
Symbolic Solution of Polynomial Differential Equations
Via Cauchy–Riemann Equations.

Applications to Kinetic Differential Equations.

Kelvin Kiprono1 János Tóth1,2
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Introduction

Introduction

Nonlinear differential equations.

Numerical
Symbolically
Qualitatively

No symbolic solution, except

in kinetics: Z. Szabó, Rodiguin, and Rodiguina, G. Lente
in differential equations: Kamke

Another subclass will be solved.

Cauchy–Riemann equations.

Applications outside kinetics.

Applications in kinetics.
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Application of Cauchy–Riemann Equations

Cauchy–Riemann–Erugin Equations

Consider:
ẋ = u ◦ (x , y), ẏ = v ◦ (x , y), (1)

Assume:
∂1u = ∂2v , ∂2u = −∂1v . (2)

We then write (1) satisfying (2) in the form:

ż = u ◦ (x , y) + iv ◦ (x , y) = f ◦ z (3)

Solve the equation (3) for z := x + iy .

Determine the real and imaginary parts of the solution.

Find simple realization (few complexes and reaction steps).
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Linear Systems

Linear Systems
Trivial introductory example

In case of

ẋ = a + bx + cy , ẏ = A + Bx + Cy , (a, b, c ,A,B,C ∈ R)

the Cauchy–Riemann conditions imply C = b,B = −c . Thus

ẋ = a + bx + cy , ẏ = A− cx + by .

If it is to be kinetic as well, then a,A ≥ 0 and c = 0, or

ẋ = a + bx ẏ = A + by .
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Linear Systems

Linear Systems

For z := x + iy one has

ż = a + iA + (b − ic)z , z(0) = x0 + iy0 (4)

if x(0) = x0, y(0) = y0. The solution of (4) is

z(t) = e(b−ic)t

(
z(0) +

a + iA

b − ic

)
− a + iA

b − ic
,

and by applying Euler’s formula we obtain

x(t) = ebt
(

cos(bt)(x0 +
ab − Ac

b2 + c2
) + sin(bt)(y0 +

ac + Ab

b2 + c2
)

)
− ab − Ac

b2 + c2
,

y(t) = ebt
(

sin(bt)(x0 +
ab − Ac

b2 + c2
) + cos(bt)(y0 +

ac + Ab

b2 + c2
)

)
− ac + Ab

b2 + c2
.
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Linear Systems

FHJ Graphs
ẋ = a + bx , ẏ = A + by

The FHJ graphs of one realization for different values of b can be seen in
the figures.

a

A-b

-b
0

X Y

Figure: A reaction with a minimal number of complexes and reaction steps with
b < 0.

a

Ab

b0X
2X

Y
2Y

Figure: A reaction with a minimal number of complexes and reaction steps with
b > 0.
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Linear Systems

Solution of the kinetic case
c = 0

x(t) = (x0 +
a

b
)ebt − a

b
,

y(t) = (y0 +
A

b
)ebt − A

b
(t ∈ R).

Even the general case can be solved with the classical methods.
This is not the case for the systems below, although the computation
difficulties may be cumbersome even using the proposed new method.
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Second-Order Reactions

Second-degree systems

Start from

ẋ = a +bx + cy +dx2 + exy +fy2, ẏ = A +Bx + Cy +Dx2 + Exy +Fy2.

It is of Cauchy–Riemann–Erugin form if:

ẋ = a + bx + cy + dx2 + exy − dy2,

ẏ = A− cx + by − e

2
x2 + 2dxy +

e

2
y2.

For z we have

ż = a + iA + (b − ic)z + (d − i
e

2
)z2, z(0) = x0 + iy0.

with the solution:

z(t) = z1 +
z2 − z1

1− z(0)−z2

z(0)−z1
e(d−i e

2
)(z2−z1)t

= z2 +
z1 − z2

1− z(0)−z1

z(0)−z2
e(d−i e

2
)(z1−z2)t

z1, z2 are roots of f (z) := a + iA + (b − ic)z + (d − i e2 )z2.
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Second-Order Reactions

Kinetic case
a,A ≥ 0; d , e ≤ 0, and either b < 0, or b = 0, or b > 0.

