means that activation
according to(1) can lead to the production of several
activated proteins G*. Model (2) consists of two reac-
tion steps. In the first step (2a) one molecule (or one
active site) of the G-protein binds one molecule of the
activated receptor CLR. The complex produced is disso-
ciated in the second step (2b) into the activated receptor
and the activated G-protein, the latter taking part in the
subsequent steps of the cascade. It can be assumed that
the concentration of CLR is constant in this reaction.
This constancy implies that the stimulus is delivered as
a short impulse, that the number of receptors is much
larger than that of ligand L reaching the membrane and
that the lifetime of CLR is relatively long. In formal
kinetics CLR is said to be anexternal species.

It may also be worth considering variations of model
(2) where the first reaction is reversible:

G + CLR

k1
�
k−1

CGLR
k2−→ G∗ + CLR. (3)

or both reactions are reversible

G + CLR

k1
�
k−1

CGLR

k2
�
k−2

G∗ + CLR. (4)

The above models are essentially of the
Michaelis–Menten type (Keleti, 1986) with CLR
playing the role of the enzyme and G that of the sub-
strate. From a quantitative point of view a difference
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in which X stands for the cytosolic Ca2+, Y for the
Ca2+ in the endoplasmic reticulum (ER) and Z for
the inositol-1,4,5-trisphosphate (INP3), whereas A, B
and C stand for external species (see above) acting as
sources (or sinks) for X and Z. Thewr are functions
characterizing the rate of each reactionr; they gener-
alize the reaction rateconstants kr of Examples I and
II and will be formally introduced in Section3.2.2.

The reactions can be arranged in three groups. The
first group describes the exchanges of Ca2+ between
the ER and the cytosol: reaction (5a) represents the
flux of calcium out of the ER through channels in the
ER membrane, which is controlled by INP3, and (5b)
the ATP-dependent transport of calcium into the ER,
whereas (5c) summarizes the fact that the capacity of
the ER is limited. The second group introduces the
source (A) and sink (B) of Ca2+ with reaction (5d) de-
scribing the influx of calcium into the cell and (5e)
its uptake by mitochondria (sequestered calcium B).
The third group describes the triggering mechanism,
reaction (5f) representing the phospolipase-dependent
synthesis of INP3 from its precursor C (PIP2), and re-
action (5g) the destruction of INP3. Reaction (5f) is
controlled by vasopressin, an hormone acting as ligand
L on a receptor R (see Example I), presumably via the
activated G-protein G* of Example II, and the cytosolic
calcium level. The behavior of this system is more com-
plex than that of the two previous examples, not only
because it involves more reactions, but because more
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rises: in enzyme kinetics the usual assumption is
he number of enzyme molecules is relatively l
ere this is just the opposite. As in Example I
eaction rate coefficients are constants.

.3. Example III

As a third example we consider the mo
f receptor-stimulated calcium spiking proposed
eyer and Stryer (1988). It can be summarized in sev

eactions

+ Z
w1−→ X + Z, X

w2−→ Y, 2Y
w3−→ X + Y

(5a, b, c)

w4−→ X, X
w5−→ B (5d, e)

+ X
w6−→ X + Z, Z

w7−→ C, (5f, g)
f these reactions are interrelated, INP3 and cytoso
ic calcium acting as crosscoupled messengers. T
ouplings are taken into account through the funct
i as explained below.

. From chemical reactions to evolution
quations

.1. Formal chemical reactions

.1.1. Examples of formal reactions
A formal reaction is a standard translation of

ctual chemical reaction in which all chemical spe
ot considered as external appear on both sides o

ormula and are multiplied with coefficients 1 or 0
ording to their presence or absence in the actua
ction; coefficients greater than 1 can also occur
.g. reaction (5c), but rarely. These coefficients pla
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important role in the modeling. An introduction to the
topics can be found inPilling and Seakins (1997). A
more mathematical text with many biological applica-
tions is given inÉrdi and T́oth (1989).

3.1.1.1. Example I.The formal reaction correspond-
ing to reaction(1) is written:

1L + 1R+ 0CLR → 0L + 0R+ 1CLR (6)

The formal linear combination on the left side of the re-
action step is called thereactant complexand that on the
right side of the reaction step theproduct complex(the
meaning of “complex” here must not be confused with
that in “receptor–ligand complex”). The coefficients
standing in front of the chemical species are thestoi-
chiometric coefficients. The stoichiometric coefficient
of CLR in the reactant complex is zero because it is not
present on the left side of reaction(1), whereas it is 1 in
the product complex. The sum of the stoichiometric co-
efficients in the reactant complex is the (overall)molec-
ularity of the reaction. Because the molecularity of re-
action(1) is 2, it is said to be asecond orderreaction.

3.1.1.2. Example II.The detailed form of step (2b) is

0G+ 1CGLR + 0G∗ → 0G+ 0CGLR + 1G∗ (7)

Here we neglect CLR because it is an external species.
To put it another way (2b) is agenuinereaction step
with external species included, whereas(7) is the cor-
respondingformal reaction. Themolecularityof the
r -
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s
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where M ∈ N is the number of chemical species
X1, X2, . . ., XM and R ∈ N is the number of reaction
steps,αm,r andβm,r ∈ N0 are the stoichiometric coeffi-
cients andkr ∈ R

+ are the reaction rate coefficients.
In this setting a reversible reaction I� J is repre-

sented as an irreversible reaction–antireaction pair, I→
J and J→ I. This is thecanonicalform of a reversible
reaction step. Realistic detailed chemical models are
usually required to consist of reversible steps. This is
not the case of the examples treated here, which give
only a phenomenological description of processes.

3.1.3. Associated calculations
The transformation into canonical form and the de-

termination of the stoichiometric coefficients can be
done automatically with two programs. The first one
(ToCanonical , Table 2) rewrites reversible reac-
tions as a set of two irreversible reactions. This standard
form is interpreted by the second program (ToSto-
ichiometry , Table 3) which returns as output the
number of chemical speciesM, the number of reaction
stepsR, the list of species involved in a canonical (lex-
icographic) ordering, and the matrices of the stoichio-
metric coefficientsα andβ of the reactant and product
complexes, respectively. Let us present these programs
on the examples.

