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History of mass-action kinetics

• In 1972, Horn and Jackson introduced the basic properties and
found the complex balancing in mass-action kinetics [1, 2].

• In 2009, Craciun, Dickenstein, Shiu and Sturmfels gave a
characterization of the toric locus [3].

[1]: F. Horn. “Necessary and sufficient conditions for complex balancing in chemical
kinetics”. In: Arch. Ration. Mech. Anal. 49.3 (1972), pp. 172–186

[2]: F. Horn and R. Jackson. “General mass action kinetics”. In: Arch. Rational
Mech. Anal. 47 (1972), pp. 81–116

[3]: G. Craciun, A. Dickenstein, A. Shiu, and B. Sturmfels. “Toric dynamical
systems”. In: J. Symbolic Comput. 44.11 (2009), pp. 1551–1565
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My work on mass-action kinetics

• In 2022, Craciun, Jin and Sorea found a new structural of the
toric locus [4, 5].

• In 2023, Craciun, Deshpande and Jin discovered more properties
on the disguised toric locus [6, 7, 8].

[4]: J. Jin, G. Craciun, and M.-S. Sorea. “The structure of the moduli spaces of
toric dynamical systems”. In: Submitted (2023)

[5]: J. Jin, G. Craciun, and M.-S. Sorea. “The toric locus of a reaction network is a
smooth manifold”. In: Submitted (2023)

[6]: J. Jin, G. Craciun, and Deshpande A. “On the connectivity of the Disguised
Toric Locus”. In: Accepted by Journal of Mathematical Chemistry (2023)

[7]: J. Jin, G. Craciun, and A. Deshpande. “A Lower Bound on the Dimension of
the Disguised Toric Locus”. In: In revision by SIAM Journal on Applied Algebra
and Geometry (2023)

[8]: J. Jin, G. Craciun, and A. Deshpande. “On the Dimension of the R-Disguised
Toric Locus of Reaction Networks”. In: Preprint (2023)
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• A biochemical reaction can happen in the transformation of one
molecule to a different molecule inside a cell. Biochemical reactions
are mediated by enzymes, which are biological catalysts that can
alter the rate and specificity of chemical reactions inside cells.

• The key processes in biological and chemical systems are described
by biochemical reaction networks.

• A biochemical reaction network comprises a set of complexes
(reactants and products), and a set of reactions.

Complexes: {H2, O2, H2O}

A reaction: 2H2 +O2︸ ︷︷ ︸
reactant

→ 2H2O︸ ︷︷ ︸
product
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Mass-action kinetics and Euclidean embedded graph

• Standard deterministic mass-action kinetics says that the
rate at which a reaction occurs is proportional to the
concentrations of the reactant species.

Reaction: X1 +X2︸ ︷︷ ︸
reactant

k−→ X3 +X4︸ ︷︷ ︸
product

xi : the concentration of species Xi,

k : the reaction rate constant,

Reaction rate: kx1x2.

• A reaction network can be regarded as a Euclidean embedded
graph G = (V,E), where V ⊂ Rn

≥0 is the set of vertices of the
graph, and E ⊂ V × V is the set of oriented edges of G.
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Example: The Lotka-Volterra systems can be considered as a reaction
network in XY -plane with 6 complexes and 3 reactions.

X

Y

•

••

••

•

X

X + YY

2X0

2Y

Figure 1: A reaction network of the Lotka-Volterra system.

Species: S = {X,Y },
Complexes: C = {X,X + Y, Y, 2X, 2Y, 0},
Reactions: R = {X → 2X,X + Y → 2Y, Y → 0}.
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Example: We can translate the Lotka-Volterra systems into a
Euclidean embedded graph G in R2 with 6 vertices and 3 reactions.

X

Y

•

••

••

•

y1

y2y3

y4

y6

y5

Figure 2: A Euclidean embedded graph G = (V,E) of the Lotka-Volterra
system.

The set of vertices V = {y1,y2,y3,y4,y5,y6},

The set of edges E = {y1 → y4,y2 → y5,y3 → y6}.
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(a)

(b) (c)

Figure 3: Reaction networks and Euclidean embedded graphs.
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Weakly reversible

Let G = (V,E) be a Euclidean embedded graph.

(a) The set of vertices is partitioned by its connected components,
and we identify them by the subset of vertices that belong to that
connected component.

(b) A graph G = (V,E) is weakly reversible, if every edge in any
connected component is part of an oriented cycle.
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Example: Two Euclidean embedded graphs G and G′.

