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Abstract. JPR 20jul07. This text contains the work done by Ilona from 9 to 20 July 2007 at INRA (ECONET project). It continues two previous texts: TwoProblems2.wxp (23/10/2004) and Tamas2.doc (25/07/2007). It provides a significant advance based on the analysis of a dozen of papers (Ilona found several new relevant papers). 

A first conclusion that can be drawn from this analysis is that the time-dependent solutions (as given by Naqvi, Torney & McConnel and Lamb & Pugh) are identical, whereas the time-independent solutions are not, which is an interesting asymetry. However, the differences between the later are (perhaps) relatively small (we should document this better). 

A second (tentative) conclusion is that it is not sure that the time-dependent solution (of Naqvi and others) is correct for long times. In this case the possibility of a steady-state (time independent) solution different from zero is not excluded. This is a major point but it remains uncertain. 

Third, I am unclear about the differences between the steady-state solutions and the time-dependent solution. Is it possible to reconcile merely  numerically (i.e. without bothering for their theoretical bases) the two kinds of solutions (time-independent or not)? From the example given in Section 3, paragraph f, the agreement does not seem to be obvious. There are hints on the quality of the solutions to describe actual physical experiments (and consequently selecting the best approximations) but this remains vague. 

Finally, although we are closer to a global understanding, a consistent presentation of this difficult subject remains to be achieved. However, before a problem can be solved it must be clearly presented: we are still trying to formulate the problems. 

1. TIME-INDEPENDENT SOLUTIONS BY ADAM & DELBRUCK (1968), BERG & PURCELL (1977), KEIZER (1985) & OTHERS 

1.1. Introduction

Three different methods are applied for deriving the reaction rate coefficient 
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 in the articles of Adam and Delbrück [1], Berg and Purcell [2], and J. Keizer [3, 5, 10]. Their forms are similar, except for the constant c:

[image: image2.wmf]c

s

b

D

k

-

=

+

)

/

ln(

2

p


where
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  Adam and Delbrück (1968),

[image: image4.wmf]4

3

=

c
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c = 0.231  Keizer (1985).


These differences come from the fact that they use different models and assumptions for the two-dimensional diffusion and also different mathematical and physical tools. In 1.3-1.4 there are the brief summaries from these three articles.


It is worth summarizing the notations and the connection between the rate coefficient and the mean capture time. Under experimental conditions when all targets (coated pits) are on the cell surface, they take up only 2% of the surface area. Thus, when modelling such a system, in [1], [2] and also in [4] a single target of radius a is considered. It is assumed that  particles diffuse about it in an annulus of outer radius b, where b is defined as
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 is the observed density (for example in #/
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where N is the number of the targets and A is the area of the membrane, 
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is the surface area which is occupied by an average target. The physical meaning of  b is that it is half the mean distance between two targets. It is also indicated in [5] that the 
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 is the density at the steady state.  In [1] and [2] the mean capture time [image: image11.wmf]t

 is calculated which is the time needed for a particle to hit a trap. The connection between the mean capture time and the reaction rate coefficient according to [4, page 575] is
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From these two equations, 
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which will be used later.
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1.2. Article of Adam and Delbrück [1]

In the article of Adam and Delbrück the model is discussed on pages 198-202 and on 212-213 in Appendix I. In this and also in the next paper the diffusion is described as the motion of a particle along a large surface toward a small target area. The mean diffusion times are the solutions of the diffusion equation in (2) on page 200. Here the initial and boundary conditions and also the steps of the general solution are described. The aim is to obtain the mean time in the form  
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 is given in (14). The two-dimensional diffusion space is modelled as a circular ring where 
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. The initial condition for the differential equation is t = 0: c = c0 and the boundary conditions are  r = a: c = 0, r = b: 
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  where c denotes the concentration of the particles

(In [4] on page 575 there is a remark what the boundary conditions mean in Adam and Delbrück. The inner boundary at r = a is absorbing while the outer boundary at r = b is reflecting. The reflecting boundary condition can be thought of in two ways. First it can be interpreted that on the boundary of a disk of radius b, just as many particles are moving across the boundary toward the trap as away from it. Another way to look at the reflecting boundary condition is that a particle crossing the boundary away from a trap sees the same picture on the other side, that is, another trap centered b units away.)

In Appendix I and in equations (13)-(16) there are the solutions for the diffusion equation for this special case.

