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Abstract

Modeling of biochemical phenomena is based on formal reaction kinetics. This requires the translation of the original reaction
systems into sets of differential equations expressing the effects of the various reaction steps. The temporal behavior of the
system is obtained by solving the differential equations. We present the main concepts on which the formal approach of these
two problems is based and we show how the amount of work needed to treat them can be significantly reduced by using
a mathematical program packaddathematicd. Symbolic and numerical calculations can be performed with the programs
presented and graphic presentations of the behavior of the system be obtained. The basic ideas are illustrated with three example:
taken from the area of signal transduction and ion signaling.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction can be of much help for investigating dynamical models
of biochemical systems. Most problems in biochem-
The theoretical study of reaction kinetics has led to istry can be solved by going through routine steps that
the development of powerful concepts and methods that are almost independent of the specific system investi-
gated. This situation prompted us to try and fill the gap
T _ o ] between theory and !oractical _needs. The aim_s of this
A Mathematlcanotebook gontammg all the programs pre paper are to present in a concise way the routine steps
sented in Tables 2—-4 and their extended and deconstructed ver-. . .
sions, with more examples and more detailed comments is avail- involved and to propo_se practical solutions based on
able at the web siteww.math.bme.hutjtoth. In caseMathematica presentday mathematical program packages. Although
3.0 or higher is not available, the progravtathReaderfor read- the routine steps may involve hard or complicated an-
ing Mathematicanotebooks can be downloaded from the web site  glytical calculations, both exact and approximate, and
www.wri.com/MathSource also extensive numerical investigations, these packages
Corresponding author. Tel.: +33 1 30 83 33 55; . .
fax: +33 1 30 83 31 19. can help shorten the time needed to do the calculations
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For introducing some of these possibilities we have negativity, monotonicity, oscillations, coexistence of
selected three examples of increasing complexity taken chemical species, etc.). This third step is described in
from the field of receptor-mediated cell responses. Ex- Section4. Details on the programming aspects with
amples | and Il, based partly on our own practice (e.g. extentions for the qualitative and stochastic studies of
Lansk et al., 2001; Rospars et al., 2000, 2D0&re reactions can be found ifbth (2002)
about the first two steps of cell transduction and involve
only one or two reaction steps. The third one, about cal-
cium oscillations, involves seven reaction steps with 2. Examples of neurochemical reactions
feedback relationshipsvieyer and Stryer, 1998Be-
sides describing chemical reactions these examples in-  Three example systems taken from the field of cell
volve translocations (Example 1l1), and illustrate sev- signal transduction are presented.
eral properties of chemical dynamic systems, including
the tendency to stationary (Examples | and Il) as well as
oscillatory (Example I11) behaviors. More technical as-
pects are also presented, such as the description of reac-
tions that, contrary to most steps in all examples, do not
obey the mass-action law (some steps in Example 111),
as well as the solution of normal and stiff differential
equations, the numerical handling of the latter present-
ing difficulties. Basic notions of reaction kinetics such
as e.g. stationary point, steady state, equilibrium, stable
equilibrium, detailed balanced equilibrium, or molecu-
larity and order of areaction step, or solution, trajectory
and selectivity curves of amodel, are defined. We show .

where Gr stands for the ligand-receptor complex.

how the usual questions agldresse_d when studying SUChThis reaction expresses the fact that one “molecule” of
systems can be solved with relat!vely short Programs e ligand L binds one molecule of the receptor R and
which, in the present paper, are wnttem/IthemaUca an activated form (g of the receptor is formed. The
a ﬂ?c?lflee;:)azspif/isd:r;dr;);o%rz?ss 2{;:?2?egsts?blt;epositive real numbek is thereaction rate coefficient

pp ang Y as p ‘which, in this case, is a constant that characterizes the
They are easy to generalize. In neuroch§m|stry, for ex- velocity of the reaction (see Secti@i2.1). Reaction
ample, the tools presented can be applied to Olescrlbe(1) assumes that the reaction steprisversible i.e.

the kinetics of systems as diverse as ion channels (volt- . : .
. X there is no way (at least in the model) for the activated
age dependent or ligand gated, st#e, 1992, trans- ; -
receptor to return to its original state. As a consequence

mitter release, or gating of postsynaptic receptors (Seesuch a model describes only the initial response of the

Destexhe et al., 1994 . . . L system Lamb and Pugh, 19923,A reversible reac-
There are three main logicsieps of investigations . . .
tion might be also considered as shown below.

(i) The first step consists in establishing a set of chem-
ical reactions which summarizes the knowledge of the
biochemical system studied, including the speed of 2.2. Example Il

transition along each arrow (reaction or translocation).

Three examples are presented in SecBamhich are The next step of the signal transduction cascade can
analyzed in the following sections. (i) The second step Serve as our second example. It consists in the interac-
consists in translating the system of reactions into rate tion within the cell membrane of the activated complex
equations, i.e. as a set of differential equations, one Cir With G-proteins, denoted by G, and results in the
for each time-dependent quantity in the system. This is activation of the G-protein as Gaccording to the re-
treated in Sectio. (iii) Finally these equations must ~ action scheme

be solved to reveal the time evolution of the system or K ko

to study the solutions from other points of view (non- G+ CLr —> CeLr — G* + Cir. (2a, b)

2.1. Example |

The first step in cell signal transduction consists in
the binding of a ligand L, e.g. photon in photoreceptor
cells, odorant molecule in olfactory receptor cells or
neurotransmitter in interneurons, to a receptor protein
borne by the sensory or postsynaptic membrane. It can
be modeled by the reaction

L+R—k>CLR7 1)
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A noteworthy feature of (2) is that|® is regained  in which X stands for the cytosolic €5 Y for the
at the end of the process, which means that activation Cz* in the endoplasmic reticulum (ER) and Z for
according to(1) can lead to the production of several  the inositol-1,4,5-trisphosphate (INJPwhereas A, B
activated proteins G*. Model (2) consists of two reac- and C stand for external species (see above) acting as
tion steps. In the first step (2a) one molecule (or one spurces (or sinks) for X and Z. The, arefunctions
active site) of the G-protein binds one molecule of the characterizing the rate of each reactigrhey gener-
activated receptor&. The complex produced is disso-  galize the reaction rateonstants kof Examples | and
ciated in the second step (2b) into the activated receptor || and will be formally introduced in Sectiod.2.2
and the activated G-protein, the latter taking part inthe The reactions can be arranged in three groups. The
subsequent steps of the cascade. It can be assumed thajrst group describes the exchanges ofChetween
the concentration of (x is constant in this reaction.  the ER and the cytosol: reaction (5a) represents the
This constancy implies that the stimulus is delivered as flux of calcium out of the ER through channels in the
a short impulse, that the number of receptors is much ER membrane, which is controlled by INFand (5b)
larger than that of ligand L reaching the membrane and the ATP-dependent transport of calcium into the ER,
that the lifetime of Gr is relatively long. In formal  whereas (5c) summarizes the fact that the capacity of

kinetics Gr is said to be aexternal species the ER is limited. The second group introduces the
Itmay also be worth considering variations of model source (A) and sink (B) of G4 with reaction (5d) de-
(2) where the first reaction is reversible: scribing the influx of calcium into the cell and (5e)
Ky ' its uptake by mitochondria (sequestered calcium B).
G+ CLr = CoLr —> G* + CLR. 3) The third group describes the triggering mechanism,
k1 reaction (5f) representing the phospolipase-dependent
or both reactions are reversible syn_thesis of INB from its_ precursor C (Pli), and re-
L . action (5g) the destruction of INPReaction (5f) is
G+ Cir = Cotr = G + Cir. (4) controlled by vasopressin, an hormone acting as ligand
k_g k_z L on a receptor R (see Example 1), presumably via the

activated G-protein Gof Example 1, and the cytosolic
calcium level. The behavior of this system is more com-
plex than that of the two previous examples, not only
because it involves more reactions, but because more
of these reactions are interrelated, IN&d cytoso-

lic calcium acting as crosscoupled messengers. These
couplings are taken into account through the functions
w; as explained below.