•0 •
2X

•
X + Y

(a) G = (V,E)

•0 •
2X

•
X + Y

(b) G′ = (V ′, E′)

Figure 4: G is weakly reversible, but G′ isn’t weakly reversible
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Mass-action system

Let G = (V,E) be a Euclidean embedded graph.

• Let k = (ky→y′)y→y′∈G ∈ RE
>0 be a vector of rate constants. We

call (G,k) a mass-action system, and its associated
dynamical system is given by

dx

dt
=
∑

y→y′∈E
ky→y′xy︸ ︷︷ ︸

reaction rate

× (y′ − y)︸ ︷︷ ︸
change of species

,

where xy = xy11 x
y2
2 · · ·x

yn
n with x ∈ Rn

>0 is the vector of
concentrations of the chemical species in the system.
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Invariant polyhedron

Given the mass-action system

dx

dt
=
∑

y→y′∈E
ky→y′xy(y′ − y).

• The stoichiometric subspace is the vector space spanned by
the reaction vectors with S = span{y′ − y : y → y′ ∈ E}.

• For any positive vector x0 ∈ Rn
>0, the set Sx0 := (x0 + S) ∩ Rn

>0 is
known as the (affine) invariant polyhedron of x0.
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Example: Recall a reaction network of the Lotka-Volterra system in
XY -plane. Given a rate constants vector k = (ky→y′)y→y′∈G ∈ RE

>0,
the mass-action system (G,k) is given by

X
k1−→ 2X, X + Y

k2−→ 2Y, Y
k3−→ 0.

Then the associated dynamical system is

dx

dt
= k1x1

(
1
0

)
+ k2x1x2

(
−1
1

)
+ k3x2

(
0
−1

)
=

(
k1x1 − k2x1x2

k2x1x2 − k3x2

)
.

X

Y

•

••

k1

k2

k3

••

•

X

X + YY

2X
0

2Y
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Figure 5: Possible dynamic for mass-action systems in two dimensions.
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Complex-balanced system

• Let (G,k) be a mass-action system, a state x0 ∈ Rn
>0 is a positive

steady state if

0 =
∑

y→y′∈G
ky→y′xy

0 (y′ − y).

• A positive steady state x0 ∈ Rn
>0 is complex-balanced if for every

vertex y0 ∈ VG, we have∑
y0→y′∈G

ky0→y′x
y0
0︸ ︷︷ ︸

outgoing flux on y0

=
∑

y→y0∈G
ky→y0

xy
0︸ ︷︷ ︸

incoming flux on y0

.

• If (G,k) has a complex-balanced steady state, then it is called a
complex-balanced system or toric dynamical system.

Jiaxin Jin (OSU) March 2024 16 / 53



Complex-balanced system

• Let (G,k) be a mass-action system, a state x0 ∈ Rn
>0 is a positive

steady state if

0 =
∑

y→y′∈G
ky→y′xy

0 (y′ − y).

• A positive steady state x0 ∈ Rn
>0 is complex-balanced if for every

vertex y0 ∈ VG, we have∑
y0→y′∈G

ky0→y′x
y0
0︸ ︷︷ ︸

outgoing flux on y0

=
∑

y→y0∈G
ky→y0

xy
0︸ ︷︷ ︸

incoming flux on y0

.

• If (G,k) has a complex-balanced steady state, then it is called a
complex-balanced system or toric dynamical system.

Jiaxin Jin (OSU) March 2024 16 / 53



Complex-balanced system

• Let (G,k) be a mass-action system, a state x0 ∈ Rn
>0 is a positive

steady state if

0 =
∑

y→y′∈G
ky→y′xy

0 (y′ − y).

• A positive steady state x0 ∈ Rn
>0 is complex-balanced if for every

vertex y0 ∈ VG, we have∑
y0→y′∈G

ky0→y′x
y0
0︸ ︷︷ ︸

outgoing flux on y0

=
∑

y→y0∈G
ky→y0

xy
0︸ ︷︷ ︸

incoming flux on y0

.

• If (G,k) has a complex-balanced steady state, then it is called a
complex-balanced system or toric dynamical system.

Jiaxin Jin (OSU) March 2024 16 / 53



Example: This system is complex-balanced. For example, at the
vertex (0, 1), there is one reaction going into it with flux value 3, and
there are two reactions leaving this vertex, with sum of fluxes being
2 + 1 = 3.