3.1.3.1. Example I.In this case only the second pro-
gram is needed because the reaction is already written
in its canonical form.

s

r

r
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i
r
a noth-
i
b iven
a used
eaction step is 1, so(7) is a first order formal reac
ion step. The genuine reaction being of higher o
n general, the simplicity of the system under inv
igation strongly depends on the determination of
pecies that can be considered as external.

.1.1.3. Example III.The same rules apply. Note th
he formal reaction step corresponding to the fo
tep (5d), A→ X, is 0X → 1X. Therefore, this is
eroth orderstep.

.1.2. Generalization
Formal reactions, like(6)and(7)can be generalize

n the following way

M∑
=1

αm,rXm
kr−→

M∑
m=1

βm,rXm (r = 1, 2, . . . , R)

(8)
toiI = ToStoichiometry[{L + R → CLR}]
eturns variablestoiI containing the list

{species → {L, R,CLR}, M → 3,

eactionSteps → {L + R → CLR}, R → 1,

α → {{1},{1},{0}},
β → {{0},{0},{1}},

variables → {l, r,cLR}}. (9)

hese results can be compared to(6). The list of specie
s automatically ordered by the program,α andβ cor-
espond to this new order. InMathematicathe arrow
bove only expresses replacement rules and has

ng to do with limits or reaction arrows, i.e.α should
e replaced in calculations with the expression g
bove. Any part of the results can be extracted and
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Table 1
Rates and multipliers of rates for speciesa in Example IIIb

Component no.
or rate vectorw

Rate components
of w(x, y, z)

Multiplier of X Multiplier of Y Multiplier of Z Eq. no.

1 c1
z3

(K1 + z)3
y 1–0 0–1 1–1 (5a)

2 c2
x2

(x + K2)2
y 0–1 1–0 0–0 (5b)

3 c3y2 1–0 1–2 0–0 (5c)

4 c4 1–0 0–0 0–0 (5d)

5
c4

c3.3
5

x3.3 0–1 0–0 0–0 (5e)

6 c6ρ
x

x + K3
1–1 0–0 1–0 (5f)

7 c7z 0–0 0–0 0–1 (5g)

a x, y, zare concentrations of X (cytosolic Ca2+), Y (Ca2+ in endoplasmic reticulum) and Z (inositol-1,4,5-trisphosphate).c1–c7 andK1–K3

are constants (seeTable 5). 0≤ ρ ≤ 1 in component 6 indicates the degree of receptor-dependent activation.
b FromMeyer and Stryer (1988). Notations were modified.

in further calculations, e.g.α/.stoiI extractsα from
variablestoiI .

3.1.3.2. Example II.Usually reactions are written in
the form of chains as in (2),(3) or (4). This is different

from the canonical form(8) which is used by both the
mathematical theory and most of our programs. Thus,
except when the natural and canonical forms are iden-
tical (as in Example I) a preparatory program is needed
to transform the natural form into the canonical one.

Table 2
Source code of theToCanonical Mathematicafunction
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For reaction (2) we can write

ToCanonical[{G + CLR → CGLR → G∗ + CLR}]
which returns

{G + CLR → CGLR,CGLR → CLR + G∗}
The program can process reversible reactions which are
indicated with the double-head arrow↔. For example,
introducing one reversible step, we have

canoII = ToCanonical[{G + CLR ↔ CGLR

→ G∗ + CLR}]
which returns variablecanoII containing

{G+CLR→CGLR,CGLR→G + CLR,CGLR→CLR + G∗}
Similarly with two reversible steps one gets

ToCanonical[{G + CLR ↔ CGLR ↔ G∗ + CLR}]

{G + CLR → CGLR,CGLR → G + CLR,

CGLR → CLR + G∗,CLR + G∗ → CGLR}
Then we can apply the second program to reaction(3).
For example

stoiII = ToStoichiometry[canoII,{CLR}]
where the external species is indicated as the last (op-
tional) argument. It yields

{species → {G,CGLR,G
∗}, M → 3, reactionSteps

o

α

M he
r t
c d to
t .
N n of
α

3.1.3.3. Example III.In the calcium spiking model we
first write

canoIII

= ToCanonical[{Y + Z → X + Z, X → Y,

2Y→X + Y, A→X → B, C + X → X + Z, Z → C}]

{Y + Z → X + Z, X → Y,2Y → X + Y, A → X,

X → B, C + X → X + Z, Z → C}
(because of the lexical ordering of the reactions the
output order may be different from the input order),
then

stoiIII = ToStoichiometry[canoIII,{A, B, C}]

{species → {X, Y, Z}, M → 3, reactionSteps

→ {0 → X, X → 0, X → Y, X → X + Z, 2Y

→ X + Y, Z → 0, Y + Z → X + Z},R → 7,α

→ {{0, 1, 1, 1, 0, 0, 0},{0, 0, 0, 0, 2, 0, 1},
{0, 0, 0, 0, 0, 1, 1}},β → {{1, 0, 0, 1, 1, 0, 1},
{0, 0, 1, 0, 1, 0, 0},{0, 0, 0, 1, 0, 0, 1}},
variables → {x, y, z}} (11)

In the latter program the external species are again in-
dicated as the last argument. In this example there are
M
( hio-
m

3

3
n of

t ,
o in
t on-
c ies
a ized
l ssed
i vol-
u ents
m . For
t will
→ {G → CGLR,CGLR → G,CGLR → G∗},
R → 3,α → {{1, 0, 0},{0, 1, 1},{0, 0, 0}},
β → {{0, 1, 0},{1, 0, 0},{0, 0, 1}},
variables → {g,cGLR,g∗}} (10)

f whichα andβ can be formatted to give

=




1 0 0

0 1 1

0 0 0


 , β =




0 1 0

1 0 0

0 0 1




atrix α gives the stoichiometric coefficients of t
eactant complexes and matrixβ those of the produc
omplexes. In these matrices the rows correspon
heM species and the columns to theR reaction steps
ote that the sum of the coefficients in each colum
gives the order of the reaction step.
= 3 time-dependent quantitiesx, y, zandR= 7 steps
reactions and translocations), that is why the stoic
etric coefficientsα andβ are 3× 7 matrices.