The above models are essentially of the
Michaelis—Menten type Keleti, 198§ with Cir
playing the role of the enzyme and G that of the sub-
strate. From a quantitative point of view a difference
arises: in enzyme kinetics the usual assumption is that
the number of enzyme molecules is relatively low;
here this is just the opposite. As in Example | the
reaction rate coefficients are constants.

2.3. Example Il 3. From chemical reactions to evolution

) ) equations
As a third example we consider the model

of receptor-stimulated calcium spiking proposed by 31 Formal chemical reactions
Meyer and Stryer (1988t can be summarized in seven

reactions 3.1.1. Examples of formal reactions
Y4+Z 5 X 47, X2y, 2y X4y A formal _reaction ?s a stan_dard transla_ltion of the
actual chemical reaction in which all chemical species
(5a, b, c) not considered as external appear on both sides of the
formula and are multiplied with coefficients 1 or 0 ac-
A2 X, X Y% B (5d, e) cording to their presence or absence in the actual re-
e wr action; coefficients greater than 1 can also occur, see
C+X—>X+2Z, Z—C, (5, 9) e.g. reaction (5c¢), but rarely. These coefficients play an
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important role in the modeling. An introduction to the
topics can be found iRilling and Seakins (1997A
more mathematical text with many biological applica-
tions is given inErdi and Toth (1989)

3.1.1.1. Example IThe formal reaction correspond-
ing to reaction(1) is written:

1L + 1R+ 0C.g — OL +OR+ 1Cir (6)

The formal linear combination on the left side of the re-
action stepis called threactant compleand that on the
right side of the reaction step tipeoduct complexthe
meaning of “complex” here must not be confused with
that in “receptor—ligand complex”). The coefficients
standing in front of the chemical species are shu-
chiometric coefficientsThe stoichiometric coefficient
of CiR in the reactant complex is zero because it is not
present on the left side of reacti@l), whereas itis 1in
the product complex. The sum of the stoichiometric co-
efficients inthe reactant complexis the (overalblec-
ularity of the reaction. Because the molecularity of re-
action(1) is 2, it is said to be gecond ordereaction.

3.1.1.2. Example II.The detailed form of step (2b) is
0G+ 1Cgr + 0G* — 0G + 0Cg R + 1G* 7

Here we neglect (R because it is an external species.
To put it another way (2b) is genuinereaction step
with external species included, wherg@}is the cor-
respondingformal reaction. Themolecularity of the
reaction step is 1, s¢v) is afirst order formal reac-
tion step. The genuine reaction being of higher order
in general, the simplicity of the system under inves-
tigation strongly depends on the determination of the
species that can be considered as external.

3.1.1.3. Example IIl.The same rules apply. Note that
the formal reaction step corresponding to the fourth
step (5d), A— X, is 0X — 1X. Therefore, this is a
zeroth orderstep.

3.1.2. Generalization
Formal reactions, likés) and(7) can be generalized
in the following way
M . M
> X =Y PusrXm (r=12.....R)
m=1 m=1

(8)

where M €N is the number of chemical species
X1, X2,...,Xm and R e N is the number of reaction
stepspmr andpgy, - € Ng are the stoichiometric coeffi-
cients andi, € R are the reaction rate coefficients.

In this setting a reversible reactior= J is repre-
sented as anirreversible reaction—antireaction pait, |
Jand J— |. This is thecanonicalform of a reversible
reaction step. Realistic detailed chemical models are
usually required to consist of reversible steps. This is
not the case of the examples treated here, which give
only a phenomenological description of processes.

3.1.3. Associated calculations

The transformation into canonical form and the de-
termination of the stoichiometric coefficients can be
done automatically with two programs. The first one
(ToCanonical , Table 2 rewrites reversible reac-
tions as a setoftwo irreversible reactions. This standard
form is interpreted by the second programoGto-
ichiometry , Table 3 which returns as output the
number of chemical specids, the number of reaction
stepsR, the list of species involved in a canonical (lex-
icographic) ordering, and the matrices of the stoichio-
metric coefficientsx andg of the reactant and product
complexes, respectively. Let us present these programs
on the examples.

3.1.3.1. Example lIn this case only the second pro-
gram is needed because the reaction is already written
in its canonical form.

stoil = ToStoichiometry[{L + R — Cig}]
returns variabletoil  containing the list
{species — {L,R,Crg},M — 3,
reactionSteps — {L+R — Cig},R — 1,
a — {{1},{1},{0}},
B — {{0}.{0}.{1}},
variables — {1, r,Crg}}. 9)

These results can be compare@®@p The list of species

is automatically ordered by the prograsmandg cor-
respond to this new order. IMathematicathe arrow
above only expresses replacement rules and has noth-
ing to do with limits or reaction arrows, i.e. should

be replaced in calculations with the expression given
above. Any part of the results can be extracted and used
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Table 1
Rates and multipliers of rates for speéi@sExample IIP
Component no. Rate components Multiplier of X Multiplier of Y Multiplier of Z Eqg. no.
or rate vectotw of w(x, y, z)
Z3
1 c1————=y 1-0 0-1 1-1 (5a)
(K1+72)°
i 0 0 0-0 (5b)
2 [ — —1 1 —|
o+ K22
3 a 1-0 1-2 0-0 (5¢)
4 Ca 1-0 0-0 0-0 (5d)
5 38 0-1 0-0 0-0 (5e)
(,‘5'
6 1-1 0-0 1-0 5f
60 T K (5f)
7 crz 0-0 0-0 0-1 (59)

a x, y, zare concentrations of X (cytosolic &3, Y (Ca* in endoplasmic reticulum) and Z (inositol-1,4,5-trisphosphate)c; andK1—Ks
are constants (séable 5. 0< p < 1 in component 6 indicates the degree of receptor-dependent activation.

b FromMeyer and Stryer (1988Notations were modified.

in further calculations, e.@/.stoil  extractsx from
variablestoil

3.1.3.2. Example Il.Usually reactions are written in
the form of chains as in (2§3) or (4). This is different

Table 2
Source code of th€oCanonical Mathematicaunction

from the canonical forn8) which is used by both the
mathematical theory and most of our programs. Thus,
except when the natural and canonical forms are iden-
tical (as in Example 1) a preparatory program is needed
to transform the natural form into the canonical one.