X

Y

• •

••

3 1

2

2

5

5

Figure 6: An example of a complex-balanced system. The positive numbers
on any edge is the flux of that reaction y → y′.
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Dynamical properties of complex-balanced systems

In [2], it shows that given a complex-balanced system (G,k) with the
stoichiometric subspace S. Let x∗ ∈ Rn

>0 be a complex-balanced steady
state, then

(a) All positive steady states are complex-balanced. There is exactly
one steady state within each invariant polyhedron.

(b) Any complex-balanced steady state x satisfies the following
relation: ln(x)− ln(x∗) ∈ S⊥.

(c) Every complex-balanced steady state is locally asymptotically
stable within its invariant polyhedron.

[2]: F. Horn and R. Jackson. “General mass action kinetics”. In: Arch. Rational
Mech. Anal. 47 (1972), pp. 81–116
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Toric locus

• Consider a E-graph G = (V,E), let V(G) ⊆ RE
>0 denote the set of

parameters k ∈ RE
>0, for which the dynamical system generated by

(G,k) is toric (i.e., complex-balanced).

• V(G) is called the toric locus of toric dynamical systems given by
the Euclidean embedded graph G.

• In [1], it shows that given an E-graph G = (V,E),

(a) If G = (V,E) is weakly reversible, then V(G) 6= ∅.

(b) If G = (V,E) is not weakly reversible, then V(G) = ∅.

[1]: F. Horn. “Necessary and sufficient conditions for complex balancing in
chemical kinetics”. In: Arch. Ration. Mech. Anal. 49.3 (1972), pp. 172–186
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Deficiency and Deficiency Zero Theorem

Let G = (V,E) be a reaction network with ` connected components
and the stoichiometric subspace S. Suppose that s = dimS, then the
deficiency of the network G is given by

δ = |V | − `− s ≥ 0.

Theorem 1.1 ([1], Deficiency Zero Theorem)

A mass-action system is complex-balanced for every set of positive rate
constants if and only if it is weakly reversible and deficiency zero.
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Example: This system is weakly reversible and deficiency zero.

X

Y

•0 •
2X

•
X + Y

Figure 7: An example of a weakly reversible and deficiency zero system. It is
complex-balanced for any positive rate constants

Jiaxin Jin (OSU) March 2024 21 / 53



Characterization of the complex-balanced equilibria

The following proposition proved in [3] gives a characterization of the
complex-balanced equilibria.

Proposition 1.2

Consider a weakly reversible mass-action system (G,k). For any two
vertices yi and yj, let Ki =

∑
T an i-tree k

T and construct the following
equation:

Kix
yj −Kjx

yi = 0. (1)

Then x is a complex-balanced equilibrium for the reaction rate vector k
if and only if Equations (1) are satisfied for every pair of vertices in
the same connected component in G.

[3]: G. Craciun, A. Dickenstein, A. Shiu, and B. Sturmfels. “Toric dynamical
systems”. In: J. Symbolic Comput. 44.11 (2009), pp. 1551–1565
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Example: Consider a strongly connected mass-action system (G,k) in
Figure 8, with three vertices:

y1 =

(
2
0

)
, y2 =

(
1
1

)
, y3 =

(
0
2

)
.

X

Y

y1

y2

y3

Figure 8: Complete bidirected graph with three vertices.
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For the vertex y1, we list all spanning y1-trees of G as follows:

X

Y

y1

y2

y3

(a) k32k21

X

Y

y1

y2

y3

(b) k21k31

X

Y

y1

y2

y3

(c) k23k31

Figure 9: Spanning y1-trees of G and K1 = k32k21 + k21k31 + k23k31.

The toric locus can be written as

V(G) =
{
k ∈ R6

>0 : (k21k31 + k32k21 + k23k31)(k13k23 + k21k13 + k12k23)

− (k12k32 + k13k32 + k31k12)2 = 0
}
.
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Flux vector

Let G = (V,E) be an E-graph.

• Let J = (Jyi→yj )yi→yj∈E ∈ RE
>0 denote a flux vector, whose

component Jyi→yj > 0 is called the flux of the reaction yi → yj .

• A flux vector J is called a complex-balanced flux vector , if at
each vertex y0 ∈ V ,∑

y→y0∈E
Jy→y0

=
∑

y0→y′∈E
Jy0→y′ .

