Symbolic Solution of Polynomial Differential Equations Via Cauchy–Riemann Equations. Applications to Kinetic Differential Equations.

Kelvin Kiprono<sup>1</sup> János Tóth<sup>1,2</sup>

<sup>1</sup>Department of Analysis and Operations Research, Institute of Mathematics, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.

<sup>2</sup>Chemical Kinetics Laboratory, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány P. sétány 1/A, H-1117 Budapest.

Formal Reactions Kinetics Seminar, April 2024

Kiprono, Tóth (BME)

Solution of Polynomial ODEs

FRK 2024 1/25

A D N A B N A B N A B N

### Table of Contents

### Introduction

- 2 Application of Cauchy–Riemann Equations
- 3 Linear Systems
- 4 Second-Order Reactions
- 5 Third Order Reactions
- 6 *R<sup>th</sup>*-Degree Systems
  - 7 Multivariate case
- 8 Comparison with the method of Calogero and Payandeh
  - Discussion and outlook

< □ > < □ > < □ > < □ > < □ > < □ >

### Introduction

Nonlinear differential equations.

- Numerical
- Symbolically
- Qualitatively
- No symbolic solution, except
  - in kinetics: Z. Szabó, Rodiguin, and Rodiguina, G. Lente
  - in differential equations: Kamke
- Another subclass will be solved.
- Cauchy–Riemann equations.
- Applications outside kinetics.
- Applications in kinetics.

▲ □ ▶ ▲ 三 ▶ ▲ 三

### Cauchy–Riemann–Erugin Equations

• Consider:

$$\dot{x} = u \circ (x, y), \quad \dot{y} = v \circ (x, y),$$
 (1)

Assume:

$$\partial_1 u = \partial_2 v, \quad \partial_2 u = -\partial_1 v.$$
 (2)

• We then write (1) satisfying (2) in the form:

$$\dot{z} = u \circ (x, y) + iv \circ (x, y) = f \circ z \tag{3}$$

- Solve the equation (3) for z := x + iy.
- Determine the real and imaginary parts of the solution.
- Find simple realization (few complexes and reaction steps).

### Linear Systems Trivial introductory example

In case of

$$\dot{x} = a + bx + cy, \quad \dot{y} = A + Bx + Cy, \quad (a, b, c, A, B, C \in \mathbb{R})$$

the Cauchy–Riemann conditions imply C = b, B = -c. Thus

$$\dot{x} = a + bx + cy, \quad \dot{y} = A - cx + by.$$

If it is to be kinetic as well, then  $a, A \ge 0$  and c = 0, or

$$\dot{x} = a + bx$$
  $\dot{y} = A + by$ .

イロト イポト イヨト イヨト

### Linear Systems

For z := x + iy one has

$$\dot{z} = a + iA + (b - ic)z, \quad z(0) = x_0 + iy_0$$
 (4)

if  $x(0) = x_0, y(0) = y_0$ . The solution of (4) is

$$z(t) = e^{(b-ic)t}\left(z(0) + \frac{a+iA}{b-ic}\right) - \frac{a+iA}{b-ic},$$

and by applying Euler's formula we obtain

$$\begin{aligned} x(t) &= e^{bt} \left( \cos(bt)(x_0 + \frac{ab - Ac}{b^2 + c^2}) + \sin(bt)(y_0 + \frac{ac + Ab}{b^2 + c^2}) \right) - \frac{ab - Ac}{b^2 + c^2}, \\ y(t) &= e^{bt} \left( \sin(bt)(x_0 + \frac{ab - Ac}{b^2 + c^2}) + \cos(bt)(y_0 + \frac{ac + Ab}{b^2 + c^2}) \right) - \frac{ac + Ab}{b^2 + c^2}. \end{aligned}$$

イロト イポト イヨト イヨト 二日

FHJ Graphs  $\dot{x} = a + bx, \quad \dot{y} = A + by$ 

The FHJ graphs of one realization for different values of b can be seen in the figures.



Figure: A reaction with a minimal number of complexes and reaction steps with b < 0.



Figure: A reaction with a minimal number of complexes and reaction steps with b > 0.