ToCanonical [chains ] :=

Module [{rulebreak={
(* Rules to break up chains *)
(x_ ey oz ) {xoy,yez},
(x_+oy —z_) o {xey,y—z},
(x_eoy —z_) > {xeoy,yez},
(x_—y <z ) > {x—>y,yeoz},
(x_—y <z ) > {x—y,yoz},
x_—y —z )= {x—>y,y—z},
(x_—y «—z_ )= {x—y, vz},
(x_—y —z ) > {x—y,y—oz},
(x_—y_ «z_) > {x—y,y—z}},

(* Rules to arrange arrow directions *)

rulerev={(x_ <y ) = (y—x),(x_—y ) —>{x—>y,y—x}}},

(* Rules applied *)

Flatten[chains//.rulebreak/.rulerevl]]
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For reaction (2) we can write 3.1.3.3. Example lllIn the calcium spiking model we

ToCanonical[{G + Crg — Cgrr — G* + Crrl] first write

which returns canoIII

(G + Crp — Cen.Con — Cin + G*) = ToCanonical[{Y+Z—> X+ Z,X—> Y,

The program can process reversible reactions whichare 2 > X+ Y. A>X —>B.C+X — X +2.Z — C}]

indicated with the double-head arraw. For example,

introducing one reversible step, we have
Y+Z—->X4+Z,X—>Y,2Y > X+Y,A— X,
canolII = ToCanonical[{G + Crg <> Cgrr
X—BC+X—>X+2Z,Z— C}

d G* + CLR}] . . .
) _ o (because of the lexical ordering of the reactions the
which returns variableanoll  containing output order may be different from the input order),
{G+Crr—Ccrr,Corr—G + Crr,Corr— Crr + G¥) then

Similarly with two reversible steps one gets stoilll = ToStoichiometry[canoIIT,{A,B,C}]

ToCanonicall{G + Crr <> CoLr <> G* + Crr}] {species — {X,Y,Z},M — 3, reactionSteps

{G+ Cir — Carr,Corr — G+ Cra, - {0>XX—>0,X—>Y,X—>X+7Z2Y

CGLR — CLR +G*,CLR +G* — CGLR} e X+Y, 7 — 0,Y+ Z—> X+ Z},R e 7,0(

Then we can apply the second program to reag®yn — {{0.1.1,1,0.,0,0}.{0.0.0.0,2,0. 1},

For example {0,0,0,0,0,1,1}}, — {{1,0,0,1,1,0, 1},
Stoill = ToStoichiometry[canoII,{Crg}] {0,0,1,0,1,0,0},{0,0,0,1,0,0, 1}},
where the external species is indicated as the last (op- variables — {x,y, z}} (12)

tional) argument. It yields ) o
In the latter program the external species are again in-

{species — {G,Cqrr,G"}, M — 3, reactionSteps dicated as the last argument. In this example there are
M = 3 time-dependent quantitigsy, zandR=7 steps
(reactions and translocations), that is why the stoichio-
R — 3, — {{1,0,0},{0, 1, 1},{0, 0, O}, metric coefficientsr ands are 3x 7 matrices.

B — {{0, 1,0},{1, 0, 0},{0, O, 1}},

— {G — Cgrr.Cerr — G,CgLr — G¥},

3.2. Evolution equations
variables — {g,Cqrr.0"}) (10)
3.2.1. Examples of evolution equations

of which« andg can be formatted to give ) . .
What does interest us is the temporal evolution of

1 00 010 the concentrations of L, R and gin the first example,
a=|0 1 1], =11 0 0 of G, CgLr and G* (G R is assumed to be constant) in
000 00 1 the second one, and of X, Y, Z in the third one. The con-

centrations of the individual (formal chemical) species
Matrix o gives the stoichiometric coefficients of the are usually denoted by the same letters in italicized
reactant complexes and matgixhose of the product  |owercase form. The concentration can be expressed
complexes. In these matrices the rows correspond t0in molarity or mass, with respect to a fixed mass, vol-
theM species and the columns to tReeaction steps.  ume or area. The units of the reaction rate coefficients
Note that the sum of the coefficients in each column of must be consistent with those of the concentrations. For
a gives the order of the reaction step. the sake of simplicity, in the rest of the paper we will
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consider concentrations expressed in moles per unitbecause the units depend on the stoichiometric coeffi-

volume.

3.2.1.1. Example IThe usual system of evolution
equations for reactio(l) is:

1(t) = —ki()r(r), (t) = —ki(0)r(r),
cLr(t) = kl(1)r (1),

wherek is the reaction rate coefficieriit), r(t) and
cLr(t) denote the concentrations at titraf the species
L, R and GR, respectively, andj(z), »(z) and cLr(z)
denote their derivatives with respect to time.

The differential Eq(12) are based on the assump-
tion that the individual reactions proceed according to
the (inetic) massaction law(Assumption L It means
that the velocity of reactioffl) is the product of the
guantities of the reactanitd) andr(t) multiplied by the
reaction rate coefficient. One can also say that Hére

(12)

cients of the species: in afirst order reaction the unitofa
reaction rate coefficient (reciprocal of time unit) is dif-
ferent from that of a second order one (reciprocal of the
product of time and concentration units). Here, itis as-
sumed in the kinetic differential E¢L3)that the effects
of different reaction steps are additive. This is a funda-
mental assumption of reaction kineti¢gsssumption @

The essentiaimilarity betweer(12)and(13)is that
the rates of the steps are multiplied by the net changes
of the species involved. The net changes of G, &
G' inreaction (2a) ar) — 1,1 — 0 and0 — 0 and the
net changes of G, &r, G in (2b) are0 —0,0—1
andl — 0. Note that there is no equation for the quan-
tity of the external species |. The essentiaifference
betweer(12)and(13)+(14)is that(12)is a mere differ-
ential equation, where#$3)-14)is aninitial value or
Cauchy problemi.e. it also contains restrictior{§4)
on the initial values of the variables. These restrictions

andr(t) are raised to the power 1, because this is the jmply that the solution 0f13)<(14)is unique whereas

value of the stoichiometric coefficients of L and R in
the reactant complex.

that of (12) is not.
We simplified reactiof3) assuming that the concen-

The signs in the equations reflect the net changes tration of G g is constant. Another (often used) approx-

of the corresponding species. The net changes of L,

R and Gr are0—1, 0—1 and1 — 0, respectively,

imation consists in assuming that the rate of change of
the concentration of € r is close to zero. First let us

which means that L and R are destroyed in the reaction write down the full system of equations:

whereas R is created. (This seemingly cumbersome
notation is justified by the fact that writing1, —1,

1 would entail a loss of information because 1 results
also from, e.g. 2 1))

3.2.1.2. Example llInthe case of reactidf3) the sys-
tem of evolution equations is:

8(t) = —kig(t) + k-_1ceLr(?) (13a)
cGLR(7) = k1g(1) — (k—1 + k2)caLRr() (13b)
§"(t) = kacaLr(7) (13c)
8(0)=go, coLr(0)=g"(0)=0, (14)

whereg(t), coLr(t) andg’ (t) denote the concentrations
at timet of the species G, § r and G, respectively.
The positive real numbdr_ ; andkp are the reaction rate
coefficients characteristic of the velocity of the corre-