ẋ = a + bx + dx2 + exy − dy2, ẏ = A + by − e
2x

2 + 2dxy + e
2y

2 + dy .

a

A-b

-d

-e/2

-b

-2 d -e -e/2

-d

0

X

2X

Y

X +Y

2Y

X +2Y2X +Y

a A

-d

-e/2

-2 d -e -e/2

-d

0

X

2X

Y

X +Y

2Y

X +2Y2X +Y

a A

b
-d

-e/2

b-e/2

-d

-2 d -e

0

X

2X

Y

2Y

X +Y

X +2Y2X +Y

Figure: The canonic realization for b < 0, b = 0, b > 0 respectively. Can you find
”better” realizations?
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Second-Order Reactions

A second-degree example

Example

The reaction

2X
1−−→ X + Y

2←−→
1

0, 2Y
1−−→ X + Y

induces the kinetic differential equation

ẋ = 1− x2 − 2xy + y2, ẏ = 1 + x2 − 2xy − y2

that also satisfies Cauchy–Riemann’s conditions. Adjoining the initial
conditions x(0) = 2, y(0) = 1 leads to the (complex) initial value problem:

ż = 1 + i + (−1 + i)z2, z(0) = 2 + i .
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Second-Order Reactions

A second degree/example, cont.
Complex solution and real and imaginary parts

Example

z(t) =
(1 + i)(−2ie2

√
2t + 3(1 +

√
2)e4

√
2t + 3− 3

√
2)

−8e2
√

2t + 3(2 +
√

2)e4
√

2t + 6− 3
√

2
(t ∈ R).

Therefore,

x(t) =
2e2
√

2t + 3(1 +
√

2)e4
√

2t + 3− 3
√

2

−8e2
√

2t + 3(2 +
√

2)e4
√

2t + 6− 3
√

2
(t ∈ R),

y(t) =
−2e2

√
2t + 3(1 +

√
2)e4

√
2t + 3− 3

√
2

−8e2
√

2t + 3(2 +
√

2)e4
√

2t + 6− 3
√

2
(t ∈ R).

Proposition

The denominator of the above expressions is never zero.
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Third Order Reactions

Third-degree systems
with complete solution

Start from:

ẋ = a + bx + cy + dx2 + exy + fy2 + gx3 + hx2y + jxy2 + ky3,

ẏ = A + Bx + Cy + Dx2 + Exy + Fy2 + Gx3 + Hx2y + Jxy2 + Ky3.

It is of Cauchy–Riemann–Erugin form if:

ż = a + iA + (b − ic)z + (d − i
e

2
)z2 + (h − i

g

3
)z3, z(0) = x0 + iy0.

The solution is:

(z(t)− z1)(z(t)− z2)(z(t)− z3) =

(z(0)− z1)(z(0)− z2)(z(0)− z3) exp (z1 − z2)(z1 − z3)(z2 − z3)(a− i
b

3
)t,

where z1, z2 and z3 are the roots of the polynomial
f (z) := a + iA + (b − ic)z + (d − i e2 )z2 + (h − i g3 )z3
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Third Order Reactions

Kinetic case

ẋ = a + bx + dx2 + exy − dy2 + gx3 + hx2y − 3gxy2 − h

3
y3,

ẏ = A + by − e

2
x2 + 2dxy +

e

2
y2 − h

3
x3 + 3gx2y + hxy2 − gy3.

Note that terms of the same degree only depend on two parameters even
in the general case.
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Third Order Reactions

FHJ Graph
realizations for b < 0 and g < 0

a

A

-b

-d

-e/2

-2 d

-e

-b

-e/2

-d

-h

-3 g

-g

-h/3

-3 g

-h

-h/3

-g

0

X 2X

X +Y

Y

2Y

X +2Y

3X

2X +Y

2X +2Y

3Y

X +3Y
3X +Y

4Y

Figure: Canonic realization in the third order case when b < 0, g < 0.
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Third Order Reactions

A third-degree example

Example

The initial value problem:

ẋ = −3x + 6xy + x3 − 3xy2, ẏ = 1− 3y − 3x2 + 3y2 + 3x2y − y3,

x(0) = 1, y(0) = 2.

can be rewritten as: ż = (z − i)3, z(0) = 1 + 2i with the solution

z(t) = i +
2√

1− 8t
, (t ∈]−∞,

1

8
[),

thus x(t) = 2√
1−8t

, (t ∈]−∞, 1
8 [), y(t) = 1, (t ∈ R).
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Third Order Reactions

Can we have such a simple cubic equation in kinetics?

Unfortunately, not.

Proposition

The right-hand side (az + bi)3, (a, b ∈ R) can never come from a
kinetic differential equation.
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Rth-Degree Systems

R th-Degree Systems
Seemingly no kinetic relevance, but nice.

Theorem

Let R ∈ N0, and suppose that the polynomials u, v defined as

u(x , y) :=
R∑

r=0

r∑
s=0

asr x
r−sy s , v(x , y) :=

R∑
r=0

r∑
s=0

As
rx

r−sy s

(asr ,A
s
r ∈ R, s = 0, 1, 2, . . . , r ; r = 0, 1, 2, . . . ,R)

satisfy the Cauchy–Riemann equations. Then, for the complex-valued
function z := x + iy one has

ż = a0
0 + iA0

0 +
R∑

r=1

(a0
r − i

a1
r

r
)z r .

