Algebraic Identifiability of Partial Differential Equation Models

Hamid Rahkooy
(Joint work with H. Byrne, H. Harrington, A. Ovchinnikov, G. Pogudin \& P. Soto)

Mathematical Institute
University of Oxford
Formal reaction kinetics and related questions seminar, 23 April 2024

Oxford
Mathematics

Differential Equation Models

- A Dynamical system/ODE model is a system of the form:

$$
\Sigma:=\left\{\begin{array}{l}
\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\mathbf{y}=\mathbf{g}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\mathbf{x}(0)=\mathbf{x}^{*},
\end{array}\right.
$$

Differential Equation Models

- A Dynamical system/ODE model is a system of the form:

$$
\Sigma:=\left\{\begin{array}{l}
\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\mathbf{y}=\mathbf{g}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\mathbf{x}(0)=\mathbf{x}^{*},
\end{array}\right.
$$

- x : state variables
- y : output variables,
- u: input variables,
- λ : parameters,
- $\mathbf{x}(0)$: initial conditions,
- \mathbf{f} and \mathbf{g} are rational function.

Differential Equation Models

- A Dynamical system/ODE model is a system of the form:

$$
\Sigma:=\left\{\begin{array}{l}
\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\mathbf{y}=\mathbf{g}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\mathbf{x}(0)=\mathbf{x}^{*},
\end{array}\right.
$$

- \mathbf{x} : state variables
- \mathbf{y} : output variables,
- u: input variables,
- $\boldsymbol{\lambda}$: parameters,
- $\mathbf{x}(0)$: initial conditions,
- \mathbf{f} and \mathbf{g} are rational function.
- We assume $\mathbf{y}(0), \mathbf{y}^{\prime}(0), \mathbf{y}^{\prime \prime}(0), \ldots$ can be measured and that \mathbf{u} is also specified/known.

Parameter Identifiability Problem

- Given model:

$$
\Sigma:=\left\{\begin{array}{l}
\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\mathbf{y}=\mathbf{g}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\mathbf{x}(0)=\mathbf{x}^{*} .
\end{array}\right.
$$

Parameter Identifiability Problem

- Given model:

$$
\Sigma:=\left\{\begin{array}{l}
\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\mathbf{y}=\mathbf{g}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\mathbf{x}(0)=\mathbf{x}^{*} .
\end{array}\right.
$$

- Parameter Identifiability Problem: Can we determine the values of the parameters from the input/output data?

Parameter Identifiability Problem

- Given model:

$$
\Sigma:=\left\{\begin{array}{l}
\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\mathbf{y}=\mathbf{g}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\mathrm{x}(0)=\mathbf{x}^{*} .
\end{array}\right.
$$

- Parameter Identifiability Problem: Can we determine the values of the parameters from the input/output data?
- I.e., Is it possible to determine the values of the parameters $\boldsymbol{\lambda}$ from a solution of the system?

Parameter Identifiability Problem

- Given model:

$$
\Sigma:=\left\{\begin{array}{l}
\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\mathbf{y}=\mathbf{g}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\mathbf{x}(0)=\mathbf{x}^{*} .
\end{array}\right.
$$

- Parameter Identifiability Problem: Can we determine the values of the parameters from the input/output data?
- I.e., Is it possible to determine the values of the parameters $\boldsymbol{\lambda}$ from a solution of the system?
- globally identifiable: unique values for parameters
- Given model:

$$
\Sigma:=\left\{\begin{array}{l}
\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\mathbf{y}=\mathbf{g}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\mathbf{x}(0)=\mathbf{x}^{*} .
\end{array}\right.
$$

- Parameter Identifiability Problem: Can we determine the values of the parameters from the input/output data?
- I.e., Is it possible to determine the values of the parameters $\boldsymbol{\lambda}$ from a solution of the system?
- globally identifiable: unique values for parameters
- locally identifiable: finitely many values for parameters
- Given model:

$$
\Sigma:=\left\{\begin{array}{l}
\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\mathbf{y}=\mathbf{g}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\mathbf{x}(0)=\mathbf{x}^{*} .
\end{array}\right.
$$

- Parameter Identifiability Problem: Can we determine the values of the parameters from the input/output data?
- I.e., Is it possible to determine the values of the parameters $\boldsymbol{\lambda}$ from a solution of the system?
- globally identifiable: unique values for parameters
- locally identifiable: finitely many values for parameters
- unidentifiable: infinitely many values for parameters

Example

$$
\Sigma=\left\{\begin{array}{l}
x^{\prime}=\lambda_{1}^{2} \\
y=x \\
x(0)=\lambda_{2}
\end{array}\right.
$$

Example

$$
\Sigma=\left\{\begin{array}{l}
x^{\prime}=\lambda_{1}^{2} \\
y=x \\
x(0)=\lambda_{2}
\end{array}\right.
$$

- The initial condition $x(0)=\lambda_{2}$ immediately implies that λ_{2} is globally identifiable.

