# The Dimension of the $\mathbb{R}$-Disguised Toric Locus of a Reaction Network 

Jiaxin Jin (The Ohio State University)

Online seminar, Formal Reaction Kinetics and Related Questions

## Table of Contents

(1) Mass-action Kinetics
(2) The Toric Locus $\mathcal{V}(G)$
(3) The $\mathbb{R}$-Disguised Toric Locus $\mathcal{K}_{\mathbb{R} \text {-disg }}(G)$

## History of mass-action kinetics

- In 1972, Horn and Jackson introduced the basic properties and found the complex balancing in mass-action kinetics $[1,2]$.
- In 2009, Craciun, Dickenstein, Shiu and Sturmfels gave a characterization of the toric locus [3].
[1]: F. Horn. "Necessary and sufficient conditions for complex balancing in chemical kinetics". In: Arch. Ration. Mech. Anal. 49.3 (1972), pp. 172-186
[2]: F. Horn and R. Jackson. "General mass action kinetics". In: Arch. Rational Mech. Anal. 47 (1972), pp. 81-116
[3]: G. Craciun, A. Dickenstein, A. Shiu, and B. Sturmfels. "Toric dynamical systems". In: J. Symbolic Comput. 44.11 (2009), pp. 1551-1565


## My work on mass-action kinetics

- In 2022, Craciun, Jin and Sorea found a new structural of the toric locus $[4,5]$.
- In 2023, Craciun, Deshpande and Jin discovered more properties on the disguised toric locus $[6,7,8]$.
[4]: J. Jin, G. Craciun, and M.-S. Sorea. "The structure of the moduli spaces of toric dynamical systems". In: Submitted (2023)
[5]: J. Jin, G. Craciun, and M.-S. Sorea. "The toric locus of a reaction network is a smooth manifold". In: Submitted (2023)
[6]: J. Jin, G. Craciun, and Deshpande A. "On the connectivity of the Disguised Toric Locus". In: Accepted by Journal of Mathematical Chemistry (2023)
[7]: J. Jin, G. Craciun, and A. Deshpande. "A Lower Bound on the Dimension of the Disguised Toric Locus". In: In revision by SIAM Journal on Applied Algebra and Geometry (2023)
[8]: J. Jin, G. Craciun, and A. Deshpande. "On the Dimension of the R-Disguised Toric Locus of Reaction Networks". In: Preprint (2023)
- A biochemical reaction can happen in the transformation of one molecule to a different molecule inside a cell. Biochemical reactions are mediated by enzymes, which are biological catalysts that can alter the rate and specificity of chemical reactions inside cells.
- A biochemical reaction can happen in the transformation of one molecule to a different molecule inside a cell. Biochemical reactions are mediated by enzymes, which are biological catalysts that can alter the rate and specificity of chemical reactions inside cells.
- The key processes in biological and chemical systems are described by biochemical reaction networks.
- A biochemical reaction can happen in the transformation of one molecule to a different molecule inside a cell. Biochemical reactions are mediated by enzymes, which are biological catalysts that can alter the rate and specificity of chemical reactions inside cells.
- The key processes in biological and chemical systems are described by biochemical reaction networks.
- A biochemical reaction network comprises a set of complexes (reactants and products), and a set of reactions.

Complexes: $\left\{\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}\right\}$
A reaction: $\underbrace{2 \mathrm{H}_{2}+\mathrm{O}_{2}}_{\text {reactant }} \rightarrow \underbrace{2 \mathrm{H}_{2} \mathrm{O}}_{\text {product }}$

## Mass-action kinetics and Euclidean embedded graph

- Standard deterministic mass-action kinetics says that the rate at which a reaction occurs is proportional to the concentrations of the reactant species.

Reaction: $\underbrace{X_{1}+X_{2}}_{\text {reactant }} \stackrel{k}{\rightarrow} \underbrace{X_{3}+X_{4}}_{\text {product }}$
$x_{i}$ : the concentration of species $X_{i}$,
$k$ : the reaction rate constant,
Reaction rate: $k x_{1} x_{2}$.

## Mass-action kinetics and Euclidean embedded graph

- Standard deterministic mass-action kinetics says that the rate at which a reaction occurs is proportional to the concentrations of the reactant species.

$$
\begin{aligned}
& \text { Reaction: } \underbrace{X_{1}+X_{2}}_{\text {reactant }} \stackrel{k}{\rightarrow} \underbrace{X_{3}+X_{4}}_{\text {product }} \\
& x_{i}: \text { the concentration of species } X_{i}, \\
& k: \text { the reaction rate constant, } \\
& \text { Reaction rate: } k x_{1} x_{2} .
\end{aligned}
$$

- A reaction network can be regarded as a Euclidean embedded graph $G=(V, E)$, where $V \subset \mathbb{R}_{\geq 0}^{n}$ is the set of vertices of the graph, and $E \subset V \times V$ is the set of oriented edges of $G$.

Example: The Lotka-Volterra systems can be considered as a reaction network in $X Y$-plane with 6 complexes and 3 reactions.


Figure 1: A reaction network of the Lotka-Volterra system.

Species: $\quad \mathcal{S}=\{X, Y\}$,
Complexes: $\mathcal{C}=\{X, X+Y, Y, 2 X, 2 Y, 0\}$,
Reactions: $\mathcal{R}=\{X \rightarrow 2 X, X+Y \rightarrow 2 Y, Y \rightarrow 0\}$.

Example: We can translate the Lotka-Volterra systems into a Euclidean embedded graph $G$ in $\mathbb{R}^{2}$ with 6 vertices and 3 reactions.


Figure 2: A Euclidean embedded graph $G=(V, E)$ of the Lotka-Volterra system.

The set of vertices

$$
V=\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \boldsymbol{y}_{3}, \boldsymbol{y}_{4}, \boldsymbol{y}_{5}, \boldsymbol{y}_{6}\right\}
$$

The set of edges

$$
E=\left\{\boldsymbol{y}_{1} \rightarrow \boldsymbol{y}_{4}, \boldsymbol{y}_{2} \rightarrow \boldsymbol{y}_{5}, \boldsymbol{y}_{3} \rightarrow \boldsymbol{y}_{6}\right\} .
$$



Figure 3: Reaction networks and Euclidean embedded graphs.



$$
\begin{aligned}
& \mathrm{X}_{1}+\mathrm{X}_{2} \xrightarrow{1} \mathrm{X}_{1} \underset{1}{\stackrel{3}{\rightleftharpoons}} 2 \mathrm{X}_{1} \\
& \mathrm{X}_{1}+\mathrm{X}_{2} \xrightarrow{2} \mathrm{X}_{2} \underset{1}{\stackrel{2}{\rightleftharpoons}} 2 \mathrm{X}_{2}
\end{aligned}
$$


(a)

(b)

Figure 3: Reaction networks and Euclidean embedded graphs.

$\varnothing \xrightarrow{0.7} \mathrm{X}_{1} \xrightarrow{1} \mathrm{X}_{1}+\mathrm{X}_{2} \xrightarrow{1} \varnothing$

(a)


$$
\begin{aligned}
& \mathrm{X}_{1}+\mathrm{X}_{2} \xrightarrow{1} \mathrm{X}_{1} \underset{1}{\stackrel{3}{\rightleftharpoons}} 2 \mathrm{X}_{1} \\
& \mathrm{X}_{1}+\mathrm{X}_{2} \xrightarrow{2} \mathrm{X}_{2} \underset{1}{\stackrel{2}{\rightleftharpoons}} 2 \mathrm{X}_{2}
\end{aligned}
$$


(b)


$$
\varnothing \rightleftharpoons X_{1} \rightleftharpoons X_{2} \rightleftharpoons \varnothing
$$

$$
2 X_{1}+X_{2} \rightleftharpoons 3 X_{1}
$$


(c)

Figure 3: Reaction networks and Euclidean embedded graphs.