8(t) = —kig()err(t) + k—1caLr(?) (15a)
cr(t) = —k1g()err(t) + (k-1 + k2)ceLr(r)  (15b)
cGLr(7) = k1g()err(r) — (k-1 + k2)caLr(r)  (15¢)
g*(t) = kacaLr(?). (15d)

Then, using the conservation relation,

cLr(f) + coLr(?) = cLr(0) + coLR(0) = cLr(0) (16)

which is a mathematical consequence(d5b) and

(15c)andnota physical assumption imposed from out-

side, we get

caLr(t) = k18(t)(cLr(0) — coLr(1)
—(k_1 + k2)caLr(?). 17)

Assuming that the time derivative of r is zerocgLr

sponding reaction steps, while the positive real number can be expressed as

ki is actually the product of genuine rate coefficient

kappa and the (assumed to be constant) concentra-

tion of C R, k1 =kappac r. So, one has to be careful

g(*)cLr(0)

k_1+ ko
g)+K '

cgLr() = whereK = (18)
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Inserting this expression in{d5d)a rational function on vasopressin concentration. The functions describ-

is obtained as the rate of changegof ing each reaction and their constanialfle ) were
()eLr(0) obtained mostly from experimental measurements.

2 (0) = kp SR (19) It can be seen here that some of the rates of the
g+ K individual steps are of the mass-action type (products

Although this procedure seems to be not well-founded in components 3, 4 and 7, s&able ] but the others
from a mathematical point of view, it can be supported are not (ratios or non-integer exponents in components
by the theory of singular perturbations, see references 1, 2, 5 and 6Table 1 components 1, 2 and 5 being of
in Erdi and Toth (1989) Keleti (1986) Turanyi and Michaelis—Menten type). However, the reaction rates
Toth (1992)or Zachar (1998) We do not investigate ~ are again multiplied by the net changesl) of the

this model further; it is intended as an introduction to corresponding species, so Assumption 2 stillholds. The
the line of thought which lies behind the reaction rates components of the rate(x, y, z) of the individual steps

of the rational type found in the next example. atthe concentration vectot,,2and the corresponding
multipliers are shown iffable 1

The reactions that do not obey the mass-action law
are usually considered to be less fundamental than

but it is far from being a general law of nature. Exam- (10se thatobey it. They can be generally interpreted as
ple 11l offers a good illustration of this statement be- e result of lumping of several (unknown) reactions
cause many of the kinetic differential equations found © SPECies into a single one (that used in the model)

by Meyer and Stryer (1988)o not follow this law. (Toth et al., 199Y. They can be also obtained by fit-
These equations are: ting to an empirical function. Nevertheless these non-

mass-action rates are kinetic rates in the sense that they
z(t) )3 0 ( x(t) )2 are positive, continuous, monotonous functions of the
N — o ——2

3.2.1.3. Example IIl.The kinetic mass-action law of
Assumption 1 is verified experimentally in many cases

(1) = c1<

K1+ 20) X0+ K2 corresponding concentrationgo{pert and Khudyaev,
23 1985 or Szili and Toth, 1997.
teay(t)2 + ca—c @ ’ (20) Formal kinetics provides a framework to treat in a
3 4T 4 5 unified way chemical reactions and some transport phe-
nomena under certain circumstances, and this is also
3 5 exemplified here. The second step-XY expresses
(1) = _cl(i) y(t) + cz(L) the belief that translocation of €abetween the cy-
K1 +2(1) (x() + K2 tosol and the endoplasmic reticulum proceeds as if it
. 2 were a first order transformation between two different
c3y(1) (21) : : : .
species. Thigsssumption &nlarges the modeling ca-
pacity of formal reaction kinetics and is quite common
x(7) (Horn and Jackson, 19y.2
2(t) = cep—~——— — crz(t) (22)
x(t) + K3

3.2.2. Formal presentation
Eqg. (20) gives the rate of change of the cytosolic con-  |f the concentration of speciesyXat time € R{
centration of C&" with the first three terms (reaction s denoted byxm(t) then the usual kinetic differen-
rates) describing the cytosol-ER exchanges (reactionstial equation (assuming mass-action type kinetics for
(5a)-(5¢)), and the last two the source and sink (reac- the time evolution of these quantities) is the following
tions (5d), (5e)). Eq21)gives the rate of change of the  (polynomial autonomous) ordinary differential equa-
endoplasmic concentration of €avhich is merely the tion with the same notations as(8):
reverse of (5a)—(5c). E¢22) yields the rate of change R y
of the INPR; with the two reaction rates corresponding .
respectively to its synthesis (5f) and destruction (5g). (1) = Z(ﬁm)r = o)k 1_[ xp(0)*re,
Parametep in (22) expresses the relative level of ac- r=1 p=1
tivation of phospholipase C which ultimately depends (m =1,2,..., M) (23)
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Table 3
Source code of th&oStoichiometry Mathematicaunction

ToStoichiometry[r List,externalspecies List:{}]:=
Module [{RemoveExternal, ReactionSteps, Species,
Complexes, ComplexVectors, Reactants, ReactantVectors,
Products, ProductVectors,

(* Creates the rules to remove signs from complexes *)
RemoveSigns={(x —y ) — {x,y},n_Integer x_ — x,

x_ +y_—{x,v}} ££},

(* Creates the rules to remove external species ¥*)

RemoveExternal:{A_/;MemberQ[externalspecies,A]-—»0};

(* Removes external species *)

ReactionSteps=Sort[r//.RemoveExternall ;

(* Collects complexes from both sides of reaction steps *)

Complexes=Union [Cases [ReactionSteps, ,{2}11;

(* Collects species excluding external ones *)

Species

=Sort [Complement [Flatten[r//.RemoveSigns], externalspecies]];

(* Collects reactant and product complexes *)
Reactants=First/@ReactionSteps;
Products=Last/@ReactionSteps;
(* Gives the vectors describing different complexes *)
{ComplexVectors, ReactantVectors, ProductVectors}
=(Outer [Coefficient [#1,#2]&,#1,Species, 1]&)
/@{Complexes, Reactants,Products};
(* Creates the matrices of stoichiometric coefficients *)
{alpha,beta}=Transpose/@{ReactantVectors, ProductVectors};
(* Creates the names of variables *)
ff[x Symbol] :=ToExpression[ToLowerCase[ToString[x]]];
f£f[x ]:=MapAt[ff,x, {{1}}1;
(* Collects and formats the result *)
{species — Species, M — Length[Species],
reactionSteps — ReactionSteps, R — Length[ReactionSteps],
« — alpha, (3 — beta,

variables — ff/@Species]

41
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or in vectorial form 3.2.3.1. Example IThe stoichiometric coefficients
. N and g were given by the programoStoichiome-
x(t) = (B — o) - (k ® x(1)%). (24)  try and stored irstoil . Then

where® denotes componentwise product of vectors rhsI = RHS[stoiI]
(Horn and Jackson, 19Y.2

In the case when the reaction rates are not of the returns the right-hand sides of the differential equations
mass-action type theh reaction step has a reaction
ratew,(x(t)), if the vector of concentrations at tinhés
X(t). Then the form of the kinetic differential equation
(still corresponding to Assumption 2) is: These results are those given in EtR) provided we
give the rate coefficients or the rates of the reaction
steps in the corresponding order.