Example

$$
\Sigma=\left\{\begin{array}{l}
x^{\prime}=\lambda_{1}^{2} \\
y=x \\
x(0)=\lambda_{2}
\end{array}\right.
$$

- The initial condition $x(0)=\lambda_{2}$ immediately implies that λ_{2} is globally identifiable.
- From $x^{\prime}=\lambda_{1}^{2}$ we obtain $x=\lambda_{1}^{2} t+C$, where C is a constant.

Example

$$
\Sigma=\left\{\begin{array}{l}
x^{\prime}=\lambda_{1}^{2} \\
y=x \\
x(0)=\lambda_{2}
\end{array}\right.
$$

- The initial condition $x(0)=\lambda_{2}$ immediately implies that λ_{2} is globally identifiable.
- From $x^{\prime}=\lambda_{1}^{2}$ we obtain $x=\lambda_{1}^{2} t+C$, where C is a constant.
- By the initial condition $x(0)=\lambda_{2}$ we obtain $C=\lambda_{2}$, hence

$$
y=\lambda_{1}^{2} t+\lambda_{2}
$$

Example

$$
\Sigma=\left\{\begin{array}{l}
x^{\prime}=\lambda_{1}^{2} \\
y=x \\
x(0)=\lambda_{2}
\end{array}\right.
$$

- The initial condition $x(0)=\lambda_{2}$ immediately implies that λ_{2} is globally identifiable.
- From $x^{\prime}=\lambda_{1}^{2}$ we obtain $x=\lambda_{1}^{2} t+C$, where C is a constant.
- By the initial condition $x(0)=\lambda_{2}$ we obtain $C=\lambda_{2}$, hence

$$
y=\lambda_{1}^{2} t+\lambda_{2}
$$

- So

$$
\lambda_{1}^{2}=\frac{y-\lambda_{2}}{t}
$$

hence, λ_{1} locally identifiable.

Existing Approaches

- Power series

Existing Approaches

- Power series
- Differential Algebra: Take derivatives of the system

$$
\Sigma^{m}:=\left\{\begin{array}{l}
\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\vdots \\
\mathbf{x}^{(m)}=\mathbf{f}^{(m)}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\mathbf{y}(0)=\mathbf{g}(\mathbf{x}(0), \boldsymbol{\lambda}, \mathbf{u}(0)) \\
\mathbf{y}^{\prime}(0)=\mathbf{g}^{\prime}(\mathbf{x}(0), \boldsymbol{\lambda}, \mathbf{u}(0) \\
\vdots \\
\mathbf{y}^{(m)}(0)=\mathbf{g}^{(m)}(\mathbf{x}(0), \boldsymbol{\lambda}, \mathbf{u}(0)) \\
\mathbf{x}(0)=\mathbf{x}^{*} .
\end{array}\right.
$$

Existing Approaches

- Power series
- Differential Algebra: Take derivatives of the system

$$
\Sigma^{m}:=\left\{\begin{array}{l}
\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\vdots \\
\mathbf{x}^{(m)}=\mathbf{f}^{(m)}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\mathbf{y}(0)=\mathbf{g}(\mathbf{x}(0), \boldsymbol{\lambda}, \mathbf{u}(0)) \\
\mathbf{y}^{\prime}(0)=\mathbf{g}^{\prime}(\mathbf{x}(0), \boldsymbol{\lambda}, \mathbf{u}(0) \\
\vdots \\
\mathbf{y}^{(m)}(0)=\mathbf{g}^{(m)}(\mathbf{x}(0), \boldsymbol{\lambda}, \mathbf{u}(0)) \\
\mathbf{x}(0)=\mathbf{x}^{*} .
\end{array}\right.
$$

- "Make" Σ^{m} into a polynomial system and use computational algebra techniques, e.g., Gröbner Bases/Rosenfeld-Gröbner.

