Motivation	Preliminaries	Absolute sensitivity	Quasi-thermostatic CRN	Example	Summary
000	0000	000000	0000000000	000	O

Cramer-Rao bound and absolute sensitivity in chemical reaction networks

[DL, Yuki Sughiyama, Tetsuya J. Kobayashi, arXiv:2401.06987, 2024.]

Dimitri Loutchko

April 2nd, 2024

FRK2024 Seminar

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Motivation 000	Preliminaries 0000	Absolute sensitivity 000000	Quasi-thermostatic CRN 000000000	Example 000	Summary O
Overview	,				

- 1 Introduction & Motivation
- 2 Preliminaries
- 3 Absolute sensitivity
- 4 Quasi-thermostatic CRN
- 5 Example

6 Summary

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Motivation	Preliminaries	Absolute sensitivity	Quasi-thermostatic CRN	Example	Summary
●00	0000	000000	0000000000	000	O

Introduction & motivation

Self-introduction

- currently: Postdoc in in the Quantitative biology lab, UTokyo
- 2019: PhD in the Fritz-Haber Institute of the Max-Planck Society under Gerhard Ertl
- studied chemistry (Humboldt-University, Berlin) and mathematics (Free University, Berlin)

Gerhard Ertl

- During PhD, I worked on protein dynamics and stochastic thermodynamics
- Now I work mainly on CRN theory, trying to combine thermodynamics with geometry
- Also on CRS theory (Kauffman's autocatalytic sets)
- Interested in the geometry of thermodynamics more generally

Introduction & motivation

CRN theory in the Quantitative biology lab, UTokyo, http://research.crmind.net/

Tetsuya J. Kobayashi

Yuki Sughiyama (now in Tohoku University)

Atsushi Kamimura

- Research on CRN as part of a CREST project on information physics since 2020
- Motivated by [Craciun, G., Dickenstein, A., Shiu, A., & Sturmfels, B. (2009). Toric dynamical systems. Journal of Symbolic Computation]
- Complex-balanced and equilibrium CRN are described by toric varieties = exponential families in statistics

Motivation	Preliminaries	Absolute sensitivity	Quasi-thermostatic CRN	Example	Summary
○○●	0000	000000	0000000000	000	O

Introduction & motivation

Today's talk

Based on the preprint [DL, Yuki Sughiyama, Tetsuya J. Kobayashi, arXiv:2401.06987, **2024**. (currently under review in SIAM: Journal on Applied Mathematics)]

Another example of the idea that there is a correspondence

vectors of chemical concentrations

 \longleftrightarrow probability distributions on finite spaces

- More concretely: Vectors of linear conserved quantities η in CRN depend on the choice of a basis for Ker[S^T],
- The sensitivity of concentration vectors x in the steady-state manifold \mathcal{V}^{ss} is (infinitesimally) captured by the sensitivity matrix $\chi = \frac{\partial x}{\partial n}$
- Goal: Define and study quantities that fulfill the same role as χ but are basis independent, hence *absolute*.

Preliminaries: Deterministic CRN (chemical reaction networks).

Basic notation

- *n* chemicals X_1, X_2, \ldots, X_n with concentration vector $(x_1, \ldots, x_n) \in X := \mathbb{R}_{>0}^n$.
- *m* reactions R_1, R_2, \ldots, R_m

$$R_j:\sum_{i=1}^n S_{ij}^- X_i \to \sum_{i=1}^n S_{ij}^+ X_i,$$

with fluxes $j_r \in \mathbb{R}_{>0}$, and the flux vector

- Flux vector $j = (j_1, \ldots, j_m) \in \mathbb{R}_{>0}^m$
- Stoichiometric $n \times m$ -matrix $S = S^+ S^-$.
- Deterministic dynamics $\frac{\mathrm{d}x}{\mathrm{d}t} = Sj$

Preliminaries: Vectors of conserved quantities

• Any vector $u \in \text{Ker}[S^T]$ yields the conserved quantity $\eta := \langle u, x \rangle$ as

$$\frac{\mathrm{d}\langle u, x\rangle}{\mathrm{d}t} = \langle u, Sj \rangle = \langle S^{\mathsf{T}}u, j \rangle = 0.$$