The mean diffusion time has the form 
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. This is the first term of an infinite series and the approximation can be used with a relative error less then 6 percent if 
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. Using polynomial approximations it can be derived for very small k that
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or with our notations this equations is the same as
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Using that 
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Minor points: The values of  k and 
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 are given in [1] and we calculated c according to the above formula.

	k
	10-1
	  5 × 10-2
	2 × 10-2
	10-2
	5 × 10-3
	10-3
	10-4
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	1.103
	0.927
	0.792
	0.726
	0.660
	0.568
	0.485

	c
	0.65867
	0.66833
	0.72357
	0.81065
	0.70695
	0.70859
	0.70784


Question 1: Why are the values of  c calculated in the table far from 0.5? We do not know directly from the article how small  k is and what the relative errors of the formula are when applied to the cases given in the table.

Question 2: How can the definitions of the mean time here and in the next article be compared?

The conjecture of János Tóth is that the limit of  c as k tends to zero is 
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1.3. Article of Berg and Purcell [2]

In the article of Berg and Purcell the model is discussed on page 198 and on 217-218 in Appendix B. Their mathematical description is the following. The movement of a particle on the cell's surface is modelled as a random walk on a square lattice with a step size 
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 and a time unit 
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. At time t = 0 the particle is released at the point (x, y) and W(x, y) denotes the mean of all times which are necessary for the particle to be captured. According to this description, the meaning of the equation for W(x, y)  in (B1) is clear. Taking the limits, this becomes the Poisson equation in (B2). Its form suggests that W can be considered as a potential and 
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 as a charge density. This physical picture is used to obtain a formula for W  in (B3) in the following way. The equation (B2) is solved for the same case as in Adam and Delbrück where the cell and the absorber are considered as two concentric cycles. Here W(r) is determined as a potential between two concentric cylinders where the inner cylinder and the place between them is filled up uniformly with charges of opposite sign and equal in total amount. The solution of this physical problem is given in the equation (B3). 
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is the mean of  W over all starting points (B4). The final formula is the limit of (B4) in the case when 
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Using that 
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1.4. Article of Goldstein, Griego and Wofsy [4]


The results in this article for the rate constant are based on the behaviour of the so-called coated pits which trap the ligands and transport them across the plasma membrane. There are three distinct models about how they can work so that their density can be kept at a constant level. 1. The coated pits remain on the cell surface indefinitely, that is, they have an infinite lifetime. 2. They can disappear and then reappear at fixed locations on the cell surface. 3. They can recycle to random locations on the cell surface. The three models make different predictions for the rates at which diffusing receptors hit coated pits. Adam and Delbrück [1] and Berg and Purcell [2] showed how to calculate the forward rate constant for the interaction of diffusing particles with circular traps in two dimensions for the first model, i.e., when the traps are infinitely long-lived. In [4] there are calculations and examples of the other two models. The differences in the rate coefficients arise because of differences in the concentration distributions of receptors about coated pits for the three models. There are certain cases however, when the differences between the rate coefficients are very small (page 574).


There are formulas for the mean capture time and the rate coefficient in the cases when the finite lifetime and recycling of the coated pits are taken into account. The results of Berg and Purcell can be obtained as a special case, and it is summarized briefly below.


Consider the case when a circular trap of radius a alternates between open and closed states at the same location on the cell's surface. The time the trap remains open is assumed to have an exponential distribution with parameter [image: image41.wmf]1

l

, and the time the trap stays closed is exponential with parameter 
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 (that is, the probability of an open trap closing or a closed trap opening over a short time interval is proportional to the length of the time interval). A circular region of radius b is assigned to each trap location where b is defined as
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and P is the density of the open traps. (If [image: image44.wmf]1

l

 = 0, that is, the trap is infinitely long-lived, this is the same definition of  b as in section 1.1.) There are two possibilities for the behaviour of diffusing particles at the boundary of a closed trap; particles may be excluded from the region or may be free to diffuse into it. Both cases are described and the result of Berg and Purcell is obtained as a special case from the description of the first case. Two kind of mean capture times are defined: w1(r) is the mean capture time if the trap is open at t = 0 and w2(r)  is the mean capture time if the trap is closed initially. Two differential equations are obtained for them using a similar random walk approximation as in [2]. The mean capture time has the form
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where 
[image: image46.wmf]¥

t

 is the same as the mean capture time in [2] and [image: image47.wmf]a
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 depends on the parameters a, b, D, 
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. The formula for the rate constant is
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If 
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 = 0, then we recover the Berg and Purcell result, since in this case 
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 = 0. 