## Weakly reversible

Let $G=(V, E)$ be a Euclidean embedded graph.
(a) The set of vertices is partitioned by its connected components, and we identify them by the subset of vertices that belong to that connected component.

## Weakly reversible

Let $G=(V, E)$ be a Euclidean embedded graph.
(a) The set of vertices is partitioned by its connected components, and we identify them by the subset of vertices that belong to that connected component.
(b) A graph $G=(V, E)$ is weakly reversible, if every edge in any connected component is part of an oriented cycle.

Example: Two Euclidean embedded graphs $G$ and $G^{\prime}$.

(a) $G=(V, E)$

Example: Two Euclidean embedded graphs $G$ and $G^{\prime}$.

(a) $G=(V, E)$

$2 X$
(b) $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$

Figure 4: $G$ is weakly reversible, but $G^{\prime}$ isn't weakly reversible

## Mass-action system

Let $G=(V, E)$ be a Euclidean embedded graph.

- Let $\boldsymbol{k}=\left(k_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime}}\right)_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime} \in G} \in \mathbb{R}_{>0}^{E}$ be a vector of rate constants. We call ( $G, \boldsymbol{k}$ ) a mass-action system, and its associated dynamical system is given by

$$
\frac{d \boldsymbol{x}}{d t}=\sum_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime} \in E} \underbrace{k_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime}} \boldsymbol{x}^{\boldsymbol{y}}}_{\text {reaction rate }} \times \underbrace{\left(\boldsymbol{y}^{\prime}-\boldsymbol{y}\right)}_{\text {change of species }}
$$

where $\boldsymbol{x}^{\boldsymbol{y}}=x_{1}^{y_{1}} x_{2}^{y_{2}} \cdots x_{n}^{y_{n}}$ with $\boldsymbol{x} \in \mathbb{R}_{>0}^{n}$ is the vector of concentrations of the chemical species in the system.

## Invariant polyhedron

Given the mass-action system

$$
\frac{d \boldsymbol{x}}{d t}=\sum_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime} \in E} k_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime}} \boldsymbol{x}^{\boldsymbol{y}}\left(\boldsymbol{y}^{\prime}-\boldsymbol{y}\right)
$$

- The stoichiometric subspace is the vector space spanned by the reaction vectors with $\mathcal{S}=\operatorname{span}\left\{\boldsymbol{y}^{\prime}-\boldsymbol{y}: \boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime} \in E\right\}$.
- For any positive vector $\boldsymbol{x}_{0} \in \mathbb{R}_{>0}^{n}$, the set $\mathcal{S}_{\boldsymbol{x}_{0}}:=\left(\boldsymbol{x}_{0}+S\right) \cap \mathbb{R}_{>0}^{n}$ is known as the (affine) invariant polyhedron of $\boldsymbol{x}_{0}$.

Example: Recall a reaction network of the Lotka-Volterra system in $X Y$-plane. Given a rate constants vector $\boldsymbol{k}=\left(k_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime}}\right)_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime} \in G} \in \mathbb{R}_{>0}^{E}$, the mass-action system $(G, \boldsymbol{k})$ is given by

$$
X \xrightarrow{k_{1}} 2 X, \quad X+Y \xrightarrow{k_{2}} 2 Y, \quad Y \xrightarrow{k_{3}} 0 .
$$

Then the associated dynamical system is

$$
\frac{d \boldsymbol{x}}{d t}=k_{1} x_{1}\binom{1}{0}+k_{2} x_{1} x_{2}\binom{-1}{1}+k_{3} x_{2}\binom{0}{-1}=\binom{k_{1} x_{1}-k_{2} x_{1} x_{2}}{k_{2} x_{1} x_{2}-k_{3} x_{2}}
$$





Unique globally attractive equilibrium


Bistability


Limit cycle

Figure 5: Possible dynamic for mass-action systems in two dimensions.

## Complex-balanced system

- Let $(G, \boldsymbol{k})$ be a mass-action system, a state $\boldsymbol{x}_{0} \in \mathbb{R}_{>0}^{n}$ is a positive steady state if

$$
\mathbf{0}=\sum_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime} \in G} k_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime}} \boldsymbol{x}_{0}^{\boldsymbol{y}}\left(\boldsymbol{y}^{\prime}-\boldsymbol{y}\right) .
$$

## Complex-balanced system

- Let $(G, \boldsymbol{k})$ be a mass-action system, a state $\boldsymbol{x}_{0} \in \mathbb{R}_{>0}^{n}$ is a positive steady state if

$$
\mathbf{0}=\sum_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime} \in G} k_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime}} \boldsymbol{x}_{0}^{\boldsymbol{y}}\left(\boldsymbol{y}^{\prime}-\boldsymbol{y}\right)
$$

- A positive steady state $\boldsymbol{x}_{0} \in \mathbb{R}_{>0}^{n}$ is complex-balanced if for every vertex $\boldsymbol{y}_{0} \in V_{G}$, we have

$$
\underbrace{\sum_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}^{\prime} \in G} k_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}^{\prime}} \boldsymbol{x}_{0}^{\boldsymbol{y}_{0}}}_{\text {outgoing flux on } \boldsymbol{y}_{0}}=\underbrace{\sum_{\boldsymbol{y} \rightarrow \boldsymbol{y}_{0} \in G} k_{\boldsymbol{y} \rightarrow \boldsymbol{y}_{0}} \boldsymbol{x}_{0}^{\boldsymbol{y}}}_{\text {incoming flux on } \boldsymbol{y}_{0}}
$$

## Complex-balanced system

- Let $(G, \boldsymbol{k})$ be a mass-action system, a state $\boldsymbol{x}_{0} \in \mathbb{R}_{>0}^{n}$ is a positive steady state if

$$
\mathbf{0}=\sum_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime} \in G} k_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime}} \boldsymbol{x}_{0}^{\boldsymbol{y}}\left(\boldsymbol{y}^{\prime}-\boldsymbol{y}\right)
$$

- A positive steady state $\boldsymbol{x}_{0} \in \mathbb{R}_{>0}^{n}$ is complex-balanced if for every vertex $\boldsymbol{y}_{0} \in V_{G}$, we have

$$
\underbrace{\sum_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}^{\prime} \in G} k_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}^{\prime}} \boldsymbol{x}_{0}^{\boldsymbol{y}_{0}}}_{\text {outgoing flux on } \boldsymbol{y}_{0}}=\underbrace{\sum_{\boldsymbol{y} \rightarrow \boldsymbol{y}_{0} \in G} k_{\boldsymbol{y} \rightarrow \boldsymbol{y}_{0}} \boldsymbol{x}_{0}^{\boldsymbol{y}}}_{\text {incoming flux on } \boldsymbol{y}_{0}}
$$

- If $(G, \boldsymbol{k})$ has a complex-balanced steady state, then it is called a complex-balanced system or toric dynamical system.

Example: This system is complex-balanced. For example, at the vertex $(0,1)$, there is one reaction going into it with flux value 3 , and there are two reactions leaving this vertex, with sum of fluxes being $2+1=3$.


Figure 6: An example of a complex-balanced system. The positive numbers on any edge is the flux of that reaction $\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime}$.