.2. Evolution equations

.2.1. Examples of evolution equations
What does interest us is the temporal evolutio

he concentrations of L, R and CLR in the first example
f G, CGLR and G* (CLR is assumed to be constant)

he second one, and of X, Y, Z in the third one. The c
entrations of the individual (formal chemical) spec
re usually denoted by the same letters in italic

owercase form. The concentration can be expre
n molarity or mass, with respect to a fixed mass,
me or area. The units of the reaction rate coeffici
ust be consistent with those of the concentrations

he sake of simplicity, in the rest of the paper we
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consider concentrations expressed in moles per unit
volume.

3.2.1.1. Example I.The usual system of evolution
equations for reaction(1) is:

l̇(t) = −kl(t)r(t), ṙ(t) = −kl(t)r(t),

ċLR(t) = kl(t)r(t), (12)

wherek is the reaction rate coefficient,l(t), r(t) and
cLR(t) denote the concentrations at timet of the species
L, R and CLR, respectively, and,̇l(t), ṙ(t) and ċLR(t)
denote their derivatives with respect to time.

The differential Eq.(12) are based on the assump-
tion that the individual reactions proceed according to
the (kinetic) mass-action law(Assumption 1). It means
that the velocity of reaction(1) is the product of the
quantities of the reactantsl(t) andr(t) multiplied by the
reaction rate coefficient. One can also say that herel(t)
andr(t) are raised to the power 1, because this is the
value of the stoichiometric coefficients of L and R in
the reactant complex.

The signs in the equations reflect the net changes
of the corresponding species. The net changes of L,
R and CLR are0−1, 0−1 and1−0, respectively,
which means that L and R are destroyed in the reaction
whereas CLR is created. (This seemingly cumbersome
notation is justified by the fact that writing−1, −1,
1 would entail a loss of information because 1 results
also from, e.g. 2− 1.)
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because the units depend on the stoichiometric coeffi-
cients of the species: in a first order reaction the unit of a
reaction rate coefficient (reciprocal of time unit) is dif-
ferent from that of a second order one (reciprocal of the
product of time and concentration units). Here, it is as-
sumed in the kinetic differential Eq.(13)that the effects
of different reaction steps are additive. This is a funda-
mental assumption of reaction kinetics (Assumption 2).

The essentialsimilaritybetween(12)and(13)is that
the rates of the steps are multiplied by the net changes
of the species involved. The net changes of G, CGLR,
G* in reaction (2a) are,0−1, 1−0 and0−0 and the
net changes of G, CGLR, G* in (2b) are0−0, 0−1
and1−0. Note that there is no equation for the quan-
tity of the external species CLR. The essentialdifference
between(12)and(13)–(14)is that(12)is a mere differ-
ential equation, whereas(13)–(14)is aninitial value or
Cauchy problem, i.e. it also contains restrictions(14)
on the initial values of the variables. These restrictions
imply that the solution of(13)–(14) is unique whereas
that of(12) is not.

We simplified reaction(3)assuming that the concen-
tration of CLR is constant. Another (often used) approx-
imation consists in assuming that the rate of change of
the concentration of CGLR is close to zero. First let us
write down the full system of equations:

ġ(t) = −k1g(t)cLR(t) + k−1cGLR(t) (15a)

ċLR(t) = −k1g(t)cLR(t) + (k−1 + k2)cGLR(t) (15b)

c

g

T

c

w
( ut-
s

c

A
c

c

.2.1.2. Example II.In the case of reaction(3) the sys
em of evolution equations is:

˙(t) = −k1g(t) + k−1cGLR(t) (13a)

˙GLR(t) = k1g(t) − (k−1 + k2)cGLR(t) (13b)

˙∗(t) = k2cGLR(t) (13c)

(0) = g0, cGLR(0) = g∗(0) = 0, (14)

hereg(t), cGLR(t) andg* (t) denote the concentratio
t timet of the species G, CGLR and G* , respectively
he positive real numberk−1 andk2 are the reaction ra
oefficients characteristic of the velocity of the co
ponding reaction steps, while the positive real num
1 is actually the product of agenuine rate coefficie
appa1 and the (assumed to be constant) conce
ion of CLR, k1 = kappa1cLR. So, one has to be care
˙GLR(t) = k1g(t)cLR(t) − (k−1 + k2)cGLR(t) (15c)

˙∗(t) = k2cGLR(t). (15d)

hen, using the conservation relation,

LR(t) + cGLR(t) = cLR(0) + cGLR(0) = cLR(0) (16)

hich is a mathematical consequence of(15b) and
15c)andnota physical assumption imposed from o
ide, we get

˙GLR(t) = k1g(t)(cLR(0) − cGLR(t))

−(k−1 + k2)cGLR(t). (17)

ssuming that the time derivative ofcGLR is zero,cGLR
an be expressed as

GLR(t) = g(t)cLR(0)

g(t) + K
whereK = k−1 + k2

k1
. (18)
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Inserting this expression into(15d)a rational function
is obtained as the rate of change ofg* :

ġ∗(t) = k2
g(t)cLR(0)

g(t) + K
. (19)

Although this procedure seems to be not well-founded
from a mathematical point of view, it can be supported
by the theory of singular perturbations, see references
in Érdi and T́oth (1989), Keleti (1986), Turányi and
Tóth (1992)or Zach́ar (1998). We do not investigate
this model further; it is intended as an introduction to
the line of thought which lies behind the reaction rates
of the rational type found in the next example.

3.2.1.3. Example III.The kinetic mass-action law of
Assumption 1 is verified experimentally in many cases
but it is far from being a general law of nature. Exam-
ple III offers a good illustration of this statement be-
cause many of the kinetic differential equations found
by Meyer and Stryer (1988)do not follow this law.
These equations are:

ẋ(t) = c1

(
z(t)

K1 + z(t)

)3

y(t) − c2

(
x(t)

x(t) + K2

)2

+c3y(t)2 + c4 − c4

(
x(t)

c5

)3.3

(20)

y

(
z(t)

)3 (
x(t)

)2

z
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r 5g).
P c-
t nds

on vasopressin concentration. The functions describ-
ing each reaction and their constants (Table 1) were
obtained mostly from experimental measurements.