• Recall that x0 ∈ Rn
>0 is a complex-balanced steady state , if for

every vertex y0 ∈ VG,∑
y0→y′∈G

ky0→y′x
y0
0 =

∑
y→y0∈G

ky→y0
xy

0 .
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J (G): set of complex-balanced flux vectors

• We define the set of complex-balanced flux vectors on G as

J (G) := {J ∈ RE
>0 | J is a complex-balanced flux vector on G}.

• Analogous to complex-balanced systems, given an E-graph
G = (V,E), we conclude that

(a) If G = (V,E) is weakly reversible, then J (G) 6= ∅.

(b) If G = (V,E) isn’t weakly reversible, then J (G) = ∅.
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Example: Revisit the E-graph G = (V,E), the following flux vector is
a complex-balanced flux vector in J (G) ∈ R6

>0.

X

Y

• •

••

3 1

2

2

5

5

Figure 10: An example of a complex-balanced flux system. The positive
numbers on any edge y → y′ is the flux of that reaction.
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The product structure of the toric locus

Theorem 1 ([4])

Let G = (V,E) be a weakly reversible E-graph with the stoichiometric
subspace S. For any state x0 ∈ Rn

>0, the toric locus V(G) ⊆ RE
>0 is

homeomorphic to the product space Sx0 × J (G), that is,

V(G) ' Sx0 × J (G).

[4]: J. Jin, G. Craciun, and M.-S. Sorea. “The structure of the moduli spaces
of toric dynamical systems”. In: Submitted (2023)
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A map from Sx0
× J (G) to V(G)

• Let G = (V,E) be a weakly reversible E-graph. Given a state
x0 ∈ Rn

>0, we define the following map:

ϕ : Sx0 × J (G)→ V(G),

such that for any x ∈ Sx0 and J = (Jyi→yj )yi→yj∈E ∈ J (G),

ϕ(x,J) := (ϕyi→yj )yi→yj∈E , with ϕyi→yj :=
Jyi→yj

xyi
.

• In [4], we show the map ϕ is a homeomorphism, that is, ϕ is
bijective, continuous and the inverse function ϕ−1 is continuous.
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The dimension of the toric locus V(G)

Proposition 2.1 ([4])

Consider an E-graph G = (V,E) with ` connected components. Let s be
the dimension of the stoichiometric subspace S, then

dim(V(G)) = |E| − |V |+ s+ l.

The following corollary is a direct consequence of Proposition 2.1,
which was also proved in [3].

Corollary 2.2 ([4])

Let G = (V,E) be a weakly reversible E-graph. Then the codimension
of the toric locus V(G) ⊆ RE

>0 is δ.
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The toric locus V(G) is a smooth manifold

• In [5], we further show that

ϕ : Sx0 × J (G)→ V(G).

is a diffeomorphism

• The toric locus V(G) is the image of an embedding, thus it is a
smoothly embedded manifold.

• The complex-balanced equilibrium depends smoothly on the
reaction rate constants in V(G).

[5]: J. Jin, G. Craciun, and M.-S. Sorea. “The toric locus of a reaction network
is a smooth manifold”. In: Submitted (2023)
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Dynamical Equivalence

Two mass-action systems (G,k) and (G′,k′) are said to be
dynamically equivalent, if for every vertex y0 ∈ V ∪ V ′,

∑
y0→y∈E

ky0→y(y − y0) =
∑

y0→y′∈E′

k′y0→y′(y′ − y0). (2)

We let (G,k) ∼ (G′,k′) denote that two systems (G,k) and (G′,k′) are
dynamically equivalent.
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Example: Figure 11 gives an example of two dynamically equivalent
mass-action systems.

y1 = (0, 1)
y2 = (1, 1)

y3 = (0, 0)

1

1

(a) G = (V,E)

y1 = (0, 1)

y4 = (1, 0)

1

(b) G′ = (V ′, E′)

Figure 11: The mass-action systems in (a) and (b) are dynamically equivalent.
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D0(G)

• Let G = (V,E) be an E-graph and let d = (dy→y′)y→y′∈E ∈ R|E|.
We define the set D0(G) as

D0(G) := {d ∈ R|E|
∣∣∣∣ ∑
y0→y∈E

dy0→y(y − y0) = 0

for every vertex y0 ∈ V }.

y1 = (0, 1) y2 = (1, 1)

y3 = (0, 0)
y4 = (1, 0)

1

1 -1

Figure 12: A rate vector d ∈ D0(G).
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Flux Equivalence and J0(G)

• Two flux systems (G,J) = (V,E,J) and (G′,J ′) = (V ′, E′,J ′) are
said to be flux equivalent, denoted by (G,J) ∼ (G′,J ′), if for
every vertex y0 ∈ V ∪ V ′∑

y0→y∈E
Jy0→y(y − y0) =

∑
y0→y′∈E′

J ′y0→y′(y′ − y0).