Example: This system is complex-balanced. For example, at the vertex $(0,1)$, there is one reaction going into it with flux value 3 , and there are two reactions leaving this vertex, with sum of fluxes being $2+1=3$.


Figure 6: An example of a complex-balanced system. The positive numbers on any edge is the flux of that reaction $\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime}$.

## Dynamical properties of complex-balanced systems

In [2], it shows that given a complex-balanced system $(G, \boldsymbol{k})$ with the stoichiometric subspace $\mathcal{S}$. Let $\boldsymbol{x}^{*} \in \mathbb{R}_{>0}^{n}$ be a complex-balanced steady state, then
(a) All positive steady states are complex-balanced. There is exactly one steady state within each invariant polyhedron.
(b) Any complex-balanced steady state $\boldsymbol{x}$ satisfies the following relation: $\ln (\boldsymbol{x})-\ln \left(\boldsymbol{x}^{*}\right) \in \mathcal{S}^{\perp}$.
(c) Every complex-balanced steady state is locally asymptotically stable within its invariant polyhedron.
[2]: F. Horn and R. Jackson. "General mass action kinetics". In: Arch. Rational Mech. Anal. 47 (1972), pp. 81-116

## Toric locus

- Consider a E-graph $G=(V, E)$, let $\mathcal{V}(G) \subseteq \mathbb{R}_{>0}^{E}$ denote the set of parameters $\boldsymbol{k} \in \mathbb{R}_{>0}^{E}$, for which the dynamical system generated by ( $G, \boldsymbol{k}$ ) is toric (i.e., complex-balanced).
[1]: F. Horn. "Necessary and sufficient conditions for complex balancing in chemical kinetics". In: Arch. Ration. Mech. Anal. 49.3 (1972), pp. 172-186


## Toric locus

- Consider a E-graph $G=(V, E)$, let $\mathcal{V}(G) \subseteq \mathbb{R}_{>0}^{E}$ denote the set of parameters $\boldsymbol{k} \in \mathbb{R}_{>0}^{E}$, for which the dynamical system generated by ( $G, \boldsymbol{k}$ ) is toric (i.e., complex-balanced).
- $\mathcal{V}(G)$ is called the toric locus of toric dynamical systems given by the Euclidean embedded graph $G$.
[1]: F. Horn. "Necessary and sufficient conditions for complex balancing in chemical kinetics". In: Arch. Ration. Mech. Anal. 49.3 (1972), pp. 172-186


## Toric locus

- Consider a E-graph $G=(V, E)$, let $\mathcal{V}(G) \subseteq \mathbb{R}_{>0}^{E}$ denote the set of parameters $\boldsymbol{k} \in \mathbb{R}_{>0}^{E}$, for which the dynamical system generated by ( $G, \boldsymbol{k}$ ) is toric (i.e., complex-balanced).
- $\mathcal{V}(G)$ is called the toric locus of toric dynamical systems given by the Euclidean embedded graph $G$.
- In [1], it shows that given an E-graph $G=(V, E)$,
(a) If $G=(V, E)$ is weakly reversible, then $\mathcal{V}(G) \neq \emptyset$.
(b) If $G=(V, E)$ is not weakly reversible, then $\mathcal{V}(G)=\emptyset$.
[1]: F. Horn. "Necessary and sufficient conditions for complex balancing in chemical kinetics". In: Arch. Ration. Mech. Anal. 49.3 (1972), pp. 172-186


## Deficiency and Deficiency Zero Theorem

Let $G=(V, E)$ be a reaction network with $\ell$ connected components and the stoichiometric subspace $\mathcal{S}$. Suppose that $s=\operatorname{dim} S$, then the deficiency of the network $G$ is given by

$$
\delta=|V|-\ell-s \geq 0
$$

## Theorem 1.1 ([1], Deficiency Zero Theorem)

A mass-action system is complex-balanced for every set of positive rate constants if and only if it is weakly reversible and deficiency zero.

Example: This system is weakly reversible and deficiency zero.



Unique globally attractive equilibrium

Figure 7: An example of a weakly reversible and deficiency zero system. It is complex-balanced for any positive rate constants

## Characterization of the complex-balanced equilibria

The following proposition proved in [3] gives a characterization of the complex-balanced equilibria.

## Proposition 1.2

Consider a weakly reversible mass-action system $(G, \boldsymbol{k})$. For any two vertices $\boldsymbol{y}_{\boldsymbol{i}}$ and $\boldsymbol{y}_{\boldsymbol{j}}$, let $K_{i}=\sum_{\mathcal{T} \text { an } \text {-tree }} \boldsymbol{k}^{\mathcal{T}}$ and construct the following equation:

$$
\begin{equation*}
K_{i} x^{y_{j}}-K_{j} x^{y_{i}}=0 . \tag{1}
\end{equation*}
$$

Then $\boldsymbol{x}$ is a complex-balanced equilibrium for the reaction rate vector $\boldsymbol{k}$ if and only if Equations (1) are satisfied for every pair of vertices in the same connected component in $G$.
[3]: G. Craciun, A. Dickenstein, A. Shiu, and B. Sturmfels. "Toric dynamical systems". In: J. Symbolic Comput. 44.11 (2009), pp. 1551-1565

Example: Consider a strongly connected mass-action system $(G, \boldsymbol{k})$ in Figure 8, with three vertices:

$$
\boldsymbol{y}_{1}=\binom{2}{0}, \quad \boldsymbol{y}_{2}=\binom{1}{1}, \quad \boldsymbol{y}_{3}=\binom{0}{2} .
$$



Figure 8: Complete bidirected graph with three vertices.

For the vertex $\boldsymbol{y}_{1}$, we list all spanning $\boldsymbol{y}_{1}$-trees of $G$ as follows:

(a) $k_{32} k_{21}$

(b) $k_{21} k_{31}$

(c) $k_{23} k_{31}$

Figure 9: Spanning $\boldsymbol{y}_{1}$-trees of $G$ and $K_{1}=k_{32} k_{21}+k_{21} k_{31}+k_{23} k_{31}$.

The toric locus can be written as

$$
\begin{gathered}
\mathcal{V}(G)=\left\{\boldsymbol{k} \in \mathbb{R}_{>0}^{6}:\left(k_{21} k_{31}+k_{32} k_{21}+k_{23} k_{31}\right)\left(k_{13} k_{23}+k_{21} k_{13}+k_{12} k_{23}\right)\right. \\
\left.-\left(k_{12} k_{32}+k_{13} k_{32}+k_{31} k_{12}\right)^{2}=0\right\}
\end{gathered}
$$

## Flux vector

Let $G=(V, E)$ be an E-graph.

- Let $\boldsymbol{J}=\left(J_{\boldsymbol{y}_{i} \rightarrow \boldsymbol{y}_{j}}\right)_{\boldsymbol{y}_{\boldsymbol{i}} \rightarrow \boldsymbol{y}_{\boldsymbol{j}} \in E} \in \mathbb{R}_{>0}^{E}$ denote a flux vector, whose component $J_{\boldsymbol{y}_{i} \rightarrow \boldsymbol{y}_{\boldsymbol{j}}}>0$ is called the flux of the reaction $\boldsymbol{y}_{\boldsymbol{i}} \rightarrow \boldsymbol{y}_{\boldsymbol{j}}$.


## Flux vector

Let $G=(V, E)$ be an E-graph.