It can be seen here that some of the rates of the
individual steps are of the mass-action type (products
in components 3, 4 and 7, seeTable 1) but the others
are not (ratios or non-integer exponents in components
1, 2, 5 and 6,Table 1; components 1, 2 and 5 being of
Michaelis–Menten type). However, the reaction rates
are again multiplied by the net changes (±1) of the
corresponding species, so Assumption 2 still holds. The
components of the ratew(x, y, z) of the individual steps
at the concentration vector (x,y,z)and the corresponding
multipliers are shown inTable 1.

The reactions that do not obey the mass-action law
are usually considered to be less fundamental than
those that obey it. They can be generally interpreted as
the result of lumping of several (unknown) reactions
or species into a single one (that used in the model)
(Tóth et al., 1997). They can be also obtained by fit-
ting to an empirical function. Nevertheless these non-
mass-action rates are kinetic rates in the sense that they
are positive, continuous, monotonous functions of the
corresponding concentrations (Volpert and Khudyaev,
1985, or Szili and T́oth, 1997).

Formal kinetics provides a framework to treat in a
unified way chemical reactions and some transport phe-
nomena under certain circumstances, and this is also
exemplified here. The second step X→ Y expresses
the belief that translocation of Ca2+ between the cy-
t if it
w rent
s a-
p on
(

3

i n-
t for
t ing
( ua-
t

x

(

˙(t) = −c1
K1 + z(t)

y(t) + c2
(x(t) + K2

−c3y(t)2 (21)

˙(t) = c6ρ
x(t)

x(t) + K3
− c7z(t) (22)

q. (20) gives the rate of change of the cytosolic c
entration of Ca2+ with the first three terms (reactio
ates) describing the cytosol-ER exchanges (reac
5a)–(5c)), and the last two the source and sink (r
ions (5d), (5e)). Eq.(21)gives the rate of change of t
ndoplasmic concentration of Ca2+ which is merely the
everse of (5a)–(5c). Eq.(22)yields the rate of chang
f the INP3 with the two reaction rates correspond
espectively to its synthesis (5f) and destruction (
arameterρ in (22) expresses the relative level of a

ivation of phospholipase C which ultimately depe
osol and the endoplasmic reticulum proceeds as
ere a first order transformation between two diffe
pecies. ThisAssumption 3enlarges the modeling c
acity of formal reaction kinetics and is quite comm
Horn and Jackson, 1972).

.2.2. Formal presentation
If the concentration of species Xm at time t ∈ R

+
0

s denoted byxm(t) then the usual kinetic differe
ial equation (assuming mass-action type kinetics
he time evolution of these quantities) is the follow
polynomial autonomous) ordinary differential eq
ion with the same notations as in(8):

˙m(t) =
R∑

r=1

(βm,r − αm,r)kr

M∏
p=1

xp(t)αp,r ,

m = 1, 2, . . . , M) (23)
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Table 3
Source code of theToStoichiometry Mathematicafunction
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or in vectorial form

ẋ(t) = (β − α) · (k ⊗ x(t)α), (24)

where⊗ denotes componentwise product of vectors
(Horn and Jackson, 1972).

In the case when the reaction rates are not of the
mass-action type therth reaction step has a reaction
ratewr(x(t)), if the vector of concentrations at timet is
x(t). Then the form of the kinetic differential equation
(still corresponding to Assumption 2) is:

ẋm(t) =
R∑

r=1

(βm,r − αm,r)wr(x(t)),

(m = 1, 2, . . . , M) (25)

or, in matrix notation

ẋ(t) = (β − α) · w(x(t)). (26)

In order for Eq.(25) to have a kinetic meaning further
regularity conditions (mentioned above) are required
for the functionswr.

3.2.3. Calculation of the relevant quantities
The procedure summarized in Section3.2.2can be

fully automated when the mass-action law can be ap-
plied, and partially when it cannot. ProgramRHS(see
Table 4) calculates the right hand side of a kinetic
differential equation if the matricesα, β, provided by
t
a .
R ical
s lpful
f eps.
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s ction
t

en-
t s
u still
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p ing
m ese
a
p

3.2.3.1. Example I.The stoichiometric coefficientsα
andβ were given by the programToStoichiome-
try and stored instoiI . Then

rhsI = RHS[stoiI]

returns the right-hand sides of the differential equations

{−klr, − klr, klr}
These results are those given in Eq.(12) provided we
give the rate coefficients or the rates of the reaction
steps in the corresponding order.

3.2.3.2. Example II.Again, using the coefficients
given by the functionToStoichiometry we can
write

rhsII = RHS[stoiII]

and get

{−gk1 + k−1cGLR, gk1 − k2cGLR − k−1cGLR,k2cGLR}
These results are those given in equations(13).

3.2.3.3. Example III.In this non mass-action type
example, the reaction ratesw(x, y, z) at the concen-
tration vector (x,y,z) given in Table 1 (second col-
umn) must be used as components of the vector
w and the (last) optional argument must be set to
f

r

W alent
t

4

ran-
s ies.
T the
fi o de-
c em.
H ates
( e
o lem
(

he programToStochiometry (see Section3.1.3)
nd the vector of reaction rate coefficientsk are given
HSworks no matter what is the number of chem
pecies and elementary steps, and is thus very he
or solving models involving many species and st
n the case of a mass-action type kineticsRHSdisplays
ach reaction step and asks the corresponding rate
tant one after the other. In the case of non-mass-a
ype kinetics it asks the ratesw themselves.

The mass-action type systems of kinetic differ
ial equations arepolynomial differential equation:
sually more complicated than linear equations,

ractable enough from many points of view. This f
ure is unessential for simple models as those of Ex
les I and II, but it becomes essential for introduc
ass-action kinetics in full generality. Moreover, th
re the arguments beneath the programRHS. Let us
resent this program on the examples.
alse.

hsIII = RHS[stoiIII, MassAction → False]

e do not reproduce the results as they are equiv
o the right-hand sides of Eqs.(20)–(22).