- Let q denote the dimension of Ker[S^T], choose a basis {u_i}^q_{i=1} of Ker[S^T], and write U = (u₁,..., u_q) for the respective n × q matrix of basis vectors.
- This gives the map

$$U^T: X \to \mathbb{R}^q.$$

■ For any initial condition x₀ ∈ X with η := U^Tx₀, the reaction dynamics is confined to the *stoichiometric polytope* (or *stoichiometric compatibility class*)

$$P(\eta) := \{x \in \mathbb{R}^n_{\geq 0} | U^T x = \eta\}.$$

 \blacksquare The range of meaningful parameters η is given by

$$H:=U^TX\subset\mathbb{R}^q$$

Preliminaries: Setup for this talk

Interested in the steady state manifold

$$\mathcal{V}^{ss} := \{ x \in X \text{ such that } Sj = 0 \}$$

Assume that, locally at $x \in \mathcal{V}^{ss}$, the map $U^T : \mathcal{V}^{ss} \to \tilde{H} \subset H$ has a differentiable inverse

$$\beta: \tilde{H} \to X.$$

Definition: the sensitivity matrix χ is the Jacobian matrix

$$\chi := D_{\eta}\beta = \frac{\partial x}{\partial \eta}.$$

 Remark: For complex-balanced CRN, the existence of this section is ensured by Birch's theorem [Craciun, Gheorghe, et al., Journal of Symbolic Computation (2009)]

Motivation 000	Preliminaries 000●	Absolute sensitivity 000000	Quasi-thermostatic CRN 0000000000	Example 000	Summary O

Preliminaries: Setup

<ロト < 回 ト < 臣 ト < 臣 ト 三 の < ()</p>

Motivation	Preliminaries	Absolute sensitivity	Quasi-thermostatic CRN	Example	Summary
000	0000	•00000	0000000000	000	O

Absolute sensitivity: Motivation

From now on, fix $x \in \mathcal{V}^{ss}$ and $\eta \in H$ such that $x = \beta(\eta)$.

Main idea

- Sensitivity matrix: Perturb η , then the linear response is given by χ .
- Matrix of absolute sensitivities: Perturb x, let it relax to the new steady state, then the linear response is given by A.
- More explicitly, perturb X_i by δx_i . Then the concentration change of X_j is $\alpha_{i \to j} \delta x_i$, to first order in δx_i .

Formalize

- Perturb the concentration of X_i by δx_i , then $x \mapsto x + \Delta x$ with $\Delta x = (0, \dots, 0, \delta x_i, 0, \dots, 0).$
- The vector η changes by $\Delta \eta = U^T \Delta x$
- The adjusted steady state is $\beta(\eta + \Delta \eta)$
- Linearize:

$$\beta(\eta + \Delta \eta) = \beta(\eta) + D_{\eta}\beta(\Delta \eta) + \mathcal{O}(\|\Delta \eta\|^2) = x + D_{\eta}\beta(U^T \Delta x) + \mathcal{O}(\|\Delta x\|^2).$$

Absolute sensitivity: Motivation

Formalize

- Perturb the concentration of X_i by δx_i , then $x \mapsto x + \Delta x$ with $\Delta x = (0, \dots, 0, \delta x_i, 0, \dots, 0).$
- The vector η changes by $\Delta \eta = U^T \Delta x$
- The adjusted steady state is $\beta(\eta + \Delta \eta)$
- Linearize:

$$eta(\eta+\Delta\eta)=eta(\eta)+D_\etaeta(\Delta\eta)+\mathcal{O}(\|\Delta\eta\|^2)=x+D_\etaeta(U^T\Delta x)+\mathcal{O}(\|\Delta x\|^2).$$

• The linear change of the concentration of X_j is

$$[D_{\eta}\beta(U^{\mathsf{T}}\Delta x)]_{j} = \left[\frac{\partial x}{\partial \eta}U^{\mathsf{T}}\Delta x\right]_{j} = \sum_{k=1}^{q} \frac{\partial x_{j}}{\partial \eta_{k}} u_{ik}\delta x_{i},$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Motivation	Preliminaries	Absolute sensitivity	Quasi-thermostatic CRN	Example	Summary
000	0000	000000	0000000000	000	O