- Let $\boldsymbol{J}=\left(J_{\boldsymbol{y}_{i} \rightarrow \boldsymbol{y}_{j}}\right)_{\boldsymbol{y}_{\boldsymbol{i}} \rightarrow \boldsymbol{y}_{\boldsymbol{j}} \in E} \in \mathbb{R}_{>0}^{E}$ denote a flux vector, whose component $J_{\boldsymbol{y}_{i} \rightarrow \boldsymbol{y}_{\boldsymbol{j}}}>0$ is called the flux of the reaction $\boldsymbol{y}_{\boldsymbol{i}} \rightarrow \boldsymbol{y}_{\boldsymbol{j}}$.
- A flux vector $\boldsymbol{J}$ is called a complex-balanced flux vector, if at each vertex $\boldsymbol{y}_{0} \in V$,

$$
\sum_{\boldsymbol{y} \rightarrow \boldsymbol{y}_{0} \in E} J_{y \rightarrow \boldsymbol{y}_{0}}=\sum_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}^{\prime} \in E} J_{y_{0} \rightarrow \boldsymbol{y}^{\prime}}
$$

## Flux vector

Let $G=(V, E)$ be an E-graph.

- Let $\boldsymbol{J}=\left(J_{\boldsymbol{y}_{i} \rightarrow \boldsymbol{y}_{j}}\right)_{\boldsymbol{y}_{\boldsymbol{i}} \rightarrow \boldsymbol{y}_{\boldsymbol{j}} \in E} \in \mathbb{R}_{>0}^{E}$ denote a flux vector, whose component $J_{\boldsymbol{y}_{i} \rightarrow \boldsymbol{y}_{\boldsymbol{j}}}>0$ is called the flux of the reaction $\boldsymbol{y}_{\boldsymbol{i}} \rightarrow \boldsymbol{y}_{\boldsymbol{j}}$.
- A flux vector $\boldsymbol{J}$ is called a complex-balanced flux vector, if at each vertex $\boldsymbol{y}_{0} \in V$,

$$
\sum_{\boldsymbol{y} \rightarrow \boldsymbol{y}_{0} \in E} J_{y \rightarrow \boldsymbol{y}_{0}}=\sum_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}^{\prime} \in E} J_{y_{0} \rightarrow \boldsymbol{y}^{\prime}}
$$

- Recall that $x_{0} \in \mathbb{R}_{>0}^{n}$ is a complex-balanced steady state, if for every vertex $\boldsymbol{y}_{0} \in V_{G}$,

$$
\sum_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}^{\prime} \in G} k_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}^{\prime}} \boldsymbol{x}_{0}^{\boldsymbol{y}_{0}}=\sum_{\boldsymbol{y} \rightarrow \boldsymbol{y}_{0} \in G} k_{\boldsymbol{y} \rightarrow \boldsymbol{y}_{0}} \boldsymbol{x}_{0}^{\boldsymbol{y}}
$$

## $\mathcal{J}(G):$ set of complex-balanced flux vectors

- We define the set of complex-balanced flux vectors on $G$ as $\mathcal{J}(G):=\left\{\boldsymbol{J} \in \mathbb{R}_{>0}^{E} \mid \boldsymbol{J}\right.$ is a complex-balanced flux vector on $\left.G\right\}$.


## $\mathcal{J}(G)$ : set of complex-balanced flux vectors

- We define the set of complex-balanced flux vectors on $G$ as $\mathcal{J}(G):=\left\{\boldsymbol{J} \in \mathbb{R}_{>0}^{E} \mid \boldsymbol{J}\right.$ is a complex-balanced flux vector on $\left.G\right\}$.
- Analogous to complex-balanced systems, given an E-graph $G=(V, E)$, we conclude that
(a) If $G=(V, E)$ is weakly reversible, then $\mathcal{J}(G) \neq \emptyset$.
(b) If $G=(V, E)$ isn't weakly reversible, then $\mathcal{J}(G)=\emptyset$.

Example: Revisit the E-graph $G=(V, E)$, the following flux vector is a complex-balanced flux vector in $\mathcal{J}(G) \in \mathbb{R}_{>0}^{6}$.


Figure 10: An example of a complex-balanced flux system. The positive numbers on any edge $\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime}$ is the flux of that reaction.

## The product structure of the toric locus

## Theorem 1 ([4])

Let $G=(V, E)$ be a weakly reversible E-graph with the stoichiometric subspace $\mathcal{S}$. For any state $\boldsymbol{x}_{0} \in \mathbb{R}_{>0}^{n}$, the toric locus $\mathcal{V}(G) \subseteq \mathbb{R}_{>0}^{E}$ is homeomorphic to the product space $\mathcal{S}_{\boldsymbol{x}_{0}} \times \mathcal{J}(G)$, that is,

$$
\mathcal{V}(G) \simeq \mathcal{S}_{x_{0}} \times \mathcal{J}(G)
$$

[4]: J. Jin, G. Craciun, and M.-S. Sorea. "The structure of the moduli spaces of toric dynamical systems". In: Submitted (2023)

## A map from $\mathcal{S}_{x_{0}} \times \mathcal{J}(G)$ to $\mathcal{V}(G)$

- Let $G=(V, E)$ be a weakly reversible E-graph. Given a state $\boldsymbol{x}_{0} \in \mathbb{R}_{>0}^{n}$, we define the following map:

$$
\varphi: \mathcal{S}_{x_{0}} \times \mathcal{J}(G) \rightarrow \mathcal{V}(G)
$$

such that for any $\boldsymbol{x} \in \mathcal{S}_{\boldsymbol{x}_{0}}$ and $\boldsymbol{J}=\left(J_{\boldsymbol{y}_{i} \rightarrow \boldsymbol{y}_{j}}\right)_{\boldsymbol{y}_{\boldsymbol{i}} \rightarrow \boldsymbol{y}_{\boldsymbol{j}} \in E} \in \mathcal{J}(G)$,

$$
\varphi(\boldsymbol{x}, \boldsymbol{J}):=\left(\varphi_{\boldsymbol{y}_{i} \rightarrow \boldsymbol{y}_{j}}\right)_{\boldsymbol{y}_{i} \rightarrow \boldsymbol{y}_{j} \in E}, \text { with } \varphi_{\boldsymbol{y}_{i} \rightarrow \boldsymbol{y}_{j}}:=\frac{J_{\boldsymbol{y}_{i} \rightarrow \boldsymbol{y}_{j}}}{\boldsymbol{x}^{y_{i}}}
$$

## A map from $\mathcal{S}_{x_{0}} \times \mathcal{J}(G)$ to $\mathcal{V}(G)$

- Let $G=(V, E)$ be a weakly reversible E-graph. Given a state $\boldsymbol{x}_{0} \in \mathbb{R}_{>0}^{n}$, we define the following map:

$$
\varphi: \mathcal{S}_{x_{0}} \times \mathcal{J}(G) \rightarrow \mathcal{V}(G)
$$

such that for any $\boldsymbol{x} \in \mathcal{S}_{\boldsymbol{x}_{0}}$ and $\boldsymbol{J}=\left(J_{\boldsymbol{y}_{i} \rightarrow \boldsymbol{y}_{\boldsymbol{j}}}\right)_{\boldsymbol{y}_{\boldsymbol{i}} \rightarrow \boldsymbol{y}_{\boldsymbol{j}} \in E} \in \mathcal{J}(G)$,

$$
\varphi(\boldsymbol{x}, \boldsymbol{J}):=\left(\varphi_{y_{i} \rightarrow y_{j}}\right)_{y_{i} \rightarrow y_{j} \in E}, \text { with } \varphi_{y_{i} \rightarrow y_{j}}:=\frac{J_{y_{i} \rightarrow y_{j}}}{\boldsymbol{x}^{y_{i}}}
$$

- In [4], we show the map $\varphi$ is a homeomorphism, that is, $\varphi$ is bijective, continuous and the inverse function $\varphi^{-1}$ is continuous.