• Let G = (V,E) be an E-graph and let J = (Jyi→yj )yi→yj∈E ∈ RE .
We define the set J0(G) as

J0(G) := {J ∈ D0(G)

∣∣∣∣ ∑
y→y0∈E

Jy→y0
=

∑
y0→y′∈E

Jy0→y′

for every vertex y0 ∈ V }.
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Example: The following two flux systems are flux equivalent.

X

Y

• •

••

2

1

3

1

5

5

(a)

X

Y

• •

••

3 1

2

2

5

5

(b)

Figure 13: The flux systems in (a) and (b) are flux equivalent. The flux
system in (b) is a complex-balanced flux system.
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Proposition 3.1 ([9])

Let (G,k) and (G′,k′) be two mass-action systems and let x ∈ Rn
>0.

Define the flux vector J(x) = (Jy→y′)y→y′∈E on G, such that for every
y → y′ ∈ E

Jy→y′ = ky→y′xy.

Further, define the flux vector J ′(x) = (J ′y→y′)y→y′∈E′ on G′, such that
for every y → y′ ∈ E

J ′y→y′ = k′y→y′xy.

Then the following are equivalent:

(a) (G,k) ∼ (G′,k′).

(b) (G,J(x)) ∼ (G′,J ′(x)) for some x ∈ Rn
>0.

[9]: J. Jin, G. Craciun, and P. Yu. “An efficient characterization of
complex-balanced, detailed-balanced, and weakly reversible systems”. In: SIAM J.
Appl. Math. 80.1 (2020), pp. 183–205
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Disguised Toric

• Recall that the toric locus on an E-graph G is

K(G) := {k ∈ RE
>0

∣∣the mass-action system generated by

(G,k) is toric}.

• In [7], a dynamical system of the form

dx

dt
= f(x),

is called disguised toric on G, if it is realizable on G for some
k ∈ K(G) ⊆ RE

>0, i.e., it has a complex-balanced realization on
G = (V,E).

[7]: J. Jin, G. Craciun, and A. Deshpande. “A Lower Bound on the Dimension
of the Disguised Toric Locus”. In: In revision by SIAM Journal on Applied Algebra
and Geometry (2023)
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R-Disguised Toric Locus

Let G = (V,E) and G′ = (V ′, E′) be two E-graphs.

(a) Define the set KR-disg(G,G′) as

KR-disg(G,G′) := {k ∈ RE
∣∣ the dynamical system (G,k)

is disguised toric on G′}.

(b) From [9], we define the R-disguised toric locus of G as

KR-disg(G) =
⋃

G′vGc

KR-disg(G,G′),

where Gc represents the complete graph of G.
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R-Disguised Toric Locus is connected

Theorem 3.2 ([6])

Let G = (V,E) and G′ = (V ′, E′) be two E-graphs. Then

(a) The set KR-disg(G,G
′) is connected.

(b) The R-disguised toric locus of G is also connected.

[6]: J. Jin, G. Craciun, and Deshpande A. “On the connectivity of the
Disguised Toric Locus”. In: Accepted by Journal of Mathematical Chemistry (2023)
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R-realizable on flux systems

• Let (G′,J ′) be a flux system. We say it is R-realizable on G if
there exists some J ∈ RE , such that for every vertex y0 ∈ V ∪ V ′,∑

y0→yj∈E
Jy0→yj (yj − y0) =

∑
y0→y′

j∈E′

J ′y0→y′
j
(y′

j − y0).

• Further, we define the set JR(G′, G) as

JR(G′, G) := {J ′ ∈ J (G′)
∣∣ the flux system (G′,J ′)

is R-realizable on G}.
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Let G1 = (V1, E1) be a weakly reversible E-graph and let G = (V,E) be
an E-graph.

• There exists a set of vectors {v1,v2, . . . ,vk} ⊂ R|E1|, such that

JR(G1, G) = {a1v1 + · · · akvk | ai ∈ R>0,vi ∈ R|E1|},

and
dim(JR(G1, G)) = dim(span{v1,v2, . . . ,vk}).