Absolute sensitivity: Definition

Definition

The absolute sensitivity $\alpha_{i \to j}$ of X_j with respect to X_i at a point $x \in \mathcal{V}^{ss}$ is defined as

$$\alpha_{i\to j} := \sum_{k=1}^q \frac{\partial x_j}{\partial \eta_k} u_{ik}$$

and the *absolute sensitivity* of the chemical X_i is $\alpha_i := \alpha_{i \to i}$. The $n \times n$ matrix A of absolute sensitivities is given by

$$A_{ij} = \alpha_{j \to i}$$

and the vector α of absolute sensitivities is given by the diagonal elements of A, i.e., $\alpha = (\alpha_1, \ldots, \alpha_n)^T \in \mathbb{R}^n$.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Remark

The matrix of absolute sensitivities is given by $A = \chi U^T$.

Motivation	Preliminaries	Absolute sensitivity	Quasi-thermostatic CRN	Example	Summary
000	0000	000●00	0000000000	000	O

Absolute sensitivity: Geometry

$$(0, \dots, 0, \delta x_i, 0, \dots, 0) = \Delta x$$

$$(0, \dots, 0, \delta x_i, 0, \dots, 0) = \Delta x$$

$$(0, \dots, 0, \delta x_i, 0, \dots, 0) = \Delta x$$

 $\beta(\eta + \Delta \eta) = \beta(\eta) + D_{\eta}\beta(\Delta \eta) + \mathcal{O}(\|\Delta \eta\|^2) = x + D_{\eta}\beta(U^T \Delta x) + \mathcal{O}(\|\Delta x\|^2).$

Motivation	Preliminaries	Absolute sensitivity	Quasi-thermostatic CRN	Example	Summary
000	0000		0000000000	000	O

Absolute sensitivity: Basic properties

Theorem

The matrix of absolute sensitivities A is independent of the choice of a basis of $Ker[S^{T}]$. Moreover, the equality

$$\mathrm{Tr}[A] = \sum_{i=1}^{n} \alpha_i = q$$

holds, whereby $q = \dim \operatorname{Ker}[S^{T}]$.

Proof

Follows directly from the definition: U' denote another matrix of basis vectors, i.e., U' = UB for some $B \in GL(q)$. Then $\eta' = (U')^T x$ satisfies $\eta' = (U')^T x = B^T \eta$, where $\eta = U^T x$ and

$$A = \frac{\partial x}{\partial \eta} U^{\mathsf{T}} = \frac{\partial x}{\partial \eta'} \frac{\partial \eta'}{\partial \eta} U^{\mathsf{T}} = \frac{\partial x}{\partial \eta'} B^{\mathsf{T}} U^{\mathsf{T}} = \frac{\partial x}{\partial \eta'} (U')^{\mathsf{T}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Motivation	Preliminaries	Absolute sensitivity	Quasi-thermostatic CRN	Example	Summary
000	0000	00000●	0000000000	000	O

Absolute sensitivity: Basic properties

Theorem

The matrix of absolute sensitivities A is independent of the choice of a basis of $Ker[S^{T}]$. Moreover, the equality

$$\operatorname{Tr}[A] = \sum_{i=1}^{n} \alpha_i = q$$

holds, whereby $q = \dim \operatorname{Ker}[S^{T}]$.

Proof

The second claim is verified by differentiating $\eta_j = \sum_{i=1}^n u_{ij} x_i$, with respect to η_j and summung over all j:

$$q = \sum_{i=1}^{n} \sum_{j=1}^{q} \frac{\partial x_i}{\partial \eta_j} u_{ij} = \sum_{i=1}^{n} \alpha_i.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三三 - のへで

Definition of quasi-thermostatic CRN

Definition

A CRN is quasi-thermostatic if

$$\mathcal{V}^{ss} = \{x \in X | \log x - \log x^{ss} \in \operatorname{Ker}[S^{\mathsf{T}}]\}$$

holds for some base point x^{ss} , following [Horn, F. (1972). Necessary and sufficient conditions for complex balancing in chemical kinetics. Archive for Rational Mechanics and Analysis].