{—k1lr, — klr, k1r}

R
X (t) = Z(ﬁm,r - O5m,r)wr(x(l‘))»

r=1

3.2.3.2. Example IlAgain, using the coefficients
m=12 . M) (25) pe /g d

given by the functionToStoichiometry we can

or, in matrix notation write

x(1) = (B — &) - w(x(r)). (26)

In order for Eq.(25) to have a kinetic meaning further
regularity conditions (mentioned above) are required {—gki + K_1Cgrr, gki — KoCqrr — K_1Cgrr,K2Corr}
for the functionsw,.

rhsII = RHS[stoiII]

and get

These results are those given in equatidr®).

3.2.3. Calculation of the relevant quantities

The procedure summarized in Sect®2.2can be
fully automated when the mass-action law can be ap-
plied, and partially when it cannot. Progrd®tS(see
Table 4) calculates the right hand side of a kinetic
differential equation if the matrices, 8, provided by
the programToStochiometry  (see Sectior8.1.3 false.
and the vector of reaction rate coefficiekiare given. rhsIII = RHS[stoilll, MassAction — False]
RHSworks no matter what is the number of chemical
species and elementary steps, and is thus very helpfulWe do not reproduce the results as they are equivalent
for solving models involving many species and steps. to the right-hand sides of Eq&0)22).

In the case of a mass-action type kinetidSdisplays

each reaction step and asks the corresponding rate con-

stant one after the other. In the case of non-mass-action4. From evolution equations to system states
type kinetics it asks the ratesthemselves.

The mass-action type systems of kinetic differen- Typically dynamic systems present stationary, tran-
tial equations argolynomial differential equations  sient non-periodical, oscillatory or chaotic trajectories.
usually more complicated than linear equations, still The three examples chosen allow one to illustrate the
tractable enough from many points of view. This fea- first three of these behaviors and to present tools to de-
ture is unessential for simple models as those of Exam- cide which behavior is displayed by a given system.
ples | and I, but it becomes essential for introducing Having investigated the problem of stationary states
mass-action kinetics in full generality. Moreover, these (Section4.1) we will consider the evolution in time
are the arguments beneath the progf@hS Let us of the system which is a more complicated problem
present this program on the examples. (Sectior4.2).

3.2.3.3. Example IllIn this non mass-action type
example, the reaction rates(x, y, z) at the concen-
tration vector X,y,2) given in Table 1(second col-
umn) must be used as components of the vector
w and the (last) optional argument must be set to
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Table 4
Source code of the othétathematicgorograms

12,

5.

6.

Options [RHS] = {MassAction — True};
RHS[stres_,opts__ ?0ptionQl] :=Module[{w,rate},

Print[reactionSteps/.stres];
rate=Input [

"Provide the reaction rates in order of reaction steps."];
w=If [MassAction /. {opts} /. Options[RHS],

rate (Times@@(variables)®/.stres, ratel; ((8—a«)/.stres).wl;
Options[Kinetic] = {MassAction — True,NonZeros — {}};
Kinetic[a , ,rate ,vars ,opts  ?0ptionQ] :=Modulel{egs,w},

w=If [MassAction /. {opts} /. Options[Kinetic],

rate (Times@@vars®, ratel;
eqgs=If [MassAction /. {opts} /. OptionsI[Kinetic],

Flatten[{Thread[[rate # 0], Thread[ (8 — «) .w==01}1,

Flatten[{Thread[ (NonZeros/.{opts}/.Options [Kinetic]) # 0],

Thread[(8 — ) .w==01}11;

Union [{ToRules [Reduce [eqs, vars]]}]]
MassConservationl[a ,B3 ,vars ,vars0 ]:=

Module [{ns=NullSpace[Transpose[B —all},

Solve[If[ns # {},Thread[ns. (vars —vars0)==0],{}],varsl]
Options[StationaryPoints] = {MassAction — True,NonZeros — {}};
StationaryPoints[a_ ,B ,rate ,vars_ ,vars0_ ,opts__ ?0ptionQ]:=

Module [{w,ns=NullSpace[Transpose[B —all},

w=If [MassAction — /.{opts}/.Options[StationaryPoints],

rate Times@@vars®, rate];
Solvel[
Flatten[{If[MassAction /. {opts} /. Options[StationaryPoints],

Flatten[{Thread[[rate # 0], Thread[ (8 — «) .w==0]1}1,

Flatten[{Thread[ (NonZeros/.{opts}/.Options[StationaryPoints]) # 01,

Thread[(8 — ) .w==011}11,
If[ns # {},Thread[ns. (vars —vars0)==0]1,{}1}],vars]]
LinearizedEigenvalues[rhs ,vars ,sp ]:=

Map [Eigenvalues, Outer[D,rhs,vars]l/.sp
Deterministic[rhs_,vars ,vars0_,opts__ ]:=Modulel

{timevars=#[tl&/@vars},SetAttributes[D, Listablel;

43
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Table 4 Continued
Simplify [DSolve[Flatten[{

Thread [D[timevars, t] == (rhs/.Thread[vars — timevars])],
Thread[ (timevars/.t — 0) ==vars0] }], timevars, t,opts]]]
7. NDeterministic([rhs ,vars ,vars0O_,tfinal ,opts_ ]:=
Module[{timevars=#[t] &/@vars},
SetAttributes[D, Listablel;
de=Flatten[{Thread[D[timevars, t]
==(rhs/.Thread[vars — timevars])],
Thread[ (timevars/.t — 0) ==vars0] }1;

NDSolve [de, timevars, {t,0,tfinal}, opts]]

2 The code of RHS is similar to the mathematical expression (23), except that
multiplication (called Times in the program) being applied to the row vectors of a
matrix, the special operation @@, a shorthand for the Mathematica function Apply,
must be used.

® In order to express the equality of vectors Thread is needed here.