< □ > < 同 > < 回 > < 回 > < 回 >

# Solution of the kinetic case c = 0

$$\begin{aligned} x(t) &= (x_0 + \frac{a}{b})e^{bt} - \frac{a}{b}, \\ y(t) &= (y_0 + \frac{A}{b})e^{bt} - \frac{A}{b} \quad (t \in \mathbb{R}). \end{aligned}$$

**Even the general case can be solved with the classical methods.** This is not the case for the systems below, although the computation difficulties may be cumbersome even using the proposed new method.

FRK 2024 8 / 25

< □ > < □ > < □ > < □ > < □ > < □ >

### Second-degree systems

Start from

$$\dot{x} = a + bx + cy + dx^2 + exy + fy^2$$
,  $\dot{y} = A + Bx + Cy + Dx^2 + Exy$ 

It is of Cauchy-Riemann-Erugin form if:

$$\dot{x} = a + bx + cy + dx^{2} + exy - dy^{2},$$
  
$$\dot{y} = A - cx + by - \frac{e}{2}x^{2} + 2dxy + \frac{e}{2}y^{2}.$$

For z we have

$$\dot{z} = a + iA + (b - ic)z + (d - i\frac{e}{2})z^2, \quad z(0) = x_0 + iy_0.$$

with the solution:

$$z(t) = z_1 + \frac{z_2 - z_1}{1 - \frac{z(0) - z_2}{z(0) - z_1}} e^{(d - i\frac{e}{2})(z_2 - z_1)t} = z_2 + \frac{z_1 - z_2}{1 - \frac{z(0) - z_1}{z(0) - z_2}} e^{(d - i\frac{e}{2})(z_1 - z_2)t}$$
  
$$z_1, z_2 \text{ are roots of } f(z) := a + iA + (b - ic)z + (d - i\frac{e}{2})z_1^2$$

### Kinetic case $a, A \ge 0; d, e \le 0$ , and either b < 0, or b = 0, or b > 0.



Figure: The canonic realization for b < 0, b = 0, b > 0 respectively. Can you find "better" realizations?

Kiprono, Tóth (BME)

FRK 2024 10 / 25

<ロ> <四> <四> <四> <四</td>

### A second-degree example

### Example

The reaction

$$2X \xrightarrow{1} X + Y \xleftarrow{2} 0, \quad 2Y \xrightarrow{1} X + Y$$

induces the kinetic differential equation

$$\dot{x} = 1 - x^2 - 2xy + y^2$$
,  $\dot{y} = 1 + x^2 - 2xy - y^2$ 

that also satisfies Cauchy–Riemann's conditions. Adjoining the initial conditions x(0) = 2, y(0) = 1 leads to the (complex) initial value problem:

$$\dot{z} = 1 + i + (-1 + i)z^2$$
,  $z(0) = 2 + i$ .

A D F A B F A B F A B

Second-Order Reactions

A second degree/example, cont. Complex solution and real and imaginary parts

Example

$$z(t)=rac{(1+i)(-2ie^{2\sqrt{2}t}+3(1+\sqrt{2})e^{4\sqrt{2}t}+3-3\sqrt{2})}{-8e^{2\sqrt{2}t}+3(2+\sqrt{2})e^{4\sqrt{2}t}+6-3\sqrt{2}}\quad(t\in\mathbb{R}).$$

Therefore,

$$\begin{aligned} x(t) &= \frac{2e^{2\sqrt{2}t} + 3(1+\sqrt{2})e^{4\sqrt{2}t} + 3 - 3\sqrt{2}}{-8e^{2\sqrt{2}t} + 3(2+\sqrt{2})e^{4\sqrt{2}t} + 6 - 3\sqrt{2}} \quad (t \in \mathbb{R}), \\ y(t) &= \frac{-2e^{2\sqrt{2}t} + 3(1+\sqrt{2})e^{4\sqrt{2}t} + 3 - 3\sqrt{2}}{-8e^{2\sqrt{2}t} + 3(2+\sqrt{2})e^{4\sqrt{2}t} + 6 - 3\sqrt{2}} \quad (t \in \mathbb{R}). \end{aligned}$$

#### Proposition

The denominator of the above expressions is never zero.