## The dimension of the toric locus $\mathcal{V}(G)$

## Proposition 2.1 ([4])

Consider an E-graph $G=(V, E)$ with $\ell$ connected components. Let $s$ be the dimension of the stoichiometric subspace $\mathcal{S}$, then

$$
\operatorname{dim}(\mathcal{V}(G))=|E|-|V|+s+l .
$$

## The dimension of the toric locus $\mathcal{V}(G)$

## Proposition 2.1 ([4])

Consider an E-graph $G=(V, E)$ with $\ell$ connected components. Let $s$ be the dimension of the stoichiometric subspace $\mathcal{S}$, then

$$
\operatorname{dim}(\mathcal{V}(G))=|E|-|V|+s+l .
$$

The following corollary is a direct consequence of Proposition 2.1, which was also proved in [3].

## Corollary 2.2 ([4])

Let $G=(V, E)$ be a weakly reversible E-graph. Then the codimension of the toric locus $\mathcal{V}(G) \subseteq \mathbb{R}_{>0}^{E}$ is $\delta$.

## The toric locus $\mathcal{V}(G)$ is a smooth manifold

- In [5], we further show that

$$
\varphi: \mathcal{S}_{\boldsymbol{x}_{0}} \times \mathcal{J}(G) \rightarrow \mathcal{V}(G)
$$

is a diffeomorphism

- The toric locus $\mathcal{V}(G)$ is the image of an embedding, thus it is a smoothly embedded manifold.
- The complex-balanced equilibrium depends smoothly on the reaction rate constants in $\mathcal{V}(G)$.
[5]: J. Jin, G. Craciun, and M.-S. Sorea. "The toric locus of a reaction network is a smooth manifold". In: Submitted (2023)


## Dynamical Equivalence

Two mass-action systems $(G, \boldsymbol{k})$ and $\left(G^{\prime}, \boldsymbol{k}^{\prime}\right)$ are said to be dynamically equivalent, if for every vertex $\boldsymbol{y}_{0} \in V \cup V^{\prime}$,

$$
\begin{equation*}
\sum_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y} \in E} k_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}}\left(\boldsymbol{y}-\boldsymbol{y}_{0}\right)=\sum_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}^{\prime} \in E^{\prime}} k_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}^{\prime}}^{\prime}\left(\boldsymbol{y}^{\prime}-\boldsymbol{y}_{0}\right) . \tag{2}
\end{equation*}
$$

We let $(G, \boldsymbol{k}) \sim\left(G^{\prime}, \boldsymbol{k}^{\prime}\right)$ denote that two systems $(G, \boldsymbol{k})$ and $\left(G^{\prime}, \boldsymbol{k}^{\prime}\right)$ are dynamically equivalent.

Example: Figure 11 gives an example of two dynamically equivalent mass-action systems.


$$
\begin{aligned}
& \boldsymbol{y}_{1}=(0,1) \\
& \text { (b) } G^{\prime}=\left(V^{\prime}, E^{\prime}\right)
\end{aligned}
$$

Figure 11: The mass-action systems in (a) and (b) are dynamically equivalent.

## $\mathcal{D}_{0}(G)$

- Let $G=(V, E)$ be an E-graph and let $\boldsymbol{d}=\left(d_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime}}\right)_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime} \in E} \in \mathbb{R}^{|E|}$. We define the set $\mathcal{D}_{\mathbf{0}}(G)$ as

$$
\mathcal{D}_{\mathbf{0}}(G):=\left\{\boldsymbol{d} \in \mathbb{R}^{|E|} \mid \sum_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y} \in E} d_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}}\left(\boldsymbol{y}-\boldsymbol{y}_{0}\right)=\mathbf{0}\right.
$$ for every vertex $\left.\boldsymbol{y}_{0} \in V\right\}$.

## $\mathcal{D}_{0}(G)$

- Let $G=(V, E)$ be an E-graph and let $\boldsymbol{d}=\left(d_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime}}\right)_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime} \in E} \in \mathbb{R}^{|E|}$. We define the set $\mathcal{D}_{\mathbf{0}}(G)$ as

$$
\mathcal{D}_{\mathbf{0}}(G):=\left\{\boldsymbol{d} \in \mathbb{R}^{|E|} \mid \sum_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y} \in E} d_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}}\left(\boldsymbol{y}-\boldsymbol{y}_{0}\right)=\mathbf{0}\right.
$$

for every vertex $\left.\boldsymbol{y}_{0} \in V\right\}$.

$$
\boldsymbol{y}_{1}=(0,1) \stackrel{1}{\bullet} \cdot \boldsymbol{y}_{2}=(1,1)
$$

Figure 12: A rate vector $\boldsymbol{d} \in \mathcal{D}_{\mathbf{0}}(G)$.

## Flux Equivalence and $\mathcal{J}_{0}(G)$

- Two flux systems $(G, \boldsymbol{J})=(V, E, \boldsymbol{J})$ and $\left(G^{\prime}, \boldsymbol{J}^{\prime}\right)=\left(V^{\prime}, E^{\prime}, \boldsymbol{J}^{\prime}\right)$ are said to be flux equivalent, denoted by $(G, \boldsymbol{J}) \sim\left(G^{\prime}, \boldsymbol{J}^{\prime}\right)$, if for every vertex $\boldsymbol{y}_{0} \in V \cup V^{\prime}$

$$
\sum_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y} \in E} J_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}}\left(\boldsymbol{y}-\boldsymbol{y}_{0}\right)=\sum_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}^{\prime} \in E^{\prime}} J_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}^{\prime}}^{\prime}\left(\boldsymbol{y}^{\prime}-\boldsymbol{y}_{0}\right)
$$

## Flux Equivalence and $\mathcal{J}_{0}(G)$

- Two flux systems $(G, \boldsymbol{J})=(V, E, \boldsymbol{J})$ and $\left(G^{\prime}, \boldsymbol{J}^{\prime}\right)=\left(V^{\prime}, E^{\prime}, \boldsymbol{J}^{\prime}\right)$ are said to be flux equivalent, denoted by $(G, \boldsymbol{J}) \sim\left(G^{\prime}, \boldsymbol{J}^{\prime}\right)$, if for every vertex $\boldsymbol{y}_{0} \in V \cup V^{\prime}$

$$
\sum_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y} \in E} J_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}}\left(\boldsymbol{y}-\boldsymbol{y}_{0}\right)=\sum_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}^{\prime} \in E^{\prime}} J_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}^{\prime}}^{\prime}\left(\boldsymbol{y}^{\prime}-\boldsymbol{y}_{0}\right)
$$

- Let $G=(V, E)$ be an E-graph and let $\boldsymbol{J}=\left(J_{\boldsymbol{y}_{\boldsymbol{i}} \rightarrow \boldsymbol{y}_{\boldsymbol{j}}}\right)_{\boldsymbol{y}_{\boldsymbol{i}} \rightarrow \boldsymbol{y}_{\boldsymbol{j}} \in E} \in \mathbb{R}^{E}$. We define the set $\mathcal{J}_{0}(G)$ as

$$
\begin{aligned}
& \mathcal{J}_{\mathbf{0}}(G):=\left\{\boldsymbol{J} \in \mathcal{D}_{\mathbf{0}}(G) \mid \sum_{\boldsymbol{y} \rightarrow \boldsymbol{y}_{0} \in E}\right. J_{\boldsymbol{y} \rightarrow \boldsymbol{y}_{0}}=\sum_{\substack{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}^{\prime} \in E}} J_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}^{\prime}} \\
&\left.\quad \text { for every vertex } \boldsymbol{y}_{0} \in V\right\} .
\end{aligned}
$$

Example: The following two flux systems are flux equivalent.