A Probabilistic Algorithm for ODE Identifiability (SIAN)

- Plug in random values of $\hat{\boldsymbol{\lambda}}$ to $\boldsymbol{\lambda}$ and solve the ODE system Σ for the values $\mathbf{y}(0), \mathbf{y}(0)^{\prime}, \mathbf{y}^{\prime \prime}(0), \ldots, \mathbf{y}^{(m)}(0)$

A Probabilistic Algorithm for ODE Identifiability (SIAN)

- Plug in random values of $\hat{\boldsymbol{\lambda}}$ to $\boldsymbol{\lambda}$ and solve the ODE system Σ for the values $\mathbf{y}(0), \mathbf{y}(0)^{\prime}, \mathbf{y}^{\prime \prime}(0), \ldots, \mathbf{y}^{(m)}(0)$
- To check if λ_{i} is globally identifiable we can check whether

$$
\lambda_{i}-\hat{\lambda}_{i} \in G B\left(\Sigma^{m}\right)
$$

where $G B\left(\Sigma^{b}\right)$ is a Gröbner basis (and the membership can be checked via reduction).

From ODE to PDE

- Motivation (at least): Many Biological systems are modelled by PDEs

From ODE to PDE

- Motivation (at least): Many Biological systems are modelled by PDEs
- There is little work on PDE identifiability. Existing literature mostly includes case studies rather than a systematic study.

From ODE to PDE

- Motivation (at least): Many Biological systems are modelled by PDEs
- There is little work on PDE identifiability. Existing literature mostly includes case studies rather than a systematic study.
- Generalisation to a PDE system:

$$
\Sigma:=\left\{\begin{array}{l}
\partial_{t} \mathbf{x}=\mathbf{f}\left(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}, \partial_{t}^{i} \partial_{\xi}^{j} \mathbf{x}\right), i+j \leq m \\
\mathbf{y}=\mathbf{g}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\mathbf{x}(0)=\mathbf{x}^{*} \\
\text { Boundary Conditions }
\end{array}\right.
$$

- Motivation (at least): Many Biological systems are modelled by PDEs
- There is little work on PDE identifiability. Existing literature mostly includes case studies rather than a systematic study.
- Generalisation to a PDE system:

$$
\Sigma:=\left\{\begin{array}{l}
\partial_{t} \mathbf{x}=\mathbf{f}\left(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}, \partial_{t}^{i} \partial_{\xi}^{j} \mathbf{x}\right), i+j \leq m \\
\mathbf{y}=\mathbf{g}(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{u}) \\
\mathbf{x}(0)=\mathbf{x}^{*} \\
\text { Boundary Conditions }
\end{array}\right.
$$

- In practice, boundary conditions can be non-algebraic, which can make theory/computations hard.

Algebraic Definition of PDE Identifiability

- Differential ring:

$$
R=\mathbb{C}(\boldsymbol{\lambda})\left[\partial_{t}^{i} \partial_{\xi}^{j} \mathbf{x}, \partial_{t}^{i} \partial_{\xi}^{j} \mathbf{y}, \partial_{t}^{i} \partial_{\xi}^{j} \mathbf{u} \mid i, j \geq 0\right]
$$

Algebraic Definition of PDE Identifiability

- Differential ring:

$$
R=\mathbb{C}(\boldsymbol{\lambda})\left[\partial_{t}^{i} \partial_{\xi}^{j} \mathbf{x}, \partial_{t}^{i} \partial_{\xi}^{j} \mathbf{y}, \partial_{t}^{i} \partial_{\xi}^{j} \mathbf{u} \mid i, j \geq 0\right]
$$

- Differential ideal associated to the model Σ :

$$
I=\left\langle\partial_{t}^{i} \partial_{\xi}^{j}\left(\partial_{t} \mathbf{x}-\mathbf{f}\right), \partial_{t}^{i} \partial_{\xi}^{j}(\mathbf{y}-\mathbf{g}) \mid i, j \geq 0\right\rangle \subseteq R
$$

Algebraic Definition of PDE Identifiability

- Differential ring:

$$
R=\mathbb{C}(\boldsymbol{\lambda})\left[\partial_{t}^{i} \partial_{\xi}^{j} \mathbf{x}, \partial_{t}^{i} \partial_{\xi}^{j} \mathbf{y}, \partial_{t}^{i} \partial_{\xi}^{j} \mathbf{u} \mid i, j \geq 0\right]
$$

- Differential ideal associated to the model Σ :

$$
I=\left\langle\partial_{t}^{i} \partial_{\xi}^{j}\left(\partial_{t} \mathbf{x}-\mathbf{f}\right), \partial_{t}^{i} \partial_{\xi}^{j}(\mathbf{y}-\mathbf{g}) \mid i, j \geq 0\right\rangle \subseteq R
$$

- I is a prime ideal, hence let the field of fractions be $F=R / I$.