Kiprono, Tóth (BME)

Solution of Polynomial ODEs

FRK 2024 12 / 25

## Third-degree systems

with complete solution

Start from:

$$\dot{x} = a + bx + cy + dx^{2} + exy + fy^{2} + gx^{3} + hx^{2}y + jxy^{2} + ky^{3},$$
  
$$\dot{y} = A + Bx + Cy + Dx^{2} + Exy + Fy^{2} + Gx^{3} + Hx^{2}y + Jxy^{2} + Ky^{3}.$$

It is of Cauchy-Riemann-Erugin form if:

$$\dot{z} = a + iA + (b - ic)z + (d - i\frac{e}{2})z^2 + (h - i\frac{g}{3})z^3, \quad z(0) = x_0 + iy_0.$$

The solution is:

$$(z(t) - z_1)(z(t) - z_2)(z(t) - z_3) =$$
  
(z(0) - z\_1)(z(0) - z\_2)(z(0) - z\_3) exp(z\_1 - z\_2)(z\_1 - z\_3)(z\_2 - z\_3)(a - i\frac{b}{3})t,

where  $z_1, z_2$  and  $z_3$  are the roots of the polynomial  $f(z) := a + iA + (b - ic)z + (d - i\frac{e}{2})z^2 + (h - i\frac{g}{3})z^3$ 

### Kinetic case

$$\dot{x} = a + bx + dx^{2} + exy - dy^{2} + gx^{3} + hx^{2}y - 3gxy^{2} - \frac{h}{3}y^{3},$$
  
$$\dot{y} = A + by - \frac{e}{2}x^{2} + 2dxy + \frac{e}{2}y^{2} - \frac{h}{3}x^{3} + 3gx^{2}y + hxy^{2} - gy^{3}.$$

Note that terms of the same degree only depend on **two parameters** even in the general case.

< □ > < 同 > < 回 > < 回 > < 回 >

### FHJ Graph

realizations for b < 0 and g < 0



15 / 25

### A third-degree example

#### Example

The initial value problem:

$$\dot{x} = -3x + 6xy + x^3 - 3xy^2, \quad \dot{y} = 1 - 3y - 3x^2 + 3y^2 + 3x^2y - y^3,$$
  
 $x(0) = 1, \quad y(0) = 2.$ 

can be rewritten as:  $\dot{z} = (z - i)^3$ , z(0) = 1 + 2i with the solution

$$z(t) = i + \frac{2}{\sqrt{1-8t}}, \quad (t \in ] - \infty, \frac{1}{8}[),$$
  
thus  $x(t) = \frac{2}{\sqrt{1-8t}}, \quad (t \in ] - \infty, \frac{1}{8}[), y(t) = 1, \quad (t \in \mathbb{R}).$ 

<ロ> <四> <四> <四> <四</td>

### Can we have such a simple cubic equation in kinetics?

Unfortunately, not.

Proposition

The right-hand side  $(az + bi)^3$ ,  $(a, b \in \mathbb{R})$  can never come from a kinetic differential equation.

Kiprono, Tóth (BME)

Solution of Polynomial ODEs

FRK 2024 17 / 25

< □ > < □ > < □ > < □ >

# R<sup>th</sup>-Degree Systems

Seemingly no kinetic relevance, but nice.

#### Theorem

Let  $R \in \mathbb{N}_0$ , and suppose that the polynomials u, v defined as

$$u(x,y) := \sum_{r=0}^{R} \sum_{s=0}^{r} a_{r}^{s} x^{r-s} y^{s}, \quad v(x,y) := \sum_{r=0}^{R} \sum_{s=0}^{r} A_{r}^{s} x^{r-s} y^{s}$$
$$(a_{r}^{s}, A_{r}^{s} \in \mathbb{R}, s = 0, 1, 2, \dots, r; r = 0, 1, 2, \dots, R)$$

satisfy the Cauchy–Riemann equations. Then, for the complex-valued function z := x + iy one has

$$\dot{z} = a_0^0 + iA_0^0 + \sum_{r=1}^R (a_r^0 - i\frac{a_r^1}{r})z^r.$$

(Two parameters are left!—Kinetic:  $a_0^0, A_0^0 \ge 0, a_1^1 = 0.$ )