(a)

Example: The following two flux systems are flux equivalent.

(a)

(b)

Figure 13: The flux systems in (a) and (b) are flux equivalent. The flux system in (b) is a complex-balanced flux system.

## Proposition 3.1 ([9])

Let $(G, \boldsymbol{k})$ and $\left(G^{\prime}, \boldsymbol{k}^{\prime}\right)$ be two mass-action systems and let $\boldsymbol{x} \in \mathbb{R}_{>0}^{n}$. Define the flux vector $\boldsymbol{J}(\boldsymbol{x})=\left(J_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime}}\right)_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime} \in E}$ on $G$, such that for every $\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime} \in E$

$$
J_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime}}=k_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime}} \boldsymbol{x}^{\boldsymbol{y}} .
$$

Further, define the flux vector $\boldsymbol{J}^{\prime}(\boldsymbol{x})=\left(J_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime}}^{\prime}\right)_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime} \in E^{\prime}}$ on $G^{\prime}$, such that for every $\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime} \in E$

$$
J_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime}}^{\prime}=k_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime}}^{\prime} \boldsymbol{x}^{\boldsymbol{y}}
$$

Then the following are equivalent:
(a) $(G, \boldsymbol{k}) \sim\left(G^{\prime}, \boldsymbol{k}^{\prime}\right)$.
(b) $(G, \boldsymbol{J}(\boldsymbol{x})) \sim\left(G^{\prime}, \boldsymbol{J}^{\prime}(\boldsymbol{x})\right)$ for some $\boldsymbol{x} \in \mathbb{R}_{>0}^{n}$.
[9]: J. Jin, G. Craciun, and P. Yu. "An efficient characterization of complex-balanced, detailed-balanced, and weakly reversible systems". In: SIAM J. Appl. Math. 80.1 (2020), pp. 183-205

## Disguised Toric

- Recall that the toric locus on an E-graph $G$ is

$$
\begin{gathered}
\mathcal{K}(G):=\left\{\boldsymbol{k} \in \mathbb{R}_{>0}^{E} \mid\right. \text { the mass-action system generated by } \\
(G, \boldsymbol{k}) \text { is toric }\} .
\end{gathered}
$$

- In [7], a dynamical system of the form

$$
\frac{\mathrm{d} \boldsymbol{x}}{\mathrm{~d} t}=\boldsymbol{f}(\boldsymbol{x})
$$

is called disguised toric on $G$, if it is realizable on $G$ for some $\boldsymbol{k} \in \mathcal{K}(G) \subseteq \mathbb{R}_{>0}^{E}$, i.e., it has a complex-balanced realization on $G=(V, E)$.
[7]: J. Jin, G. Craciun, and A. Deshpande. "A Lower Bound on the Dimension of the Disguised Toric Locus". In: In revision by SIAM Journal on Applied Algebra and Geometry (2023)

## $\mathbb{R}$-Disguised Toric Locus

Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be two E-graphs.
(a) Define the set $\mathcal{K}_{\mathbb{R} \text {-disg }}\left(G, G^{\prime}\right)$ as

$$
\begin{array}{r}
\mathcal{K}_{\mathbb{R} \text {-disg }}\left(G, G^{\prime}\right):=\left\{\boldsymbol{k} \in \mathbb{R}^{E} \mid \text { the dynamical system }(G, \boldsymbol{k})\right. \\
\text { is disguised toric on } \left.G^{\prime}\right\} .
\end{array}
$$

## $\mathbb{R}$-Disguised Toric Locus

Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be two E-graphs.
(a) Define the set $\mathcal{K}_{\mathbb{R} \text {-disg }}\left(G, G^{\prime}\right)$ as

$$
\begin{aligned}
\mathcal{K}_{\mathbb{R} \text {-disg }}\left(G, G^{\prime}\right):=\left\{\boldsymbol{k} \in \mathbb{R}^{E} \mid\right. & \text { the dynamical system }(G, \boldsymbol{k}) \\
& \text { is disguised toric on } \left.G^{\prime}\right\} .
\end{aligned}
$$

(b) From [9], we define the $\mathbb{R}$-disguised toric locus of $G$ as

$$
\mathcal{K}_{\mathbb{R} \text {-disg }}(G)=\bigcup_{G^{\prime} \sqsubseteq G_{c}} \mathcal{K}_{\mathbb{R} \text {-disg }}\left(G, G^{\prime}\right)
$$

where $G_{c}$ represents the complete graph of $G$.

## $\mathbb{R}$-Disguised Toric Locus is connected

## Theorem 3.2 ([6])

Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be two E-graphs. Then
(a) The set $\mathcal{K}_{\mathbb{R} \text {-disg }}\left(G, G^{\prime}\right)$ is connected.
(b) The $\mathbb{R}$-disguised toric locus of $G$ is also connected.
[6]: J. Jin, G. Craciun, and Deshpande A. "On the connectivity of the Disguised Toric Locus". In: Accepted by Journal of Mathematical Chemistry (2023)

## $\mathbb{R}$-realizable on flux systems

- Let $\left(G^{\prime}, \boldsymbol{J}^{\prime}\right)$ be a flux system. We say it is $\mathbb{R}$-realizable on $G$ if there exists some $\boldsymbol{J} \in \mathbb{R}^{E}$, such that for every vertex $\boldsymbol{y}_{0} \in V \cup V^{\prime}$,

$$
\sum_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}_{j} \in E} J_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}_{j}}\left(\boldsymbol{y}_{\boldsymbol{j}}-\boldsymbol{y}_{0}\right)=\sum_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}_{j}^{\prime} \in E^{\prime}} J_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}_{\boldsymbol{j}}^{\prime}}^{\prime}\left(\boldsymbol{y}_{\boldsymbol{j}}^{\prime}-\boldsymbol{y}_{0}\right) .
$$

## $\mathbb{R}$-realizable on flux systems

- Let $\left(G^{\prime}, \boldsymbol{J}^{\prime}\right)$ be a flux system. We say it is $\mathbb{R}$-realizable on $G$ if there exists some $\boldsymbol{J} \in \mathbb{R}^{E}$, such that for every vertex $\boldsymbol{y}_{0} \in V \cup V^{\prime}$,

$$
\sum_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}_{j} \in E} J_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}_{\boldsymbol{j}}}\left(\boldsymbol{y}_{\boldsymbol{j}}-\boldsymbol{y}_{0}\right)=\sum_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}_{\boldsymbol{j}}^{\prime} \in E^{\prime}} J_{\boldsymbol{y}_{0} \rightarrow \boldsymbol{y}_{j}^{\prime}}^{\prime}\left(\boldsymbol{y}_{\boldsymbol{j}}^{\prime}-\boldsymbol{y}_{0}\right)
$$

- Further, we define the set $\mathcal{J}_{\mathbb{R}}\left(G^{\prime}, G\right)$ as

$$
\begin{aligned}
\mathcal{J}_{\mathbb{R}}\left(G^{\prime}, G\right):=\left\{\boldsymbol{J}^{\prime} \in \mathcal{J}\left(G^{\prime}\right) \mid\right. & \text { the flux system }\left(G^{\prime}, \boldsymbol{J}^{\prime}\right) \\
& \text { is } \mathbb{R} \text {-realizable on } G\} .
\end{aligned}
$$

Let $G_{1}=\left(V_{1}, E_{1}\right)$ be a weakly reversible E-graph and let $G=(V, E)$ be an E-graph.