Equivalently, the steady state manifold of a quasi-thermostatic CRN can be parametrized by \mathbb{R}^q as

$$\gamma: \mathbb{R}^q \to X$$
$$\lambda \mapsto x^{ss} \circ \exp(U\lambda).$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Motivation 000	Preliminaries 0000	Absolute sensitivity 000000	Quasi-thermostatic CRN 0●00000000	Example 000	Summary O

Two parametrizations

Birch's theorem: There is a parametrization of \mathcal{V}^{ss} by the space H of conserved quantities given by

$$\beta: H \to X$$
$$\eta \mapsto \mathcal{V}^{ss} \cap P(\eta),$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

cf. [Horn 1972, and Craciun et al. 2009].

Motivation 000	Preliminaries 0000	Absolute sensitivity 000000	Quasi-thermostatic CRN 000000000	Example 000	Summary O

Absolute sensitivity

Diagram chasing yields

$$\begin{split} D_{\eta}\beta &= D_{\lambda}\gamma \cdot D_{\eta}(\gamma^{-1}\circ\beta) = D_{\lambda}\gamma \cdot [D_{\lambda}(\beta^{-1}\circ\gamma)]^{-1} \\ &= D_{\lambda}\gamma \cdot [D_{x}\beta^{-1}\cdot D_{\lambda}\gamma]^{-1}, \end{split}$$

where $\beta^{-1} = U^T$ and $D_\lambda \gamma = \text{diag}(x)U$ explicitly $(\text{diag}(x) \text{ is the } n \times n \text{ diagonal matrix with } \text{diag}(x)_{ii} = x_i.)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Absolute sensitivity

Diagram chasing yields

$$egin{aligned} D_\etaeta &= D_\lambda\gamma\cdot D_\eta(\gamma^{-1}\circeta) = D_\lambda\gamma\cdot [D_\lambda(eta^{-1}\circ\gamma)]^{-1}\ &= D_\lambda\gamma\cdot [D_xeta^{-1}\cdot D_\lambda\gamma]^{-1}, \end{aligned}$$

where $\beta^{-1} = U^T$ and $D_\lambda \gamma = \text{diag}(x)U$ explicitly $(\text{diag}(x) \text{ is the } n \times n \text{ diagonal matrix with } \text{diag}(x)_{ii} = x_{i.})$.

This yields the explicit form for the sensitivity matrix $\chi = D_{\eta}\beta = \text{diag}(x)U \cdot [U^T \text{diag}(x)U]^{-1}$ and for the matrix of absolute sensitivities

$$A = \chi \beta U^{\mathsf{T}} = \operatorname{diag}(x) U \cdot [U^{\mathsf{T}} \operatorname{diag}(x) U]^{-1} U^{\mathsf{T}}.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Cramer-Rao bound for CRN

As before, fix a point $x \in \mathcal{V}^{ss}$ with coordinates $\lambda \in \mathbb{R}^{q}$ and $\eta \in H$, respectively.

 \blacksquare Denote the Jacobian of the coordinate change from η to λ by

$$g_{\eta} := D_{\eta}(\gamma^{-1} \circ \beta) = [U^{T} \operatorname{diag}(x)U]^{-1}$$

■ Define the n × n diagonal matrix diag (¹/_x) by diag (¹/_x)_{ii} = ¹/_{xi} and the diag (¹/_x)-weighted inner product on ℝⁿ by

$$\langle v, w \rangle_{\frac{1}{x}} := \sum_{i=1}^n \frac{1}{x_i} v_i w_i$$

Let V be an arbitrary $n \times n$ matrix and \overline{V} a $n \times n$ matrix whose column span satisfies

$$\operatorname{Span}\left[\overline{V}\right] \subset \operatorname{Im}[S].$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Cramer-Rao bound for CRN

• The covariance matrix of I_n is defined as

$$\operatorname{Cov}(I_n) := (I_n - \overline{V})^T \operatorname{diag}\left(\frac{1}{x}\right)(I_n - \overline{V}).$$

It is called a covariance matrix because its elements are of the form

$$\operatorname{Cov}(I_n)_{ij} := \langle e_i - \overline{V}_i, e_j - \overline{V}_j \rangle_{\frac{1}{x}}.$$

Theorem: Cramer-Rao bound for CRN

For a quasi-thermostatic CRN, let the covariance matrix Cov(V) be defined as above. It is bounded from below by

$$\operatorname{Cov}(I_n) \geq Ug_{\eta}U^{T},$$

where the matrix inequality is understood in the sense that the difference matrix between the left hand side and the right hand side of the inequality is positive semidefinite.