### Proof

A direct comparison of the coefficients in the Cauchy–Riemann equations gives

$$A_r^s = \frac{r-s+1}{s} a_r^{s-1} \qquad (s = 1, 2, 3, \dots, r; r = 1, 2, 3, \dots, R), \quad (5)$$
$$A_r^s = -\frac{s+1}{r-s} a_r^{s+1} \qquad (s = 0, 1, 2, \dots, r-1; r = 1, 2, 3, \dots, R). \quad (6)$$

Eqs.(5) and (6) imply

$$a_r^s = -\frac{(r-s+2)(r-s+1)}{s(s-1)}a_r^{s-2}$$
 (s = 2, 3, ..., r; r = 2, 3, ..., R). (7)

The recursive application of (5) and (7) proves the theorem.

イロト イポト イヨト イヨト

### Generalized Cauchy–Riemann equations

Suppose, u and v are the real and imaginary parts of the multivariate complex function f. Then:

$$\frac{\partial u}{\partial x_j} = \frac{\partial v}{\partial y_j}, \quad \frac{\partial u}{\partial y_j} = -\frac{\partial v}{\partial x_j}.$$

If we consider differential equations in four variables then we obtain:  $\dot{z}_1 = f_1 \circ (z_1, z_2)$ ,  $\dot{z}_2 = f_2 \circ (z_1, z_2)$ .where,  $f_1 = u_1 + iv_1$  and  $f_2 = u_2 + iv_2$ . Let us start from:

$$\begin{aligned} \dot{x}_{1} &= j_{1}x_{1}^{2} + j_{2}x_{2}^{2} + j_{3}y_{1}^{2} + j_{4}y_{2}^{2} \\ &+ j_{5}x_{1}x_{2} + j_{6}y_{1}y_{2} + j_{7}x_{1}y_{1} + j_{8}x_{1}y_{2} + j_{9}x_{2}y_{1} + j_{10}x_{2}y_{2} \\ &+ j_{11}x_{1} + j_{12}x_{2} + j_{13}y_{1} + j_{14}y_{2} + j_{15}, \end{aligned} \tag{8}$$

$$\dot{y}_{1} &= k_{1}x_{1}^{2} + k_{2}x_{2}^{2} + k_{3}y_{1}^{2} + k_{4}y_{2}^{2} \\ &+ k_{5}x_{1}x_{2} + k_{6}y_{1}y_{2} + k_{7}x_{1}y_{1} + k_{8}x_{1}y_{2} + k_{9}x_{2}y_{1} + k_{10}x_{2}y_{2} \\ &+ k_{11}x_{1} + k_{12}x_{2} + k_{13}y_{1} + k_{14}y_{2} + k_{15}, \end{aligned}$$

### Multivariate case, contd.

$$\begin{aligned} \dot{x}_{2} &= J_{1}x_{1}^{2} + J_{2}x_{2}^{2} + J_{3}y_{1}^{2} + J_{4}y_{2}^{2} \\ &+ J_{5}x_{1}x_{2} + J_{6}y_{1}y_{2} + J_{7}x_{1}y_{1} + J_{8}x_{1}y_{2} + J_{9}x_{2}y_{1} + J_{10}x_{2}y_{2} \\ &+ J_{11}x_{1} + J_{12}x_{2} + J_{13}y_{1} + J_{14}y_{2} + J_{15}, \end{aligned}$$
(10)  
$$\dot{y}_{2} &= K_{1}x_{1}^{2} + K_{2}x_{2}^{2} + K_{3}y_{1}^{2} + K_{4}y_{2}^{2} \\ &+ K_{5}x_{1}x_{2} + K_{6}y_{1}y_{2} + K_{7}x_{1}y_{1} + K_{8}x_{1}y_{2} + K_{9}x_{2}y_{1} + K_{10}x_{2}y_{2} \\ &+ K_{11}x_{1} + K_{12}x_{2} + K_{13}y_{1} + K_{14}y_{2} + K_{15}. \end{aligned}$$
(11)