. From evolution equations to system states

Typically dynamic systems present stationary, t
ient non-periodical, oscillatory or chaotic trajector
he three examples chosen allow one to illustrate
rst three of these behaviors and to present tools t
ide which behavior is displayed by a given syst
aving investigated the problem of stationary st

Section4.1) we will consider the evolution in tim
f the system which is a more complicated prob
Section4.2).
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Table 4
Source code of the otherMathematicaprograms
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Table 4 (Continued)

4.1. Stationary states

We consider first the existence of solutions that do
not change in time, then we examine if such solutions
are stable or not.

4.1.1. Calculation of the stationary points
The (seemingly) simplest question about a kinetic

differential equation is: which are the constant solu-
tions of this equation? Constant solutions are inter-
preted as stationary (or in some cases, equilibrium)
solutions. They describe states where the system stays
forever if undisturbed. To find these states means solv-
ing three problems. First, the system of differential
equations must be solved when their right hand sides
are set equal to zero, which expresses that the velocities
of formation of all species are zero. Second, thelaw of
mass conservationmust hold for the stationary points.
Third, it is also necessary to eliminate non-physical so-
lutions with negative values at this step. The properties
that a concentration vector (i) makes the species forma-
tion vector zero, (ii) obeys the law of mass conservation
and (iii) is nonnegative, are independent, as can easily
be shown by simple examples.

The programStationaryPoints (fourth in
Table 4) calculates the stationary solutions using their

first two properties but not the third, i.e. it gives constant
solutions of the kinetic differential equations obeying
the mass conservation relations that may happen to be
negative. Its input arguments are the stoichiometric ma-
trices, the names of the variables and their initial val-
ues. Internally it calls sequentially two programs,Ki-
netic andMassConservation that can be also
used separately.

The program,Kinetic (second inTable 4), cal-
culates the zeros of the right hand side of a kinetic dif-
ferential equation given the matrices of stoichiometric
coefficients, the vector of reaction rate coefficients and
the names of the variables to be used. The calculations
depend also on the type of rates (mass-action or not).
Results are presented in table form. It is more appro-
priate to useReduce thanSolve , because the latter
would only give the coarse solutions, those which do
not take into account special values of the parameters
(like zero); e.g. for eq.ax+b= 0 the coarse solution is,
x=−b/a whereas the fine one consists of three possi-
bilities (i) x=−b/a for a �= 0, (ii) x undetermined for,
a= 0, b= 0, (iii) no solution otherwise (a= 0, b �= 0).
Solve andReduce are based on the algorithm for
constructing Gr̈obner basis, which is one of the most
important results in the last decades in theoretical com-
puter science. This algorithm enables one to rewrite a
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polynomial system of equations into a triangular form,
in almost the same way as it is done in the process
of Gauss elimination for linear systems of equations
(Buchberger, 1970). (Triangular here means that the
first equation only contains a single variable, the sec-
ond one only two etc.) Then such equations can be
solved, sometimes symbolically and almost always nu-
merically. This procedure can also be extended to the
case when the rates are rational functions.

The other program,MassConservation (third
in Table 4), finds conditions to be fulfilled in order that
the law of mass conservation be valid. It needs the stoi-
chiometric matrices as input, the names of the variables
to be used and the initial values of the variables.

As to the third problem, that of eliminating the non-
physical solutions, the packageAlgebra of Math-
ematicamight help decide whether a candidate sta-
tionary solution has non-negative coordinates. The pro-
grams in this package are designed to solve polynomial
inequalities in any dimensions based on new theoret-
ical developments. In practice, a faster answer can be
obtained if the parameters are given numerical values;
then the number of non-numerical parameters can be
gradually increased.

4.1.1.1. Example I.The stationary solutions are
given by StationaryPoints[ �/.stoiI,
�/.stoiI, {k}, {l,r,c LR}, {l 0,r 0,c 0}]
which yields
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s l if
l non-
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ne
e

0
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o
w s
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c e re-

sult is given with programKinetic[ α/.stoiI,
β/.stoiI, {k}, {l,r,c LR}] which returns

{{l → 0}, {r → 0}}
The conservation of mass can be written:

cLR(t) + l(t) = cLR(0) + l(0),

cLR(t) + r(t) = cLR(0) + r(0) (28)

Program MassConservation[ α/.stoiI, β/.
stoiI, {l,r,c LR}, {l 0,r 0,c 0}] gives

{{l → c0 − cLR + l0, r → c0 − cLR + r0}}
which is equivalent to(28).

4.1.1.2. Example II.Of the three equations derived
from (13)

0 = −k1g + k−1cGLR, 0 = k1g − (k−1 + k2)cGLR,

0 = k2cGLR (29)

only two are independent.Kinetic[ α/.stoiII,/
β.stoiII, {k1,k −1,k 2}, {g,c GLR,g* }] gives

{{g → 0,cGLR → 0}}
which means that there is only one solution, the first
two components of which are zero and the third one,
G*, can be arbitrary. The conservation of mass is

c

T ntity
o bove.
P
β

t

{

i are
p .
{{cLR → c0 + l0, r → −l0 + r0, l → 0},
{cLR → c0 + r0, r → 0,l0 → l0 − r0}}

hese results give the coordinatescLR, r, l of the sta
ionary points, either as,c0 + l0, r0 − l0, 0 or asc0 + r0,
, −r0 + l0. The first one is accepted ifl0 ≤ r0, and the
econd ifl0 ≥ r0, (both are accepted and identica

0 = r0) because these are the conditions assuring
egativity.

For the null velocities, it is enough to consider o
quation from the set of three derived from(12)

= −klr, 0 = −klr, 0 = klr (27)

he first solution isr = 0 with arbitrary concentration
f the two other species, and the second solution isl = 0
ith arbitrary concentrationscLR and r. The specie

ormation rates are equal to zero if and only if c
entration vectors are of these types. The sam
GLR(t) + g(t) + g∗(t) = cGLR(0) + g(0) + g∗(0).