1.4. Articles of Keizer and Keizer and others [3, 5, 9, 10]

The formula for the rate coefficient as shown is section 1.1 can be found in [3, page 240], in [5, page 86] and in [10, page 174].  

Here are some important parts of the article [3]:

[3, page 235]: It is difficult in the Smoluchowski theory to account for rapid processes like energy transfer which occur not at contact, but over large distances.

[3, page 236]: There is a logarithmic divergence in the steady-state solution to the Fick's diffusion equation according to the Smoluchowski theory. Several suggestions for patching-up this difficulty have been offered such as in [1] and [2] but each gives a somewhat different result.

[3, page 237]: Collins and Kimball generalized the Smoluchowski theory to reactions that are not instantaneous. The same reference is here as in Naqvi.

Here a different approach is presented for calculating the bimolecular rate constants for rapid chemical reactions. The theory is based on the same intuitive combination of chemical and physical factors present in the Smoluchowski picture. Specific calculations, however, are based on the mechanistic statistical theory of nonequilibrium thermodynamics. In three dimensions, in the appropriate limit, the results of this theory reduce to the Smoluchowski theory and we obtain for the rate coefficient that 
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 where R  is the encouner radius and D  is the sum of the diffusion constants. Moreover, the theory gives finite results in two dimensions and so is applicable to rapid reactions in membranes.

A fundamental quantity in this theory is the radial distribution function which for molecules A and B is defined as
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where the distance r  is measured from the centre of mass of molecule A and [image: image55.wmf])
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 denotes the average density of molecules B in the spherical shell around A with radii r  and r + dr at time t.  This density can be measured experimentally. 
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  is the bulk density of molecules B. 

In the simplest case the reaction rate will depend only on the separation of the centers of mass, r, and can be written as a product of two factors. The chemical factor, k(r) is called the intrinsic reactivity reaction rate constant at this separation. The form of the intrinsic reactivity function depends on the reaction and is determined by quantum mechanical considerations. The physical factor is the average number of A-B pairs found in solution at that distance. Combining these factors, the bimolecular rate constant can be written in the form
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depends on time, then 
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 also does. This rate constant will be unique if the distribution of the A-B pairs is constant which is the case at thermal equilibrium or at a  nonequilibrium steady state. In general 
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 is perturbed at a nonequilibrium steady state. The perturbation can be described through density fluctuations, and using these notions the density correlation function is defined in (10).

Bimolecular Reactions in Membranes

This theory is also applicable to two-dimensional systems. (An example of a rapid reaction in a membrane is the quenching of fluorescence where the fluorescence lifetime of parinaric acid is about 5 ns.)

In the description of two-dimensional diffusion (page 240) there is an elementary molecular process that contributes to the density fluctuations and this is when the finite lifetime of the so-called coated pits are taken into account. Since the fluctuation theory is convergent in two dimensions, it can be used to examine the validity of modifications of the Smoluchowski theory. Consider a collection of stationary pits of density 
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 which act as perfect absorbers of dilute, diffusing particles. The transcendental equation for the trapping rate constant is given in (27). As the density of pits goes to zero, it is possible to show that that expression reduces to
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where 
[image: image64.wmf]p

b

r

p

/

1

2

=

. It is mentioned here that in Adam and Delbrück, and Berg and Purcell an arbitrary boundary condition is applied but it is left out from this theory and this form appears to be the correct result at low density. The theory described here provides a new way to calculate the rates of rapid reactions in solution. It generalizes the usual Smoluchowski theory and is applicable to one-, two-, and three-dimensional problems.

2.  TIME-DEPENDENT SOLUTIONS BY NAQVI (1974), TORNEY & McCONNELL (1983), AND LAMB & PUGH (1992) 

2.1. Introduction

The formula for the two-dimensional rate constant shown here comes from the classical solution based on Smoluchowski's method, and it is presented by Naqvi (1974), Torney & McConnell (1983) and Lamb & Pugh (1992):
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The aim of this part is to review the methods the authors used when deriving the time-dependent formula for the rate constant. We would also like to compare this with the time-independent expression. (Remark: The 
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 in the denominator in Tamas2.doc, 2006 was not correct.)

2.2. Article of Naqvi [6]

The starting equation in this article is the diffusion equation
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The model can be imagined in the following way. The target and the receptors are circles, and the target is fixed. The sum of their radii is 
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. The initial condition is

1. c(r, 0) = c0  (
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which means that at the initial moment, the concentration is constant everywhere outside the circle of radius 
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. The boundary conditions are

2. 
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3. 
[image: image72.wmf])

0

(

0

)

,

(

>

=

t

t

c

r


which mean that 2. very far from the circle, the concentration always remains constant and 3. at any moment (except for the first moment) the concentration on the perimeter of the circle is zero, that is, the receptors are immediately trapped as they reach the target.