4.1. Stationary states firsttwo properties but not the third, i.e. it gives constant
solutions of the kinetic differential equations obeying
We consider first the existence of solutions that do the mass conservation relations that may happen to be
not change in time, then we examine if such solutions negative. Its inputarguments are the stoichiometric ma-

are stable or not. trices, the names of the variables and their initial val-
ues. Internally it calls sequentially two prograrks,
4.1.1. Calculation of the stationary points netic andMassConservation that can be also

The (seemingly) simplest question about a kinetic used separately.
differential equation is: which are the constant solu-  The programKinetic ~ (second inTable 4, cal-
tions of this equation? Constant solutions are inter- culates the zeros of the right hand side of a kinetic dif-
preted as stationary (or in some cases, equilibrium) ferential equation given the matrices of stoichiometric
solutions. They describe states where the system stayscoefficients, the vector of reaction rate coefficients and
forever if undisturbed. To find these states means solv- the names of the variables to be used. The calculations
ing three problems. First, the system of differential depend also on the type of rates (mass-action or not).
equations must be solved when their right hand sides Results are presented in table form. It is more appro-
are set equal to zero, which expresses that the velocitiespriate to useReduce thanSolve , because the latter
of formation of all species are zero. Second, |&ve of would only give the coarse solutions, those which do
mass conservatiomust hold for the stationary points.  not take into account special values of the parameters
Third, itis also necessary to eliminate non-physical so- (like zero); e.g. for egax+b=0 the coarse solution is,
lutions with negative values at this step. The properties x=—b/a whereas the fine one consists of three possi-
that a concentration vector (i) makes the species forma- bilities (i) x=—b/a for a# 0, (ii) x undetermined for,
tion vector zero, (ii) obeys the law of mass conservation a=0, b=0, (iii) no solution otherwiseg=0, b#0).
and (iii) is nonnegative, are independent, as can easily Solve andReduce are based on the algorithm for
be shown by simple examples. constructing Gobner basis, which is one of the most

The programStationaryPoints (fourth in important results in the last decades in theoretical com-
Table 4 calculates the stationary solutions using their puter science. This algorithm enables one to rewrite a
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polynomial system of equations into a triangular form,
in almost the same way as it is done in the process
of Gauss elimination for linear systems of equations
(Buchberger, 1970 (Triangular here means that the
first equation only contains a single variable, the sec-
ond one only two etc.) Then such equations can be
solved, sometimes symbolically and almost always nu-
merically. This procedure can also be extended to the
case when the rates are rational functions.

The other programMassConservation  (third
in Table 9, finds conditions to be fulfilled in order that
the law of mass conservation be valid. It needs the stoi-
chiometric matrices as input, the names of the variables
to be used and the initial values of the variables.

As to the third problem, that of eliminating the non-
physical solutions, the packagdgebra of Math-
ematicamight help decide whether a candidate sta-
tionary solution has non-negative coordinates. The pro-
grams in this package are designed to solve polynomial
inequalities in any dimensions based on new theoret-
ical developments. In practice, a faster answer can be
obtained if the parameters are given numerical values;
then the number of non-numerical parameters can be
gradually increased.

4.1.1.1. Example IThe stationary solutions are

given by StationaryPoints[ ao/.stoll,
B/.stoil, {k}, {lr,c r}, {l 0F 0.C 0}]
which yields

{{cck = Co+lg,r = —lo+ 19,1 — 0},
{ctrR = Co+To,r — 0,lg — lo —ro}}

These results give the coordinatgg, r, | of the sta-
tionary points, either agg +1g, ro — lp, 0 or asco +ro,
0, —rg +lp. The first one is acceptedlf < rp, and the
second iflp > rg, (both are accepted and identical if
lo =ro) because these are the conditions assuring non-
negativity.

For the null velocities, it is enough to consider one
equation from the set of three derived fr¢a®)

0= —kir, O=—kir, O=Kkir (27)

The first solution ig =0 with arbitrary concentrations

of the two other species, and the second solutiba 3

with arbitrary concentrations g andr. The species
formation rates are equal to zero if and only if con-
centration vectors are of these types. The same re-

45
sult is given with progranKinetic[  «/.stoail,
Bl.stoil,  {k}, {l,r,c (r}] whichreturns
{{1 — 0}, {r — O}}

The conservation of mass can be written:

cLr() + 1(r) = cLr(0) + 1(0),

cLr(t) + r(t) = cLr(0) + r(0) (28)
Program MassConservation[  «/.stoll, Bl.

stoil,  {lLr,c R} {l 0.F 0.C 0}] gives
{{1 - co—cr +lo, r — Co — CLr + lo}}
which is equivalent t@28).

4.1.1.2. Example I1Of the three equations derived
from (13)

0 = k18 — (k—1 + k2)cGLR,
(29)

0= —kig + k_1cGLR,
0 = kacgLr

onlytwo are independerinetic[  «/.stoill,/
g.stoill,  {ki,k —1,k 2}, {9.c cLrG* }] gives

{{g — 0,Cer — O}}

which means that there is only one solution, the first
two components of which are zero and the third one,
G*, can be arbitrary. The conservation of mass is

ceLR(?) + g(r) + &7 (1) = caLr(0) + g(0) + ¢7(0).
(30)

There is no mass conservation equation for the quantity
of the receptors because of our assumptions above.
Program  MassConservation[  «/.stoill,

B [.staill, {9,¢ cLrO* }, {90.C 0.9 0}]
turns(30)in a different form

re-

{{g = co— Carr + 9o — 9" + G5}

Let us apply now the specific initial conditio(4),
i.e. no GLR-complex and no activated G-protein are
present at time 0, to calculate the stationary points.

StationaryPoints[a/.stoIl,S/.stoll,
{k1,k-1,k2},{g.CLr. 9"}, {do, O, 0}]



46 J. Téth, J.-P. Rospars / BioSystems 79 (2005) 33-52

{{g" — 9o, & — 0.Carr — 0}}

This expresses that all G-proteins are activated but does
not mean that this state of the system can be reached
(see below).

4.1.1.3. Example IILIf one tries to determine the sta-
tionary point(s) of this example by the program above
then no result will probably be obtained within a rea-
sonable time. High school tricks might helpathe-
maticado the calculations in this specific case leading
to a result as long as five pages. Finding all the solu-
tions of such an equation numerically is a very hard
task. There are general methods to obtain all the roots
of multivariate polynomials and these are used by the
built-in NSolve of MathematicawhereN stands for
numerical. However, our system of equations cannot
be transformed into a polynomial system of equations,

not because of the presence of rational functions but be- ®3)

cause of the presence of the non-integer exponent 3.3.
To treat such cases one has to turn to specialized pro-
grams written to find roots of nonlinear systems. Such
an additional package has also been writterMathe-
matica(Statistics'NonLinearFit’ ). In some

cases one may use the ideas developed for this special
which ends with the same result as before (in general

situation and choose a simpler way as follows:

(2) Apply Kinetic

, giving the zeros of the right-
hand side, to the modified equations as follows:

Kinetic[w,B, wmodified/.meyerconst,
variables, MassActionFalse]

wheremeyerconst is the actual value of all the
constants occurring in the rates showTable 5
The result will be a table containing six solutions,
most of them being complex ones, only one is real
positive. It is

X y z

0.6 5.63422 0.07875

This is the solution we are looking for because of
the specific structure of the equations. As can be
checked numerically using the prograibeter-
ministic below, a solution starting from this
point remains there.

This solution can be used as an initial estimate
given to the built-in functiorFindRoot as fol-
lows:

spIII = FindRoot[rhsIII/.meyerconst,

{x, 0.6},{y, 5.63},{z, 0.079}]

] this will not be the case). The same result is obtained
(1) Modify the exponent 3.3 to 3. In the present case if e put the values of the constants into the five-page

it will not change the stationary point of the sys-
tem (when calculating the stationary point use Eq.
(21) to simplify Eq. (20); the reduced first equa-
tion ca(1 — (x()/c5)32 = 0 obviously has a solu-

long symbolic result mentioned above.