Motivation	Preliminaries	Absolute sensitivity	Quasi-thermostatic CRN	Example	Summary
000	0000	000000	0000000000	000	O

Cramer-Rao bound and absolute sensitivity

Connection between CRN and absolute sensitivity

Recall that $A = \chi \beta U^T = \operatorname{diag}(x)U \cdot [U^T \operatorname{diag}(x)U]^{-1}U^T$ and that $g_\eta = [U^T \operatorname{diag}(x)U]^{-1}$, the CRB

 $\operatorname{Cov}(I_n) \geq Ug_{\eta}U^T$,

yields

$$\operatorname{Cov}(I_n) \geq \operatorname{diag}\left(\frac{1}{x}\right) A$$

For $\overline{V} = 0$, the diagonal elements yield $1 \ge \alpha_i$ which is not tight as can be seen by summing over all *i* and comparing with the general Theorem on absolute sensitivity, giving $n \ge q$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Motivation	Preliminaries	Absolute sensitivity	Quasi-thermostatic CRN	Example	Summary
000	0000	000000	00000000000	000	O

Tightening the bound

Goal: Minimize LHS of the CRB

$$\operatorname{Cov}(I_n) \geq \operatorname{diag}\left(\frac{1}{x}\right) A.$$

The diagonal entries of $\operatorname{Cov}(I_n)$ are given by the squared norm $||e_i - \overline{V}_i||_{\frac{1}{x}}^2 = \langle e_i - \overline{V}_i, e_i - \overline{V}_i \rangle_{\frac{1}{x}}$, which is minimized if and only if \overline{V}_i is the $\langle ., . \rangle_{\frac{1}{x}}$ -orthogonal projection of e_i to $\operatorname{Im}[S]$. Denote this projection as

$$\pi : \mathbb{R}^n \to \operatorname{diag}(x)\operatorname{Ker}[S^T].$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

This is enough to achieve equality.

Motivation	Preliminaries	Absolute sensitivity	Quasi-thermostatic CRN	Example	Summary
000	0000	000000	0000000000	000	O

Tightening the bound

The diagonal entries of $\operatorname{Cov}(I_n)$ are given by the squared norm $||e_i - \overline{V}_i||_{\frac{1}{x}}^2 = \langle e_i - \overline{V}_i, e_i - \overline{V}_i \rangle_{\frac{1}{x}}$, which is minimized if and only if \overline{V}_i is the $\langle ., . \rangle_{\frac{1}{x}}$ -orthogonal projection of e_i to $\operatorname{Im}[S]$. Denote this projection as

 $\pi: \mathbb{R}^n \to \operatorname{diag}(x)\operatorname{Ker}[S^T].$

Lemma

For quasi-thermostatic CRN, the absolute sensitivity α_i at a point $x = (x_1, \ldots, x_n)$ is given by

$$\alpha_i = x_i \|\pi(\boldsymbol{e}_i)\|_{\frac{1}{x}}^2,$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

where e_i is the *i*th canonical unit vector.

Linear algebraic characterization of absolute sensitivity

Theorem

For quasi-thermostatic CRN, the matrix of absolute sensitivities A at a point $x \in \mathcal{V}^{ss}$ is given by

$$A = \operatorname{diag}(x)\operatorname{Cov}(I_n)$$

with $\operatorname{Cov}(I_n)_{ij} = \langle \pi(e_i), \pi(e_j) \rangle_{\frac{1}{v}}$. Thus, the absolute sensitivities are given by

$$\alpha_{i\to j} = x_j \langle \pi(e_j), \pi(e_i) \rangle_{\frac{1}{x}}.$$

Corollary

For quasi-thermostatic CRN, the absolute sensitivities α_i satisfy

 $\alpha_i \in [0, 1].$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Motivation	Preliminaries	Absolute sensitivity	Quasi-thermostatic CRN	Example	Summary
000	0000	000000	0000000000	●00	O
Example					