Circular symmetry is assumed and applying the Laplace transformation and then using the results of Carslaw and Jaeger, the solution of this equation is
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where 
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are Bessel functions of the first and second kind. The total flux across the perimeter of the circle at 
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(according to 2001 JPR & JT) with the substitution 
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. This is twice less than in the paper, which is correct because it is in accordance with Torney & McConnel and Lamb & Pugh. This is a misprint in the article.

The rate constant can be calculated from 
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 in the following way (according to JT and JPR, 10-17 July 2001):
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This expression becomes infinite at t = 0 and tends to zero as 
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. The solution of the equation with this condition and the flux 
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 is given in (9) on page 282 in [6]. In this case the flux remains finite at t = 0. It is mentioned here, however, that for the derivation of the rate constant the above formula of 
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  is better to use despite the singularity of the rate at t = 0.
An estimation for the rate constant for small values of  t  (and 
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) according to page 282 is
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and for long times (if 
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 is large) is:
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where 
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0.5772157…is the Euler constant. This is again twice less than in the paper.

There is a reference to this article in [9] on page 940 which says that the Smoluchowski theory is not applicable at stationary states in two dimensions.

2.3. Article of Torney & McConnel

The same diffusion equation is solved here. The solution is on page 148, the equation (3a) for 
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 in section 2.2 with the notations 
[image: image94.wmf]r

k

=

=

R

D

,

 and  
[image: image95.wmf]0

0

2

c

Q

pr

=

. For large t and for small t two approximations are given for 
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, using the previous notations.

Two remarks (page 149): In this paper we discuss the model system only; for other types of reactions in two dimensions (steady state or near equilibrium) see McQuarrie & Keizer (1981) and Keizer (1981).

Remark from Tamas2.doc: The theory works if the reaction is pseudo-first-order. It assumes that the concentration around a sink is independent from other sinks, which is not good. Question: Is it true for small or for large times?

2.4. Article of Lamb & Pugh

In this article the same approximate formula is used for the rate coefficient as described in the previous two. 
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 describes the diffusional interaction of a single activated Rh* rhodopsin molecule with molecules of G-protein. The molecules first collide and then react. It is assumed that the reaction between the two diffusing species is equivalent to the case in which the molecule Rh* is fixed and the G.GDP diffuses with an effective diffusion coefficient  (DRh+DG). The diffusion limit to the rate 
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 at which Rh* could activate molecules of G-protein is approximately
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where t is time after the generation of the single molecule of Rh*, 
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 is the encounter distance, DRh and DG are the diffusion coefficients of Rh* and G.GDP respectively, and CG is the concentration of G.GDP in the membrane (molecules/ 
[image: image102.wmf]m

m-2) . This equation is a first-order expansion of a more complicated expression (which we can see in the first two articles), and the approximation is correct if the denominator is reasonably large. The reaction rate is not constant but in the range of times which are of interest of the authors, it turns out that this variation is relatively small, so 
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 may be approximated as a constant.

Remark: I think that this is not exatly the rate constant but rather the flux. In the formula for the 
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 there is a c0 in the numerator which is denoted by CG here. With the notation D = DRh+DG and k+ = 
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 (and dividing by CG), it easy to see that this expression is the same as the formula in the introduction.

Now let us compare the result in this example using the time-dependent and time-independent equations.

The diameters of the rhodopsin and 
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are 2,8 nm and 7 nm, so the sum of their radii is approximately 
[image: image107.wmf]=

r

4.9 nm. (In the article it is 5 nm but that does not make any difference.) The diffusion coefficient is:  D = DRh+DG = 1.9 
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m2s-1. The concentration of G.GDP is CG = 2500 
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m-2 . With these data 
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= 3,1653*105 (1/s) t  and the results are (in accordance with those on page 751):

	
	t = 5 ms
	t = 50 ms
	t = 500 ms
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 (flux)
	9601.4 s-1
	7006.4 s-1
	5515.6 s-1
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/ CG  (rate constant)
	3.8406
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m2s-1
	2.8026
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From the time-independent formula:
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where according to the theory of Adam & Delbrück and Burg & Purcell s is the radius of the fixed molecule. In this case it is the molecule of Rh* so s = 1,4 nm = 0,0014 m. b is half the mean distance between the targets and can be calculated as
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from where b = 0,011284 
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m. Thus if c = 0,231 then k+=  12,865 
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 m2s-1. If  c =0.5 or c = 0.75 then k+ is even larger. So in this example, 
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/ CG  and k+ are closest to each other when c = 0,231 as described in Keizer.