- There exists a set of vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\} \subset \mathbb{R}^{\left|E_{1}\right|}$, such that

$$
\mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right)=\left\{a_{1} \boldsymbol{v}_{1}+\cdots a_{k} \boldsymbol{v}_{k} \mid a_{i} \in \mathbb{R}_{>0}, \boldsymbol{v}_{i} \in \mathbb{R}^{\left|E_{1}\right|}\right\}
$$

and

$$
\operatorname{dim}\left(\mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right)\right)=\operatorname{dim}\left(\operatorname{span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}\right)
$$

Let $G_{1}=\left(V_{1}, E_{1}\right)$ be a weakly reversible E-graph and let $G=(V, E)$ be an E-graph.

- There exists a set of vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\} \subset \mathbb{R}^{\left|E_{1}\right|}$, such that

$$
\mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right)=\left\{a_{1} \boldsymbol{v}_{1}+\cdots a_{k} \boldsymbol{v}_{k} \mid a_{i} \in \mathbb{R}_{>0}, \boldsymbol{v}_{i} \in \mathbb{R}^{\left|E_{1}\right|}\right\}
$$

and

$$
\operatorname{dim}\left(\mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right)\right)=\operatorname{dim}\left(\operatorname{span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}\right)
$$

- Moreover, if $\mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right) \neq \emptyset$, then

$$
\mathcal{J}_{0}\left(G_{1}\right) \subseteq \operatorname{span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}
$$

## Orthonormal basis of $\mathcal{D}_{\mathbf{0}}(G)$ and $\mathcal{J}_{0}\left(G_{1}\right)$

Let $G_{1}=\left(V_{1}, E_{1}\right)$ be a weakly reversible E-graph and let $G=(V, E)$ be an E-graph.
(a) Let $b$ denote the dimension of the linear subspace $\mathcal{D}_{\mathbf{0}}(G)$, and denote an orthonormal basis of $\mathcal{D}_{\mathbf{0}}(G)$ by

$$
\left\{\boldsymbol{B}_{1}, \boldsymbol{B}_{2}, \ldots, \boldsymbol{B}_{b}\right\}
$$

(b) Let $a$ denote the dimension of the subspace $\mathcal{J}_{0}\left(G_{1}\right)$, and denote an orthonormal basis of $\mathcal{J}_{0}\left(G_{1}\right)$ by

$$
\left\{\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \ldots, \boldsymbol{A}_{a}\right\}
$$

## A map from $\mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right)$ to $\mathbb{R}^{a}$

- Define the map

$$
\psi: \mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right) \rightarrow \mathbb{R}^{a}
$$

such that for $\boldsymbol{J} \in \mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right)$,

$$
\psi(\boldsymbol{J})=\left(\boldsymbol{J} \boldsymbol{A}_{1}, \boldsymbol{J} \boldsymbol{A}_{2}, \ldots, \boldsymbol{J} \boldsymbol{A}_{a}\right)
$$

Moreover, we define the set $Q$ as

$$
Q:=\psi\left(\mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right)\right)=\left\{\psi(\boldsymbol{J}) \mid \boldsymbol{J} \in \mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right)\right\} .
$$

## A map from $\mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right)$ to $\mathbb{R}^{a}$

- Define the map

$$
\psi: \mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right) \rightarrow \mathbb{R}^{a}
$$

such that for $\boldsymbol{J} \in \mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right)$,

$$
\psi(\boldsymbol{J})=\left(\boldsymbol{J} \boldsymbol{A}_{1}, \boldsymbol{J} \boldsymbol{A}_{2}, \ldots, \boldsymbol{J} \boldsymbol{A}_{a}\right)
$$

Moreover, we define the set $Q$ as

$$
Q:=\psi\left(\mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right)\right)=\left\{\psi(\boldsymbol{J}) \mid \boldsymbol{J} \in \mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right)\right\} .
$$

- Suppose $\mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right) \neq \emptyset$, then $Q$ is an open set in $\mathbb{R}^{a}$.


## A map from $\mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right)$ to $\mathcal{K}_{\mathbb{R} \text {-disg }}\left(G, G_{1}\right)$

- Given an E-graph $G=(V, E)$ and $\boldsymbol{x}_{0} \in \mathbb{R}_{>0}^{n}$.


## A map from $\mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right)$ to $\mathcal{K}_{\mathbb{R} \text {-disg }}\left(G, G_{1}\right)$

- Given an E-graph $G=(V, E)$ and $\boldsymbol{x}_{0} \in \mathbb{R}_{>0}^{n}$.
- Given a weakly reversible E-graph $G_{1}=\left(V_{1}, E_{1}\right)$ with its stoichiometric subspace $\mathcal{S}_{G_{1}}$.


## A map from $\mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right)$ to $\mathcal{K}_{\mathbb{R} \text {-disg }}\left(G, G_{1}\right)$

- Given an E-graph $G=(V, E)$ and $\boldsymbol{x}_{0} \in \mathbb{R}_{>0}^{n}$.
- Given a weakly reversible E-graph $G_{1}=\left(V_{1}, E_{1}\right)$ with its stoichiometric subspace $\mathcal{S}_{G_{1}}$.
- We consider the following map:

$$
\Psi: \mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right) \times\left[\left(\boldsymbol{x}_{0}+\mathcal{S}_{G_{1}}\right) \cap \mathbb{R}_{>0}^{n}\right] \times \mathbb{R}^{b} \rightarrow \mathcal{K}_{\mathbb{R} \text {-disg }}\left(G, G_{1}\right) \times Q
$$

## The map $\Psi$

The map

$$
\Psi: \mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right) \times\left[\left(\boldsymbol{x}_{0}+\mathcal{S}_{G_{1}}\right) \cap \mathbb{R}_{>0}^{n}\right] \times \mathbb{R}^{b} \rightarrow \mathcal{K}_{\mathbb{R} \text {-disg }}\left(G, G_{1}\right) \times Q
$$

satisfies that for $(\boldsymbol{J}, \boldsymbol{x}, \boldsymbol{p}) \in \mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right) \times\left[\left(\boldsymbol{x}_{0}+\mathcal{S}_{G_{1}}\right) \cap \mathbb{R}_{>0}^{n}\right] \times \mathbb{R}^{b}$,

$$
\Psi(\boldsymbol{J}, \boldsymbol{x}, \boldsymbol{p}):=(\boldsymbol{k}, \boldsymbol{q})
$$

## The map $\Psi$

The map

$$
\Psi: \mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right) \times\left[\left(\boldsymbol{x}_{0}+\mathcal{S}_{G_{1}}\right) \cap \mathbb{R}_{>0}^{n}\right] \times \mathbb{R}^{b} \rightarrow \mathcal{K}_{\mathbb{R} \text {-disg }}\left(G, G_{1}\right) \times Q
$$

satisfies that for $(\boldsymbol{J}, \boldsymbol{x}, \boldsymbol{p}) \in \mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right) \times\left[\left(\boldsymbol{x}_{0}+\mathcal{S}_{G_{1}}\right) \cap \mathbb{R}_{>0}^{n}\right] \times \mathbb{R}^{b}$,

$$
\Psi(\boldsymbol{J}, \boldsymbol{x}, \boldsymbol{p}):=(\boldsymbol{k}, \boldsymbol{q})
$$

where

$$
(G, \boldsymbol{k}) \sim\left(G_{1}, \boldsymbol{k}_{1}\right) \text { with } k_{1, \boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime}}=\frac{J_{\boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime}}}{\boldsymbol{x}^{\boldsymbol{y}}}
$$

and

$$
\boldsymbol{p}=\left(\boldsymbol{k} \boldsymbol{B}_{1}, \boldsymbol{k} \boldsymbol{B}_{2}, \ldots, \boldsymbol{k} \boldsymbol{B}_{b}\right), \quad \boldsymbol{q}=\left(\boldsymbol{J} \boldsymbol{A}_{1}, \boldsymbol{J} \boldsymbol{A}_{2}, \ldots, \boldsymbol{J} \boldsymbol{A}_{a}\right)
$$