(30)

here is no mass conservation equation for the qua
f the receptors because of our assumptions a
rogram MassConservation[ α/.stoiII,
/.stoiII, {g,c GLR,g* }, {g0,c 0,g 0}] re-

urns(30) in a different form

{g → c0 − cGLR + g0 − g∗ + g∗
0}}

Let us apply now the specific initial conditions(14),
.e. no GLR-complex and no activated G-protein
resent at time 0, to calculate the stationary points

StationaryPoints[α/.stoII,β/.stoII,

{k1,k−1,k2},{g,cGLR,g∗},{g0, 0, 0}]
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{{g∗ → g0, g → 0,cGLR → 0}}
This expresses that all G-proteins are activated but does
not mean that this state of the system can be reached
(see below).

4.1.1.3. Example III.If one tries to determine the sta-
tionary point(s) of this example by the program above
then no result will probably be obtained within a rea-
sonable time. High school tricks might helpMathe-
maticado the calculations in this specific case leading
to a result as long as five pages. Finding all the solu-
tions of such an equation numerically is a very hard
task. There are general methods to obtain all the roots
of multivariate polynomials and these are used by the
built-in NSolve of Mathematica, whereN stands for
numerical. However, our system of equations cannot
be transformed into a polynomial system of equations,
not because of the presence of rational functions but be-
cause of the presence of the non-integer exponent 3.3.
To treat such cases one has to turn to specialized pro-
grams written to find roots of nonlinear systems. Such
an additional package has also been written forMathe-
matica(Statistics‘NonLinearFit’ ). In some
cases one may use the ideas developed for this special
situation and choose a simpler way as follows:

(1) Modify the exponent 3.3 to 3. In the present case
it will not change the stationary point of the sys-
tem (when calculating the stationary point use Eq.

a-
-
his

T
V III

i-
fi
K dent
a

(2) Apply Kinetic , giving the zeros of the right-
hand side, to the modified equations as follows:

Kinetic[α,β, wmodified/.meyerconst,

variables, MassActionFalse]

wheremeyerconst is the actual value of all the
constants occurring in the rates shown inTable 5.
The result will be a table containing six solutions,
most of them being complex ones, only one is real
positive. It is
x y z

0.6 5.63422 0.07875
This is the solution we are looking for because of
the specific structure of the equations. As can be
checked numerically using the programNDeter-
ministic below, a solution starting from this
point remains there.

(3) This solution can be used as an initial estimate
given to the built-in functionFindRoot as fol-
lows:

spIII = FindRoot[rhsIII/.meyerconst,

{x, 0.6},{y, 5.63},{z, 0.079}]
which ends with the same result as before (in general
this will not be the case). The same result is obtained
if we put the values of the constants into the five-page
long symbolic result mentioned above.

Finally, mass conservation implies no restric-
t
t
{ et
o

(21) to simplify Eq. (20); the reduced first equ
tion c4(1 − (x(t)/c5)3.3 = 0 obviously has a solu
tion independent of the exponent in question). T
giveswmodified as a result.

able 5
alues of the coefficients used for numerical study of Examplea

a FromMeyer and Stryer (1988), exceptρ (notations were mod
ed).c1,c5 in s−1,c2,c4,c6 in �Ms−1,c7 in �M, c3 in �M−1s−1,K1,

2, K3 in �M, ρ without dimensions (degree of receptor-depen
ctivation).
ions on the stationary points asMassConserva-
ion[ α/.stoiIII,/ β/.stoiIII,/ {x,y,z },
x0,y 0,z 0}] returns{{ }} which means that the s
f restrictions is empty.
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4.1.2. Linear stability analysis
So, solutions which do not change with time can

be found. This is not sufficient however because these
solutions are based on the assumption that no pertur-
bations are present, which is not realistic in practice.
Some constant solutions change drastically under small
perturbations, and therefore have no physical signifi-
cance. Other constant solutions are significant, because
they resist small disturbances and are consequently sta-
ble. A simple way (among many) to decide whether
a stationary point is stable islinear stability analysis
(Arrowsmith and Place, 1982; Farkas, 1994). This is
what we do here automatically.

Even if a stationary point is stable it may not obey the
law (sometimes called Principle) of Detailed Balance
(or the principle of microscopic reversibility) which is
thought to be very important in chemical thermody-
namics (Lewis, 1925). The content of this law is that at
equilibrium all the individual subprocesses are equili-
brated, which in the case of chemical reactions means
that the reaction steps should be reversible and should
have the same reaction rate in both directions. Obvi-
ously this property can only hold if all the elementary
steps are reversible which is often not the case forfor-
malmodels (as opposed to models expressing detailed
chemistry) used here. In order to check this property
for reversible reactions one might use the necessary and
sufficient condition provided byFeinberg (1989).

The essence of linear stability analysis is that one
takes the linear approximation of the right hand side
( ion-
a ve
n mp-
t lue
w is
u ome
o ze-
r
T zed
e

4 ri-
a

{
w tion-
a
r r in-

vestigation (cf.Arrowsmith and Place, 1982). If all the
eigenvalues were negative, the stationary points would
be easily seen to be asymptotically stable. Note that
the eigenvalues depend on both the reaction rate coef-
ficients and some of the initial concentrations.

4.1.2.2. Example II.Here the eigenvalues only de-
pend on the reaction rate coefficients,

LinearizedEigenvalues[rhsII,

variables/.stoiII, spII}]

{{0,
−k−1−k1 − k2−

√
−4k1k2 + (k−1 + k1 + k2)2

2
,

−k−1 − k1 − k2 +
√

−4k1k2 + (k−1 + k1 + k2)2

2
}}

The stability of the stationary point cannot be decided
based on linear stability analysis; further investigations
are needed. (Negativity of two eigenvalues suggest that
it is probably stable.)

In the general case the negative real parts cannot
be so easily investigated as here. More complicated
methods must be used, the best known of which is
the Routh–Hurwitz test. A review of these methods to-
gether with theMathematicacodes of the correspond-
ing algorithms can be found inTóth et al. (1998).

4
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t

the Jacobian Matrix) and evaluates it at the stat
ry points. If all the eigenvalues of this matrix ha
egative real part then the stationary point is asy

otically stable; if there is at least one eigenva
ith positive real part then the stationary point
nstable. Further investigations are needed if s
f the real parts are negative and some are
os. ProgramLinearizedEigenvalues (sixth in
able 4) calculates the eigenvalues of the lineari
quation.