Example: the core module of the IDHKP-IDH (IDH = isocitrate dehydrogenase, KP = kinase-phosphatase) glyoxylate bypass regulation system shown in the following reaction scheme:

$$E + I_{p} \xleftarrow{k_{1}^{+}} EI_{p} \xleftarrow{k_{2}^{-}} E + I$$

$$EI_{p} + I \xleftarrow{k_{3}^{+}} EI_{p}I \xleftarrow{k_{2}^{-}} EI_{p} + I_{p}.$$
(1)

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

I is the IDH enzyme, $I_{\rm p}$ is its phosphorylated form, and E is the bifunctional enzyme IDH kinase-phosphatase. The system obeys approximate concentration robustness in the IDH enzyme I [LaPorte, D. C., Thorsness, P. E., & Koshland, D. E. (1985). Journal of Biological Chemistry]

Absolute concentration robustness [Shinar, G., & Feinberg, M. (2010).
Science.]
If
$$k_2^- = k_4^- = 0$$
, the systems exhibits absolute concentration robustness in I.

Motivation 000	Preliminaries 0000	Absolute sensitivity 000000	Quasi-thermostatic CRN 0000000000	Example 0●0	Summary O
Example					

Abbreviate the chemicals as $X_1 = E, X_2 = I_p, X_3 = EI_p, X_4 = I, X_5 = EI_pI$ and use $x_i, i = 1, ..., 5$ for the respective concentrations.

What happens if $k_2^-, k_4^- > 0$?

For the complex balancing case (corresponds to the equilibrium situation), the absolute sensitivity for X_4 can be given in an analytically closed form based on the previous theorem, i.e., $\alpha_4 = x_4 \langle \pi(e_4), \pi(e_4) \rangle$. This yields

$$\alpha_4=\frac{1}{1+r},$$

where r is given by the ratio

$$r = \frac{(x_2 + x_5)(x_1 + x_3) + x_1(x_3 + 3x_5)}{x_4(x_1 + x_3 + x_5)}$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Motivation	Preliminaries	Absolute sensitivity	Quasi-thermostatic CRN	Example	Summary
000	0000	000000	0000000000	00●	O
_					

Example

What happens if $k_2^-, k_4^- > 0$?

The absolute sensitivity for X_4 ,

$$\alpha_4=\frac{1}{1+r},$$

is governed by r is given by the ratio

$$r = \frac{(x_2 + x_5)(x_1 + x_3) + x_1(x_3 + 3x_5)}{x_4(x_1 + x_3 + x_5)}$$

Approximate concentration robustness

Achieved for $r \gg 0$. This is the case, for example, for $x_1 \approx x_2 \approx x_3 \approx x_5 \gg x_4$, for $x_2 \gg x_1 \approx x_4 \approx x_3 \approx x_5$ as well as for $x_1 \approx x_3 \gg x_2 \approx x_4 \approx x_5$, etc.

High sensitivity is also possible

Achieved for $r \approx 0$. For example, when $x_4 \gg x_1 \approx x_2 \approx x_3 \approx x_5$.

Motivation	Preliminaries	Absolute sensitivity	Quasi-thermostatic CRN	Example	Summary
000	0000	000000	0000000000	000	•
Summary					

Caution

I just realized: On the current version of the arxiv preprint, Remarks became Definitions.

Summary

- The concept of absolute sensitivity might be more suitable to study sensitivity in CRN than then classical sensitivity matrix because the numerical values have meaning.
- Generalizes absolute concentration robustness (ACR):

 - If ACR in X_i holds, then α_{j→i} = 0 for all j.
 But it might be biologically relevant that α_{j→i} = 0 for some but not all j.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

- Quantifies approximate concentration robustness by $\alpha_i \approx 0$.
- Similarly, hypersensitivity can be quantified by $\alpha_i > 0$.
- Can be explicitly compute for complex-balanced CRN.