Finally, mass conservation implies no restric-
tions on the stationary points &dassConserva-
tion[ «f.stailll,/

Bl.stoilll,/ {xy,z },

tionindependent of the exponentin question). This 1y, y o 7 41] returns{{ }} which means that the set

giveswmodified as aresult.

Table 5
Values of the coefficients used for numerical study of Exampfe 11l

of restrictions is empty.

meyerconst =

{c1 —6.64,K; — 0.10,c3 — 5.00,c3 — 3.13 10°%,Ky — 0.15,

C4—>0.50,C5—>0.60,

cg— 1.00,K, —1.00,c7 —2.00,p— 0.42};

2 FromMeyer and Stryer (1988gxcepto (notations were modi-
fied).c1,csins™1, ¢z, €1, Cgin pMs™1, c7in uM, czin uM~1s71 Ky,
K2, Kz in wM, p without dimensions (degree of receptor-dependent
activation).
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4.1.2. Linear stability analysis vestigation (cfArrowsmith and Place, 1982f all the

So, solutions which do not change with time can eigenvalues were negative, the stationary points would
be found. This is not sufficient however because these be easily seen to be asymptotically stable. Note that
solutions are based on the assumption that no pertur-the eigenvalues depend on both the reaction rate coef-
bations are present, which is not realistic in practice. ficients and some of the initial concentrations.

Some constant solutions change drastically under small

perturbations, and therefore have no physical signifi- 4.1.2.2. Example IIHere the eigenvalues only de-
cance. Other constant solutions are significant, becausepend on the reaction rate coefficients,

they resist small disturbances and are consequently sta-

ble. A simple way (among many) to decide whether LinearizedEigenvalues[rhsII,

a stationary point is stable Imear stability analysis variables/.stoill, spII}]

(Arrowsmith and Place, 1982; Farkas, 199%his is
what we do here automatically.

Evenif a stationary pointis stable it may not obey the \/ >
law (sometimes called Principle) of Detailed Balance —k1—ky —ko—y/—dkika + (k-1 + k1 + k2)
(or the principle of microscopic reversibility) which is ’ 2
thought to be very important in chemical thermody- 2
namics Lewis, 1925. The content of this law is thatat ~ k-1 — k1 — k2 + \/_4k1k2 + (k-1 + ki + ko) 1
equilibrium all the individual subprocesses are equili- 2

brated, which_ in the case of chemical re_actions Means The stability of the stationary point cannot be decided
that the reaction steps should be reversible and shouldyseq on linear stability analysis; further investigations
have th(_e same reaction rate in b.oth directions. ObVi- gre needed. (Negativity of two eigenvalues suggest that
ously this property can only hold if all the elementary j; is probably stable.)

steps are reversible which is often not the cgséo‘or ' In the general case the negative real parts cannot
malmodels (as opposed to models expressing detailedpe 5o easily investigated as here. More complicated
chemistry) used here. In order to check this property methods must be used, the best known of which is
forreversible reactions one might use the necessary antine Routh—Hurwitz test. A review of these methods to-
sufficient condition provided bifeinberg (1989) gether with theVlathematicacodes of the correspond-

The essence of linear stability analysis is that one g algorithms can be found ifioth et al. (1998)
takes the linear approximation of the right hand side

(the Jacobian Matrix) and evaluates it at the station- 4 4 5 3. Example

ary points. If all the eigenvalues of this matrix have  gigenvalues  calculates the stationary points itself
negative real part then the stationary point is 8symp- gne cannot expect that it is able to calculate the

totically stable; if there is at least one eigenvalueé |inearized eigenvalues automatically. What can be
with positive real .part t.hen. the stationary pqint IS done is to apply the program with the calculated
unstable. Further mvestlgatlo_ns are needed if some stationary point in the following way:

of the real parts are negative and some are ze-

ros. PrograniinearizedEigenvalues (sixth in LinearizedEigenvalues[rhsIII/.meyerconst,
Table 4 calculates the eigenvalues of the linearized
equation.

’

Ill.Because Linearized-

variables/.stoiIII,{spIII}]

4.1.2.1. Example ILinearizedEigenvalues[rhsl,vari- {=7.33505, — 0.0582115 + 0.0650087 I,

ables/.stoil,spl]// Simplify returns —0.0582115 — 0.650087 I}

{{0, 0,k (ro —10)},{0, 0, k (ro + l0)}} The presence of a conjugate pair of eigenvalues with
which shows that either the first or the second station- réal parts close to zero suggests the possibility of
ary point is unstab|E, depending on Whetr@p |0 or AndronOV—Hopf bifurcation Ieadlng to perIOdIC solu-

ro<lo. The case when they are equal needs further in- tions Farkas, 1994
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4.2. Temporal evolution of relevant concentrations 4.2.2. Numeric solutions (Example 111)
However, in many cases one cannot solve the kinetic

The temporal evolution of the concentrations is of differential equation analytically. This is the case of the
foremost importancd, r, ¢ r in Example 1,9, CgLR, Meyer—Stryer model because its right-hand side con-
g’ in Example I, andx, y, zin Example Il1. In order to tains three variables and is highly nonlineabéter-
calculate these quantities as functions of time the initial ministic  is applied to this system it returns the input
values of each variable need be known on the basis unevaluated, which is the common behavioMath-
of measurements or theoretical arguments (although ematicaprograms. Then it is useful to have Program
precise values are not always required, see below). 8 (NDeterministic ), which is another version of

It can be proven from the form of kinetic differential  Program 7 usin§iDSolve instead oDSolve . In this
equations alone (without any physical reasoning) that case the program structure and its arguments are dif-
the solutions of kinetic differential equations are always ferent; the input arguments are the right-hand side, the
non-negative\olpert and Khudyaev, 1985However, names of the variables, the initial values of the vari-
it may happen that a numerical method provides neg- ables, an initial time (which has been given the de-
ative quantities, which prompted new developments in fault value 0), a final time and optional arguments to be
numerical mathematics aimed at overcoming this dif- passed tdNDSolve . The output is a list of functions
ficulty, see e.gFara@®, 1995; Farag and Kon@romi, numerically interpolating the concentration versus time
1990; Honath, 1998. curves.