• Moreover, if JR(G1, G) 6= ∅, then

J0(G1) ⊆ span{v1,v2, . . . ,vk}.
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Orthonormal basis of D0(G) and J0(G1)

Let G1 = (V1, E1) be a weakly reversible E-graph and let G = (V,E) be
an E-graph.

(a) Let b denote the dimension of the linear subspace D0(G), and
denote an orthonormal basis of D0(G) by

{B1,B2, . . . ,Bb}.

(b) Let a denote the dimension of the subspace J0(G1), and denote an
orthonormal basis of J0(G1) by

{A1,A2, . . . ,Aa}.
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A map from JR(G1, G) to Ra

• Define the map
ψ : JR(G1, G)→ Ra,

such that for J ∈ JR(G1, G),

ψ(J) = (JA1,JA2, . . . ,JAa).

Moreover, we define the set Q as

Q := ψ(JR(G1, G)) = {ψ(J) | J ∈ JR(G1, G)}.

• Suppose JR(G1, G) 6= ∅, then Q is an open set in Ra.
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A map from JR(G1, G) to KR-disg(G,G1)

• Given an E-graph G = (V,E) and x0 ∈ Rn
>0.

• Given a weakly reversible E-graph G1 = (V1, E1) with its
stoichiometric subspace SG1 .

• We consider the following map:

Ψ : JR(G1, G)× [(x0 + SG1) ∩ Rn
>0]× Rb → KR-disg(G,G1)×Q
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The map Ψ

The map

Ψ : JR(G1, G)× [(x0 + SG1) ∩ Rn
>0]× Rb → KR-disg(G,G1)×Q

satisfies that for (J ,x,p) ∈ JR(G1, G)× [(x0 + SG1) ∩ Rn
>0]× Rb,

Ψ(J ,x,p) := (k, q),

where

(G,k) ∼ (G1,k1) with k1,y→y′ =
Jy→y′

xy
.

and

p = (kB1,kB2, . . . ,kBb), q = (JA1,JA2, . . . ,JAa).
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Properties of the map Ψ

• The map Ψ is well-defined and injective.

• The map Ψ is continuous.

• There exists a set of vectors {v1,v2, . . . ,vk} ⊂ R|E1|, such that

JR(G1, G) = {a1v1 + · · · akvk | ai ∈ R>0,vi ∈ R|E1|},

and dim(JR(G1, G)) = dim(span{v1,v2, . . . ,vk}).

• KR-disg(G,G1) is a semialgebraic set, that is, it can be
represented as a finite union of sets defined by polynomial
equalities and polynomial inequalities.
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The dimension of KR-disg(G)

Theorem 3.3 ([8])

Let G1 = (V1, E1) be a weakly reversible E-graph with its stoichiometric
subspace SG1. Consider an E-graph G = (V,E) and x0 ∈ Rn

>0, then

dim(KR-disg(G)) = max
G1vGc

{dim(JR(G1, G)) + dim(SG1)

+ dim(D0(G))− dim(J0(G1))}.

[8]: J. Jin, G. Craciun, and A. Deshpande. “On the Dimension of the
R-Disguised Toric Locus of Reaction Networks”. In: Preprint (2023)
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Example. We consider the R-disguised toric locus on the pair of
E-graphs in Figure 14. Specifically, we show how Theorem 3.3 leads to
the lower bound of the R-disguised toric locus.

Figure 14: Two E-graphs G1 = (V1, E1) and G2 = (V2, E2).
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Step 1. We start with computing dim(JR(G2, G1)) ⊂ R12.

• First, being a complex-balanced vector in G2 gives 4− 1 = 3
constraints on J .

• Second, being R-realizable in G1 gives no constraints on J since
every flux vector can be transformed into G1. Thus we obtain

dim(JR(G2, G1)) ≥ 12− 3− 0 = 9.

Jiaxin Jin (OSU) March 2024 50 / 53



Step 2. Recall from previous example, we get

D0(G1) = {0} and dim(J0(G2)) = 3.

Step 3. By Theorem 3.3, we derive that

dim(KR-disg(G1,G2))

= dim(JR(G2, G1)) + dim(SG2) + dim(D0(G1))− dim(J0(G2))

= 8.

Therefore we conclude that dim(KR-disg(G1)) = 8.
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Future projects

• The structure of the disguised toric locus

• Elucidate when does the disguised toric locus have full dimension

• Generalization for reaction networks with toric steady states
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