(Two parameters are left!—Kinetic: a0
0,A

0
0 ≥ 0, a1

1 = 0.)
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Rth-Degree Systems

Proof

A direct comparison of the coefficients in the Cauchy–Riemann equations
gives

As
r =

r − s + 1

s
as−1
r (s = 1, 2, 3, . . . , r ; r = 1, 2, 3, . . . ,R), (5)

As
r = −s + 1

r − s
as+1
r (s = 0, 1, 2, . . . , r − 1; r = 1, 2, 3, . . . ,R). (6)

Eqs.(5) and (6) imply

asr = −(r − s + 2)(r − s + 1)

s(s − 1)
as−2
r (s = 2, 3, . . . , r ; r = 2, 3, . . . ,R). (7)

The recursive application of (5) and (7) proves the theorem.
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Multivariate case

Generalized Cauchy–Riemann equations

Suppose, u and v are the real and imaginary parts of the multivariate
complex function f . Then:

∂u

∂xj
=

∂v

∂yj
,

∂u

∂yj
= − ∂v

∂xj
.

If we consider differential equations in four variables then we obtain:
ż1 = f1 ◦ (z1, z2), ż2 = f2 ◦ (z1, z2).where, f1 = u1 + iv1 and f2 = u2 + iv2.
Let us start from:

ẋ1 = j1x
2
1 + j2x

2
2 + j3y

2
1 + j4y

2
2

+ j5x1x2 + j6y1y2 + j7x1y1 + j8x1y2 + j9x2y1 + j10x2y2

+ j11x1 + j12x2 + j13y1 + j14y2 + j15, (8)

ẏ1 = k1x
2
1 + k2x

2
2 + k3y

2
1 + k4y

2
2

+ k5x1x2 + k6y1y2 + k7x1y1 + k8x1y2 + k9x2y1 + k10x2y2

+ k11x1 + k12x2 + k13y1 + k14y2 + k15, (9)
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Multivariate case

Multivariate case, contd.

ẋ2 = J1x
2
1 + J2x

2
2 + J3y

2
1 + J4y

2
2

+ J5x1x2 + J6y1y2 + J7x1y1 + J8x1y2 + J9x2y1 + J10x2y2

+ J11x1 + J12x2 + J13y1 + J14y2 + J15, (10)

ẏ2 = K1x
2
1 + K2x

2
2 + K3y

2
1 + K4y

2
2

+ K5x1x2 + K6y1y2 + K7x1y1 + K8x1y2 + K9x2y1 + K10x2y2

+ K11x1 + K12x2 + K13y1 + K14y2 + K15. (11)

We arrive at:

ż1 = (j1 − i
j7
2

)z2
1 + j11z1 + j12z2 + (j15 + ik15), (12)

ż2 = (J1 − i
J7

2
)z2

2 + J11z1 + J12z2 + (J15 + iK15). (13)
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Comparison with the method of Calogero and Payandeh

Comparison with the method of Calogero
Calogero and Payandeh, 2021

Theorem

Consider

ẋ1 = a0
0 + a0

1x1 + a1
1x2 + a0

2x
2
1 + a1

2x1x2 + a2
2x

2
2 , (14)

ẋ2 = A0
0 + A0

1x1 + A1
1x2 + A0

2x
2
1 + A1

2x1x2 + A2
2x

2
2 , (15)

and assume that

4a2
2A

0
2 − a1

2A
1
2 = 0, A0

1(2a0
2 − A1

2) + 2A0
2(A1

1 − a0
1) = 0 (16)

a1
2A

0
1 − 2a1

1A
2
0 = 0, 2(−a1

2 + A2
2)A0

2 + (2a0
2 − A1

2)A1
2 = 0 (17)

hold. Then, the explicit symbolic solution of (14)–(15) can be constructed
by applying the steps of the algorithm given in the paper.
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Comparison with the method of Calogero and Payandeh

Comparison with the method of Calogero

Cauchy–Riemann–Erugin systems satisfy the Calogero–Payandeh
equalities (their method implies ours) generally...

Not all Cauchy–Riemann–Erugin systems can be solved by the method
of Calogero and Payandeh; for example, the linear systems cannot,
because they do not satisfy the above-mentioned technical conditions.

There is a significant overlap in the scopes of the two methods
concerning two-variable second-degree systems.

Computational difficulties. We have seen that in the linear case, our
method requires lengthier calculations than the traditional approach.
However, in the second-degree case, our method and Colagero’s are
effective as opposed to the traditional methods.
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Discussion and outlook

Summary, further possibilities, acknowledgement

We have shown how to solve

some further kinetic differential equations, and

some further polynomial differential equations

Further possible extensions

Reaction-diffusion equations

Approximation of ”almost” CRE type equations

Use of quaternions?

The present work has been supported by the National Research, Development and
Innovation Office, Hungary (FK-134332). JT is grateful to Dr. J. Karsai (Bolyai
Institute, Szeged University).
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Discussion and outlook
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