With these data, 
[image: image121.wmf][

]

2

/

)

(

4

ln

r

t

D

D

G

Rh

+

 -1.15 > 0 if  t > 9.9774*10-6 s. 

How can we compare the two results?

The time-dependent formula is
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If we compare this to the time-independent formula, they are approximately equal if the argument of ln is the same. Thus we obtain a formula for the time t :
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With the above data, t = 2.0523*10-4 s = 0.205 ms. In this case (if we assume that the constant c  is approximately the same as 0.575), the time-dependent and the time-independent formula give the same result.

2.5 Article of Szabo (Theory of Diffusion-Influenced Fluorescence Quenching, 1989)

This is a brief summary of the article of Attila Szabo concentrating on what may be important for us.

There are a number of approaches that describe the kinetics of the fluorescence quenching: A* + B 
[image: image125.wmf]®

A + B. (A* is an excited state, and B is a quencher or "trap".) The aim of this paper is to compare these approaches and their predictions - in one, two and three dimensions - and discuss their limitations. We will review this article from the point of view of the two-dimensional rate constant.

In section II the same formulas for the rate constants are derived as in 2.2 using the Smoluchowski approach which is the following. Consider the reaction A* + B 
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 A + B as above. Suppose that at t = 0 the system is homogeneous in which the concentrations of A* and B are [A*(0)] and c, respectively. Assume that both species are spherically symmetric and interact via a potential of mean force, U(r), that depends only on the A*-B distance. The above reaction occurs with a certain rate whenever A* and B diffuse together and come into contact. The time dependence of the relative concentration [A*(t)]/[A*(0)] is equivalent to the survival probability of excited-state molecule in the presence of quenchers at concentration c and will be denoted by P(t) which is supposed to satisfy the equation
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The time dependent rate constant  k(t) is calculated from the time-dependent radial distribution function of reactants denoted by p(r,t) as follows. One of the reactants, say A* is placed at the origin of a coordinate system and p(r,t) is assumed to satisfy the Smoluchowski equation
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where 
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  and  D is the relative diffusion coefficient of an A*-B pair (i.e., D =DA* + DB). The initial condition is p(r, 0) = 
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. If reaction always occurs when A* and B come in contact, then the differential equation is solved with the absorbing or Smoluchowski boundary condition p(a, t) = 0. The resulting rate constant is denoted here by kS(t). A finite rate of reaction at contact is described by using the partially or radiation boundary condition of Collins and Kimball in (2.7). 

Question: How can this be compared to the diffusion equation of Naqvi? János Tóth: We would need the Taylor series of the exponential function and also some connection between p and U. Using these, we could compare the two equations.

Time dependent Rate Constant

When U = 0, the following formulas can be derived for the two-dimensional rate constant:
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. The second and third line is exactly the same as the formulas for k+ as in section 2.2. The final approximation reproduces the first two terms in both the short and long-time expansions and is accurate to 1.3% for all times. (For an arbitrary potential, it is not possible to solve the equation analytically, however, there are approximations for both the short and long-time expansions.)

Steady-state rate constant

In the conventional formulation, the steady-state rate constant, denoted by kSS, is obtained from the long-time limit of the time-dependent rate constant
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In three dimensions, this leads to the classic result, but in one and two dimensions this procedure leads to the conclusion that kSS  = 0 (as it can be seen from the above formula). It means that this formalism cannot be applied to these dimensions. However, there is another way of calculating kSS  that leads to well-defined results in one and two dimensions.

The results for the rate constant kSS  are compared on pages 6934-6935 using the different approaches. Point c) is interesting:

Berg and Purcell attempted to get around the problem that the traditional procedure for obtaining the Smoluchowski kSS (i. e., by solving the steady-state diffusion equation) does not work in two dimensions, by using the concept of mean first passage times. 

2.6 Article of Keizer (Diffusion Effects on Rapid Bimoleculear Chemical Reactions, 1987)

Page 170:

Understanding the effect of diffusion in one and two dimensions is of experimental importance for rapid reactions in membranes. The Smoluchowski theory, unfortunately, does not always lead to well-poised problems in one and two dimensions. For example, the steady-state calculation of the bimolecular rate constant is inconsistent with the boundary condition at infinity in one and two dimensions. This is because the solutions to Laplace's equation are linear and logarithmic in one and two dimensions and so diverge at infinity. Various methods have been suggested to countervene this problem such as in [1, 2, 6]. The basic idea is to change the boundary condition at infinity into a boundary condition near by the sink. Here Naqvi, Adam & Delbrück, and Berg & Purcell are mentioned.