## Properties of the map $\Psi$

- The map $\Psi$ is well-defined and injective.
- The map $\Psi$ is continuous.
- There exists a set of vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\} \subset \mathbb{R}^{\left|E_{1}\right|}$, such that

$$
\mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right)=\left\{a_{1} \boldsymbol{v}_{1}+\cdots a_{k} \boldsymbol{v}_{k} \mid a_{i} \in \mathbb{R}_{>0}, \boldsymbol{v}_{i} \in \mathbb{R}^{\left|E_{1}\right|}\right\}
$$

and $\operatorname{dim}\left(\mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right)\right)=\operatorname{dim}\left(\operatorname{span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}\right)$.

- $\mathcal{K}_{\mathbb{R} \text {-disg }}\left(G, G_{1}\right)$ is a semialgebraic set, that is, it can be represented as a finite union of sets defined by polynomial equalities and polynomial inequalities.


## The dimension of $\mathcal{K}_{\mathbb{R} \text {-disg }}(G)$

## Theorem 3.3 ([8])

Let $G_{1}=\left(V_{1}, E_{1}\right)$ be a weakly reversible E-graph with its stoichiometric subspace $\mathcal{S}_{G_{1}}$. Consider an E-graph $G=(V, E)$ and $\boldsymbol{x}_{0} \in \mathbb{R}_{>0}^{n}$, then

$$
\begin{aligned}
\operatorname{dim}\left(\mathcal{K}_{\mathbb{R}-\text { disg }}(G)\right)=\max _{G_{1} \sqsubseteq G_{c}}\{\operatorname{dim}( & \left.\mathcal{J}_{\mathbb{R}}\left(G_{1}, G\right)\right)+\operatorname{dim}\left(\mathcal{S}_{G_{1}}\right) \\
& \left.+\operatorname{dim}\left(\mathcal{D}_{o}(G)\right)-\operatorname{dim}\left(\mathcal{J}_{0}\left(G_{1}\right)\right)\right\} .
\end{aligned}
$$

[8]: J. Jin, G. Craciun, and A. Deshpande. "On the Dimension of the R-Disguised Toric Locus of Reaction Networks". In: Preprint (2023)

Example. We consider the $\mathbb{R}$-disguised toric locus on the pair of E-graphs in Figure 14. Specifically, we show how Theorem 3.3 leads to the lower bound of the $\mathbb{R}$-disguised toric locus.

$\boldsymbol{y}_{4}=(0,0) \quad \boldsymbol{y}_{3}=(1,0)$

$$
G_{1}=\left(V_{1}, E_{1}\right)
$$

(a)


$$
\boldsymbol{y}_{4}=(0,0) \quad \boldsymbol{y}_{3}=(1,0)
$$

$$
G_{2}=\left(V_{2}, E_{2}\right)
$$

(b)

Figure 14: Two E-graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$.

Step 1. We start with computing $\operatorname{dim}\left(\mathcal{J}_{\mathbb{R}}\left(G_{2}, G_{1}\right)\right) \subset \mathbb{R}^{12}$.

- First, being a complex-balanced vector in $G_{2}$ gives $4-1=3$ constraints on $\boldsymbol{J}$.
- Second, being $\mathbb{R}$-realizable in $G_{1}$ gives no constraints on $\boldsymbol{J}$ since every flux vector can be transformed into $G_{1}$. Thus we obtain

$$
\operatorname{dim}\left(\mathcal{J}_{\mathbb{R}}\left(G_{2}, G_{1}\right)\right) \geq 12-3-0=9
$$

Step 2. Recall from previous example, we get

$$
\mathcal{D}_{\mathbf{0}}\left(G_{1}\right)=\{\mathbf{0}\} \quad \text { and } \quad \operatorname{dim}\left(\mathcal{J}_{0}\left(G_{2}\right)\right)=3
$$

Step 3. By Theorem 3.3, we derive that

$$
\begin{aligned}
& \operatorname{dim}\left(\mathcal{K}_{\mathbb{R} \text {-disg }}\left(\mathrm{G}_{1}, \mathrm{G}_{2}\right)\right) \\
= & \operatorname{dim}\left(\mathcal{J}_{\mathbb{R}}\left(G_{2}, G_{1}\right)\right)+\operatorname{dim}\left(\mathcal{S}_{G_{2}}\right)+\operatorname{dim}\left(\mathcal{D}_{\mathbf{0}}\left(G_{1}\right)\right)-\operatorname{dim}\left(\mathcal{J}_{\mathbf{0}}\left(G_{2}\right)\right) \\
= & 8
\end{aligned}
$$

Therefore we conclude that $\operatorname{dim}\left(\mathcal{K}_{\mathbb{R} \text {-disg }}\left(\mathrm{G}_{1}\right)\right)=8$.

## Future projects

- The structure of the disguised toric locus
- Elucidate when does the disguised toric locus have full dimension
- Generalization for reaction networks with toric steady states


## References

[1] F. Horn. "Necessary and sufficient conditions for complex balancing in chemical kinetics". In: Arch. Ration. Mech. Anal. 49.3 (1972), pp. 172-186 (cit. on pp. 3, 29-32).
[2] F. Horn and R. Jackson. "General mass action kinetics". In: Arch. Rational Mech. Anal. 47 (1972), pp. 81-116 (cit. on pp. 3, 28).
[3] G. Craciun, A. Dickenstein, A. Shiu, and B. Sturmfels. "Toric dynamical systems". In: J. Symbolic Comput. 44.11 (2009), pp. 1551-1565 (cit. on pp. 3, 34, 46, 47).
[4] J. Jin, G. Craciun, and M.-S. Sorea. "The structure of the moduli spaces of toric dynamical systems". In: Submitted (2023) (cit. on pp. 4, 43-47).
[5] J. Jin, G. Craciun, and M.-S. Sorea. "The toric locus of a reaction network is a smooth manifold". In: Submitted (2023) (cit. on pp. 4, 48).
[6] J. Jin, G. Craciun, and Deshpande A. "On the connectivity of the Disguised Toric Locus". In: Accepted by Journal of Mathematical Chemistry (2023) (cit. on pp. 4, 61).
[7] J. Jin, G. Craciun, and A. Deshpande. "A Lower Bound on the Dimension of the Disguised Toric Locus". In: In revision by SIAM Journal on Applied Algebra and Geometry (2023) (cit. on pp. 4, 58).
[8] J. Jin, G. Craciun, and A. Deshpande. "On the Dimension of the R-Disguised Toric Locus of Reaction Networks". In: Preprint (2023) (cit. on pp. 4, 75).
[9] J. Jin, G. Craciun, and P. Yu. "An efficient characterization of complex-balanced, detailed-balanced, and weakly reversible systems". In: SIAM J. Appl. Math. 80.1 (2020), pp. 183-205 (cit. on pp. 57, 59, 60).