.1.2.1. Example I.LinearizedEigenvalues[rhsI,va
bles/.stoiI,spI]// Simplify returns

{0, 0, k (r0 − l0)},{0, 0, k (r0 + l0)}}
hich shows that either the first or the second sta
ry point is unstable, depending on whetherr0 > l0 or
0 < l0. The case when they are equal needs furthe
.1.2.3. Example III.Because Linearized-
igenvalues calculates the stationary points its
ne cannot expect that it is able to calculate

inearized eigenvalues automatically. What can
one is to apply the program with the calcula
tationary point in the following way:

LinearizedEigenvalues[rhsIII/.meyerconst,

variables/.stoiIII,{spIII}]

{−7.33505, − 0.0582115 + 0.0650087 I,

−0.0582115 − 0.650087 I}
he presence of a conjugate pair of eigenvalues
eal parts close to zero suggests the possibilit
ndronov–Hopf bifurcation leading to periodic so

ions (Farkas, 1994).
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4.2. Temporal evolution of relevant concentrations

The temporal evolution of the concentrations is of
foremost importance,l, r, cLR in Example I,g, cGLR,
g* in Example II, and,x, y, z in Example III. In order to
calculate these quantities as functions of time the initial
values of each variable need be known on the basis
of measurements or theoretical arguments (although
precise values are not always required, see below).

It can be proven from the form of kinetic differential
equations alone (without any physical reasoning) that
the solutions of kinetic differential equations are always
non-negative (Volpert and Khudyaev, 1985). (However,
it may happen that a numerical method provides neg-
ative quantities, which prompted new developments in
numerical mathematics aimed at overcoming this dif-
ficulty, see e.g.Faraǵo, 1995; Faraǵo and Koḿaromi,
1990; Horv́ath, 1998).

The kinetic differential equation together with the
initial values make up an initial value (or Cauchy)
problem. This problem can be solved in many cases
either symbolically withDSolve or numerically with
NDSolve . Symbolic solutions can also be based on re-
cent results on the explicit Taylor representation of the
solutions of polynomial differential equations (Barton
et al., 1971; Brenig, 1988).

4.2.1. Symbolic solution (Example II)
ProgramDeterministic (number 7 inTable 4)

c tic
d et-
r nts,
t les.
T n
o and
s tion
i b):

w

4.2.2. Numeric solutions (Example III)
However, in many cases one cannot solve the kinetic

differential equation analytically. This is the case of the
Meyer–Stryer model because its right-hand side con-
tains three variables and is highly nonlinear. IfDeter-
ministic is applied to this system it returns the input
unevaluated, which is the common behavior ofMath-
ematicaprograms. Then it is useful to have Program
8 (NDeterministic ), which is another version of
Program 7 usingNDSolve instead ofDSolve . In this
case the program structure and its arguments are dif-
ferent; the input arguments are the right-hand side, the
names of the variables, the initial values of the vari-
ables, an initial time (which has been given the de-
fault value 0), a final time and optional arguments to be
passed toNDSolve . The output is a list of functions
numerically interpolating the concentration versus time
curves.

The use of this program can be illustrated with the
Meyer–Stryer model (values of all the coefficients are
given inTable 5). VariablerhsIII , determined in Sec-
tion 3.2.3, contains the right-hand side of the model
in symbolic form. The concentration variables being
x(t), y(t) andz(t), a possible set of initial conditions is
x0 = 1.2,y0 = 0.2,z0 = 13. Although these values have
not been provided by the authors, they reproduce qual-
itatively their results because of the special structure of
the model (see below). Let the final time be 1200 and
the number of calculation steps be 10,000 (this is done
using an optional parameter toNDSolve ), as follows:

that
1 1200
i to
1 do
t teps
a

{

alculates in analytical form the solutions of a kine
ifferential equation given the matrices of stoichiom
ic coefficients, the vector of reaction rate coefficie
he variable names and initial values of the variab
he code usesDSolve . An analytical solution ca
nly be obtained in simple cases when the right h
ide is linear or if there is only a single concentra
nvolved in the model. Let us try it on Example (2a,

solIIab = Deterministic[rhsIIab,

variables/.stoiIIab,{g0, 0, 0}]

{{g[t]→E−k1tg0,cGLR[t] → (−E−k1t+E−k2t)g0k1

k1 − k2
,

g∗[t] → g0(k1 − E−k2tk1+(−1 + E−k1t)k2)

k1 − k2
}}

hich is the complete explicit solution.
solIII = NDeterministic[rhsIII/.meyerconst,

variables/.stoiIII,{1.2, 0.2, 13}, 1200,
MaxSteps → 10000];

The program stops with a message indicating
0,000 steps were not enough. If the results up to

s really needed thenMaxSteps must be changed
5,000. Here (see figures below) it is sufficient to

he calculations up to time 1000, for which 10,000 s
re more than enough. The variablesolIII contains

{x[t] → InterpolatingFunction[{{0., 1000.}},
“ <> ”][ t], y[t] → InterpolatingFunction

[{{0., 1000.}},“ <> ”][ t], z[t] →
InterpolatingFunction[{{0., 1000.}},
“ <> ”][ t]}}
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Fig. 1. Kinetic curves in Example II. Evolution of the con-
centrationsg of the G-protein (solid line),cGLR of the GLR
complex (dashed line) andg* of the activated G-protein G*
(dotted line) as a function of time. Plot obtained withPlot
[Evaluate[ {g[t],c[t] }/.solII, {t,0,500 }] . Parame-
ters:k1 = 0.06,k−1 = 0.01,k2 = 0.001,l0 = 00,g0 = 1000,c0 = 0.

For using these solutions one has to write
x[t]/.solIII etc.

4.3. Presentation of results: solutions,
trajectories, selectivity curves

Plotting can hardly be automated: since each case
needs individual considerations, presentation of the so-
lution of a kinetic differential equation is not a triv-
ial task. The plots are of two kinds, kinetic curves
(quantities versus time) showing the temporal evolu-
tion of the individual concentrations, andselectivity
curves(evolution in the state space, i.e. concentration
versus concentration) obtained from pairs or triplets
of concentrations. The evolution of the vector of con-
centrations as a function of time is called thesolu-
tion. If all coordinates are involved in the case of a
selectivity curve, then it is thetrajectoryof the solu-
tion.