3. SUMMARY AND DISCUSSION

a. The time-dependent formula for the rate constant can be obtained from the Smoluchowski method. However, it is mentioned in Szabo and in Keizer, that we cannot apply this method when we would like to obtain a formula for the steady-state rate constant. This is because if time tends to infinity, the rate constant tends to zero, as we can see from the expression. Therefore, modifications or new methods have to be applied. These are described in Adam & Delbruck, Berg & Purcell and Keizer.

JPR 20jul07. Is the fact that the rate constant tends to zero a proof that the method is wrong?
We do not think that the method is wrong but rather it is suitable to describe only cases when the time is not too large.
b. The method of Adam &  Delbruck and Berg & Purcell contain modifications in the Smoluchowski theory. In these articles the diffusion space is described in the same way (as a circular ring [JPR: or disk?] but in Berg and Purcell the motion of the particle is modelled as a random walk. As a consequence, their starting equations for the diffusion are different. In Adam and Delbrück the equation is the diffusion equation and in Berg and Purcell it is the Poisson equation which does not contain the time. It is mentioned in [5] on page 86 that the difference between the two results (Adam & Delbrück and Berg & Purcell) depends on the way in which the boundary conditions are chosen.

JPR 20jul07. Is it possible to specify what were the boundaries conditions?

In Adam and Delbrück the two-dimensional diffusion space is modelled as a circular ring where 
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. The boundary conditions are  r = a: c = 0, r = b: 
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  where c denotes the concentration of the particles.
In Berg and Purcell the boundary conditions are the following (with mathematical notations, using the text on page 217): at r = a and r = b: c = 0 and at r = b: 
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c. Adam & Delbrück solved the same time-dependent diffusion equation as Naqvi but their boundary conditions contained a and b (where a is the radius of the target and b is half the mean distance between the targets) while the boundary conditions in Naqvi contained the encounter radius and infinity. Their initial condition was the same.

JPR 20jul07. Is it possible to translate in physical terms the boundary conditions used by Naqvi? 

(In Section 2.2:) The boundary conditions are

2. 
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which mean that 2. very far from the circle, the concentration always remains constant and 3. at any moment (except for the first moment) the concentration on the perimeter of the circle is zero, that is, the receptors are immediately trapped as they reach the target.

d. In Naqvi there is another solution for the flux (from which we obtain the rate coefficient) using different initial conditions as proposed by Collins and Kimball. In this case, the flux remains finite at t = 0. However, it is mentioned that analysing the results of the experiments, it is better to use the first formula (as described in section 2.2) despite the singularity at t = 0. The Collins-Kimball boundary conditions describe reactions which are not instantaneous.

JPR 20jul07. What are exactly the initial conditions of Collins & Kimball?

Following Collins and Kimball a new boundary condition is proposed instead of 
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= 0 and it can be thought of as a partially absorbing boundary.
e. In [1] and [2] the formulas are derived for the two-dimensional case, while the method of Keizer is more general, it is also suitable for three dimensions, from where we obtain the time-independent formula as a special case. Keizer's method differs significantly from the Smoluchowski method.

JPR 20jul07. What is in two words Keizer's method? 

In the simplest case the reaction rate can be written as an integral of the product of two factors:
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k(r) is the chemical factor which depends on the reaction and it is determined by quantum mechanical considerations. The physical factor, 
[image: image150.wmf])
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denotes the average number of A-B pairs in solution where the distance r is measured from the centre of molecule A.
f. It is mentioned in Keizer that his results are valid for rapid reactions and low density. We do not know yet, what rapid means exaclty, but there is a data in Keizer [3] which is 4 ns. We calculated in the case of the example in Lamb & Pugh that for what time range their equation can be used (t > 9.9774*10-6 s) and for what time it gives approximately the same result as the time-independent equation  (t = 0.205 ms). This is much less than the time range the authors are interested in, and we can see that the time-independent equation can be be used with approximately such values.

g. There are also references [3, page 235] that the Smoluchowski theory is not suitable to describe rapid processes. We do not yet understand why, but I think that the present papers do not give enough information, and we will have to look for other articles about that.
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