The kinetic differential equation together with the The use of this program can be illustrated with the
initial values make up an initial value (or Cauchy) Meyer—Stryer model (values of all the coefficients are
problem. This problem can be solved in many cases giveninTable 5. Variablerhslll  , determinedin Sec-
either symbolically wittDSolve or numerically with tion 3.2.3 contains the right-hand side of the model
NDSolve . Symbolic solutions can also be based onre- in symbolic form. The concentration variables being
cent results on the explicit Taylor representation of the x(t), y(t) andz(t), a possible set of initial conditions is
solutions of polynomial differential equation84rton X0=1.2,y0=0.2,25=13. Although these values have

etal., 1971; Brenig, 1998 not been provided by the authors, they reproduce qual-
itatively their results because of the special structure of

4.2.1. Symbolic solution (Example I1) the model (see below). Let the final time be 1200 and
ProgramDeterministic (number 7 irTable 4 the number of calculation steps be 10,000 (this is done

calculates in analytical form the solutions of a kinetic using an optional parameterltbSolve ), as follows:
differential equation given the matrices of stoichiomet-
ric coefficients, the vector of reaction rate coefficients,
the variable names and initial values of the variables.  variables/.stoillI,{1.2,0.2, 13}, 1200,
The code use®Solve . An analytical solution can

only be obtained in simple cases when the right hand

side is linear or if there is only a single concentration The program stops with a message indicating that

involved inthe model. Let us try iton Example (2a, b): 10,000 steps were not enough. If the results up to 1200

is really needed theklaxSteps must be changed to

15,000. Here (see figures below) it is sufficient to do

variables/.stoilIab,{gy, 0, O}] the calculations up to time 1000, for which 10,000 steps
are more than enough. The variabt#lll  contains

S0l1III = NDeterministic[rhsIII/.meyerconst,

MaxSteps — 10000];
solIlab = Deterministic[rhsIIab,

_E—kit L kot
(-E k-l—Ek )gok1’ {{x[t] — InterpolatingFunction[{{0.,1000.}},
l - 2 13

{{glt]>E " gy, Corr[t] —
<> "|[t], y[t] — InterpolatingFunction
Go(ka — ™ ka (1 + E_klt)kZ)}} [{{0., 1000.}}," <> "|[ t], z[t] —

ki —k2 InterpolatingFunction[{{0., 1000.}},
which is the complete explicit solution. “ <> "]}

g'[t] —
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Fig. 1. Kinetic curves in Example Il. Evolution of the con-
centrationsg of the G-protein (solid line),cg r of the GLR
complex (dashed line) andg” of the activated G-protein G*
(dotted line) as a function of time. Plot obtained wikiot
[Evaluate[  {g[t],c[t] H.solll, {t,0,500 }]. Parame-
ters:k; =0.06,k_1 =0.01,k, =0.001,lp =00, gp = 1000,co = 0.

For using
X[t)/.sollll

these solutions one has to write
etc.

4.3. Presentation of results: solutions,
trajectories, selectivity curves

Plotting can hardly be automated: since each case

needs individual considerations, presentation of the so
lution of a kinetic differential equation is not a triv-
ial task. The plots are of two kinds, kinetic curves
(quantities versus time) showing the temporal evolu-
tion of the individual concentrations, arsglectivity
curves(evolution in the state space, i.e. concentration
versus concentration) obtained from pairs or triplets
of concentrations. The evolution of the vector of con-
centrations as a function of time is called thelu-
tion. If all coordinates are involved in the case of a

selectivity curve, then it is th&ajectory of the solu-
tion.

4.3.1.1. Example Il

Fig. 1 shows the solutiong(t), g* () and cgLr(t).
The plot for the longer period indicates that the model
reflects a relatively fast coupling thus the precoupling
hypothesis, that G and g are bound together from
the beginning, is not needed.

Fig. 2shows the trajectory in 3D spaag €cLr and
g’). The selectivity curvesg(versuscgLr, CeoLR Ver-
susg” andg versusg’) are monotonous, thus they are

not so interesting. They could have been produced by Table 5
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Fig. 2. Selectivity curve in Example Il. Trajectory of the solution
in state space with concentrations of Gg /& and G as the
three coordinates. Plot obtained wifParametricPlot3D-
[Evaluate[  {g[t],cGLRIt],g[t] H.solll, {t1,30 }].

applyingParametricPlot
functions.

to two of the coordinate

4.3.1.2. Example IlI

The kinetic curves are shown Figs. 3 and 4The
selectivity curveFig. 5) is closed which means that the
solution is periodic. It suggests that no matter how the
concentrations start they will move to a closed curve,
which is astable limit cyclelt explains why the choice
of initial conditions is usually of minor importance and
why they often need not be providdeg. 6 shows the

trajectory in 3D space; it reflects again the periodicity
of the solution.

20 40 60 80

Fig. 3. Kinetic curves in Example Ill. Evolution in time of
the concentrations of calcium in cytosol X (dashed line) and
of inositol trisphosphate Z (solid line). The interspike interval

decreases when increases. Plot obtained Riti[Evaluate

[ {x[t],z[t] H.sollll], {t,0,100 }]. Parameters: see
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20

Fig. 4. Kinetic curve in Example lll. Evolution in time of the
calcium concentration in endoplasmic reticulum Y. Plot obtained
{t,0,100 }];.

with  Plot[Evaluate[
Parameters: semble 5

40 60 80

{yltl  ¥.soll],

time
100

02 04 06 08

Fig. 5. Selectivity curve in Example Ill. Evolution in state space
of the concentrations of calcium in cytosol X and in endo-
plasmic reticulum Y. Plot obtained wittParametricPlot-
{t,0,100 }]; Pa-

[Evaluate[  {x[t],y[t]
rameters: se€able 5

time

60

H.sollll],

1

X
12

120 /

0.15

v

Fig. 6. Time evolution

[Evaluate[  {t.x[t],z[t]
Parameter: seEable 5

0.5 1
X

in state space of the concentra-
tions of cytosolic calcium X and inositol triphosphate Z in
Example 1ll. Plot obtained with ParametricPlot3D-

H.sollll],

{1,0,120

.

5. Discussion
5.1. Extensions

This paper provides an overview of the analysis
of biochemical systems illustrated by specific exam-
ples. Programs written in thilathematicalanguage
are given for solving the main problems met in this
kind of analysis. (It is not a hard task to modify the
programs so as to use version 2.2 or earlier; some of
the programs may be improved for version 4.) They are
intended to be as general as possible and can be applied
to chemical reactiostricto sensiut also to conforma-
tional changes and to translocations. With data storage
in files (seeWolfram, 2000, they can be applied to
large models with several dozens (or even hundreds)
of steps and species. However difficulties may be met
when applying them to similar or more complicated
cases than treated here.

We have considered the case of reaction rate co-
efficients that do notlepend on timeHowever, it fre-
quently occurs, even in the case of kinetics of the mass-
action type, that the rate coefficients do depend ontime.
This is common in neurochemistry because the rate of a
reaction step often depends on the presence or concen-
tration of a regulator molecule (e §yson et al., 1996
or on the voltage of the membrane (as for the axonal
sodium channel in the Hodgkin and Huxley model, see
e.g.Koch, 1999; Tuckwell, 1988 Such reactions are
usually highly nonlinear and characterized by thresh-
olds. Because such models have no explicit solutions,
they must be solved numerically. Example Il on cal-
cium spikes shows that the programs presented can be
used also in this case.

Explicit symbolic solution (or even some first in-
tegrals) of a kinetic differential equation can only be
obtained in rare cases. It is easier to get nhumerical so-
lutions although this may also be tricky. Moreover, nu-
merical solutions lack generality because they show
the behavior of the system only under special circum-
stances. Another approach is tpealitative theory of
differential equationsvhich makes it possible to draw
general conclusions even in cases when symbolic solu-
tions cannot be obtained. Several methods are available
(see e.gArrowsmith and Place, 1982; Farkas, 1994;
Guckenheimer and Holmes, 1983; Perko, 138ton
applicationsSchneider et al., 1987; Nak and Tyson,
1997, one of which, linear stability analysis, is con-
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