4.3.1.1. Example II
Fig. 1 shows the solutionsg(t), g* (t) andcGLR(t).

The plot for the longer period indicates that the model
reflects a relatively fast coupling thus the precoupling
hypothesis, that G and CLR are bound together from
the beginning, is not needed.

Fig. 2shows the trajectory in 3D space (g, cGLR and
g* ). The selectivity curves (g versuscGLR, cGLR ver-
susg* andg versusg* ) are monotonous, thus they are
n d by

Fig. 2. Selectivity curve in Example II. Trajectory of the solution
in state space with concentrations of G, CGLR and G* as the
three coordinates. Plot obtained withParametricPlot3D-
[Evaluate[ {g[t],cGLR[t],g[t] }/.solII, {t,1,30 }] .

applyingParametricPlot to two of the coordinate
functions.

4.3.1.2. Example III
The kinetic curves are shown inFigs. 3 and 4. The

selectivity curve (Fig. 5) is closed which means that the
solution is periodic. It suggests that no matter how the
concentrations start they will move to a closed curve,
which is astable limit cycle. It explains why the choice
of initial conditions is usually of minor importance and
why they often need not be provided.Fig. 6shows the
trajectory in 3D space; it reflects again the periodicity
of the solution.

Fig. 3. Kinetic curves in Example III. Evolution in time of
the concentrations of calcium in cytosol X (dashed line) and
of inositol trisphosphate Z (solid line). The interspike interval
decreases when increases. Plot obtained withPlot[Evaluate
[ {x[t],z[t] }/.solIII], {t,0,100 }] . Parameters: see
Table 5.
ot so interesting. They could have been produce
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Fig. 4. Kinetic curve in Example III. Evolution in time of the
calcium concentration in endoplasmic reticulum Y. Plot obtained
with Plot[Evaluate[ {y[t] }/.solIII], {t,0,100 }] ;.
Parameters: seeTable 5.

Fig. 5. Selectivity curve in Example III. Evolution in state space
of the concentrations of calcium in cytosol X and in endo-
plasmic reticulum Y. Plot obtained withParametricPlot-
[Evaluate[ {x[t],y[t] }/.solIII], {t,0,100 }] ; Pa-
rameters: seeTable 5.

Fig. 6. Time evolution in state space of the concentra-
tions of cytosolic calcium X and inositol triphosphate Z in
Example III. Plot obtained with ParametricPlot3D-
[Evaluate[ { t,x[t],z[t] }/.solIII], { t,0,120 }] ;.
Parameter: seeTable 5.

5. Discussion

5.1. Extensions

This paper provides an overview of the analysis
of biochemical systems illustrated by specific exam-
ples. Programs written in theMathematicalanguage
are given for solving the main problems met in this
kind of analysis. (It is not a hard task to modify the
programs so as to use version 2.2 or earlier; some of
the programs may be improved for version 4.) They are
intended to be as general as possible and can be applied
to chemical reactionstricto sensubut also to conforma-
tional changes and to translocations. With data storage
in files (seeWolfram, 2000), they can be applied to
large models with several dozens (or even hundreds)
of steps and species. However difficulties may be met
when applying them to similar or more complicated
cases than treated here.

We have considered the case of reaction rate co-
efficients that do notdepend on time. However, it fre-
quently occurs, even in the case of kinetics of the mass-
action type, that the rate coefficients do depend on time.
This is common in neurochemistry because the rate of a
reaction step often depends on the presence or concen-
tration of a regulator molecule (e.g.Tyson et al., 1996)
or on the voltage of the membrane (as for the axonal
sodium channel in the Hodgkin and Huxley model, see
e.g.Koch, 1999; Tuckwell, 1988). Such reactions are
usually highly nonlinear and characterized by thresh-
o ions,
t al-
c an be
u

in-
t be
o l so-
l nu-
m how
t um-
s f
d w
g solu-
t ilable
( 94;
G
a ,
1 n-
lds. Because such models have no explicit solut
hey must be solved numerically. Example III on c
ium spikes shows that the programs presented c
sed also in this case.

Explicit symbolic solution (or even some first
egrals) of a kinetic differential equation can only
btained in rare cases. It is easier to get numerica

utions although this may also be tricky. Moreover,
erical solutions lack generality because they s

he behavior of the system only under special circ
tances. Another approach is thequalitative theory o
ifferential equationswhich makes it possible to dra
eneral conclusions even in cases when symbolic

ions cannot be obtained. Several methods are ava
see e.g.Arrowsmith and Place, 1982; Farkas, 19
uckenheimer and Holmes, 1983; Perko, 1996; or on
pplications:Schneider et al., 1987; Novák and Tyson
997), one of which, linear stability analysis, is co
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sidered in the present paper. Sensitivity analysis may
also be considered to belong to this theory; it shows
how sensitive to changes of some parameters, includ-
ing initial conditions, the results are (Turányi, 1990).

5.2. Limitations

Specialdelaymodels are used in several areas of
reaction kinetics. However, no general delay model is
presently available in formal kinetics. Consequently,
the only practical approach at present might be writing
a program to solve delay differential equations using a
step-by-step method.

Spatial effectsare often important. We have taken
them into account in Example III, although in an incom-
plete way, because translocations were assumed to pro-
ceed between spatially homogeneous compartments
following virtually first order kinetics. In mathemat-
ical terms we have only dealt with ordinary differential
equations and not with partial differential equations. In
engineering terms the same idea is expressed in saying
that we only used concentrated parameter models as
opposed to distributed parameter models. The spatial
distribution of the concentrations has not been taken
into account, only the total quantity within a given, sup-
posedly homogeneous compartment, was. Turning to
partial differential equation models (more specifically,
to reaction diffusion equations) makes all the investi-
gations more complicated and less easy to automatize.

Another limitation of our present approach is that
w This
i rge
n some
s les,
i
T old,
1 nd
p o-
l ion
p ves-
t by
s n
o
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52 J. Tóth, J.-P. Rospars / BioSystems 79 (2005) 33–52

Lamb, T.D., Pugh Jr., E.N., 1992b. G-protein cascades: gain and
kinetics. Trends Neurosci. 15, 291–298.
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