We arrive at:

$$\dot{z}_1 = (j_1 - i\frac{\dot{j}_7}{2})z_1^2 + j_{11}z_1 + j_{12}z_2 + (j_{15} + ik_{15}),$$
 (12)

$$\dot{z}_2 = (J_1 - i\frac{J_7}{2})z_2^2 + J_{11}z_1 + J_{12}z_2 + (J_{15} + iK_{15}).$$
 (13)

イロト イヨト イヨト イヨト

# Comparison with the method of Calogero

Calogero and Payandeh, 2021

#### Theorem

Consider

$$\dot{x_1} = a_0^0 + a_1^0 x_1 + a_1^1 x_2 + a_2^0 x_1^2 + a_2^1 x_1 x_2 + a_2^2 x_2^2,$$
(14)  
$$\dot{x_2} = A_0^0 + A_1^0 x_1 + A_1^1 x_2 + A_2^0 x_1^2 + A_2^1 x_1 x_2 + A_2^2 x_2^2,$$
(15)

and assume that

$$4a_2^2A_2^0 - a_2^1A_2^1 = 0, \quad A_1^0(2a_2^0 - A_2^1) + 2A_2^0(A_1^1 - a_1^0) = 0$$
(16)  
$$a_2^1A_1^0 - 2a_1^1A_0^2 = 0, \quad 2(-a_2^1 + A_2^2)A_2^0 + (2a_2^0 - A_2^1)A_2^1 = 0$$
(17)

hold. Then, the explicit symbolic solution of (14)–(15) can be constructed by applying the steps of the algorithm given in the paper.

Kiprono, Tóth (BME)

FRK 2024 22 / 25

< □ > < 同 > < 回 > < 回 > < 回 >

### Comparison with the method of Calogero

- Cauchy–Riemann–Erugin systems satisfy the Calogero–Payandeh equalities (their method implies ours) generally...
- Not all Cauchy–Riemann–Erugin systems can be solved by the method of Calogero and Payandeh; for example, the linear systems cannot, because they do not satisfy the above-mentioned technical conditions.
- There is a significant overlap in the scopes of the two methods concerning two-variable second-degree systems.
- Computational difficulties. We have seen that in the linear case, our method requires lengthier calculations than the traditional approach. However, in the second-degree case, our method and Colagero's are effective as opposed to the traditional methods.

A D F A B F A B F A B

### Summary, further possibilities, acknowledgement

We have shown how to solve

- some further kinetic differential equations, and
- some further polynomial differential equations

Further possible extensions

- Reaction-diffusion equations
- Approximation of "almost" CRE type equations
- Use of quaternions?

The present work has been supported by the National Research, Development and Innovation Office, Hungary (FK-134332). JT is grateful to Dr. J. Karsai (Bolyai Institute, Szeged University).

A (10) < A (10) < A (10)</p>

### References

#### F. Calogero and F. Payandeh.

Solution of the system of two coupled first-order ODEs with second-degree polynomial right-hand sides. Mathematical Physics, Analysis and Geometry, 24(3):29, 2021.

#### J. Giné and V. G. Romanovski.

Integrability conditions for Lotka–Volterra planar complex quintic systems. Nonlinear Analysis: Real World Applications, 11(3):2100–2105, 2010.



1

#### E. Kamke.

Differentialgleichungen: Lösungsmethoden und Lösungen. Springer-Verlag, 2013.



#### G. Lente.

Deterministic Kinetics in Chemistry and Systems Biology: The Dynamics of Complex Reaction Networks. Springer, 2015.



#### N. M. Rodiguin and E. N. Rodiguina.

Consecutive Chemical Reactions: Mathematical Analysis and Development (English edn.). D. Van Nostrand Co., New York, 1964.

#### Z. G. Szabó.

#### Kinetic characterization of complex reaction systems.

In Ch. Bamford and C. F. H. Tipper, editors, *Comprehensive Chemical Kinetics*, volume 2, chapter 1, pages 1–80. Elsevier, Amsterdam, Oxford, New York, 1969.