Algebraic Definition of PDE Identifiability

- Differential ring:

$$
R=\mathbb{C}(\boldsymbol{\lambda})\left[\partial_{t}^{i} \partial_{\xi}^{j} \mathbf{x}, \partial_{t}^{i} \partial_{\xi}^{j} \mathbf{y}, \partial_{t}^{i} \partial_{\xi}^{j} \mathbf{u} \mid i, j \geq 0\right]
$$

- Differential ideal associated to the model Σ :

$$
I=\left\langle\partial_{t}^{i} \partial_{\xi}^{j}\left(\partial_{t} \mathbf{x}-\mathbf{f}\right), \partial_{t}^{i} \partial_{\xi}^{j}(\mathbf{y}-\mathbf{g}) \mid i, j \geq 0\right\rangle \subseteq R
$$

- I is a prime ideal, hence let the field of fractions be $F=R / I$.

Definition

Let $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{u}}$ be the image of $\mathbf{x}, \mathbf{y}, \mathbf{u}$ in R / I. A parameter $\lambda \in \boldsymbol{\lambda}$ (or a rational function of parameters) is identifiable if

$$
\lambda \in \mathbb{C}\left(\partial_{t}^{i} \partial_{\xi}^{j} \hat{\mathbf{y}}, \partial_{t}^{i} \partial_{\xi}^{j} \hat{\mathbf{u}}\right) .
$$

Testing PDE Identifiability

Definition

Let $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{u}}$ be the image of $\mathbf{x}, \mathbf{y}, \mathbf{u}$ in R / I. A parameter $\lambda \in \boldsymbol{\lambda}$ is identifiable if

$$
\lambda \in \mathbb{C}\left(\partial_{t}^{i} \partial_{\xi}^{j} \hat{\mathbf{y}}, \partial_{t}^{i} \partial_{\xi}^{j} \hat{\mathbf{u}}\right)
$$

Testing PDE Identifiability

Definition

Let $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{u}}$ be the image of $\mathbf{x}, \mathbf{y}, \mathbf{u}$ in R / I. A parameter $\lambda \in \boldsymbol{\lambda}$ is identifiable if

$$
\lambda \in \mathbb{C}\left(\partial_{t}^{i} \partial_{\xi}^{j} \hat{\mathbf{y}}, \partial_{t}^{i} \partial_{\xi}^{j} \hat{\mathbf{u}}\right) .
$$

Theorem
Let $I \subseteq R$ be the differential ideal corresponding to a PDE model, with characteristic set S. A parameter λ in S is identifiable if the polynomials in S, considered as polynomials in variable $\boldsymbol{\lambda}$ with monomial coefficients in R, have linearly independent coefficients.

Testing PDE Identifiability

Definition

Let $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{u}}$ be the image of $\mathbf{x}, \mathbf{y}, \mathbf{u}$ in R / I. A parameter $\lambda \in \boldsymbol{\lambda}$ is identifiable if

$$
\lambda \in \mathbb{C}\left(\partial_{t}^{i} \partial_{\xi}^{j} \hat{\mathbf{y}}, \partial_{t}^{i} \partial_{\xi}^{j} \hat{\mathbf{u}}\right) .
$$

Theorem
Let $I \subseteq R$ be the differential ideal corresponding to a PDE model, with characteristic set S. A parameter λ in S is identifiable if the polynomials in S, considered as polynomials in variable $\boldsymbol{\lambda}$ with monomial coefficients in R, have linearly independent coefficients.

- One can check the linear independence of the monomial coefficients by checking non-singularity of certain Wronskians.

The Procedure

1. Construct a differential ideal from the model equations.

The Procedure

1. Construct a differential ideal from the model equations.
2. Using Rosenfeld-Gröbner algorithm, compute the characteristic set

$$
F_{j}(u, \dot{u}, \ddot{u}, \ldots,, y, \dot{y}, \ddot{y}, \ldots)=0 .
$$

The Procedure

1. Construct a differential ideal from the model equations.
2. Using Rosenfeld-Gröbner algorithm, compute the characteristic set

$$
F_{j}(u, \dot{u}, \ddot{u}, \ldots,, y, \dot{y}, \ddot{y}, \ldots)=0 .
$$

3. Collect the coefficients of F_{j} as rational functions in terms of the parameters.

The Procedure

1. Construct a differential ideal from the model equations.
2. Using Rosenfeld-Gröbner algorithm, compute the characteristic set

$$
F_{j}(u, \dot{u}, \ddot{u}, \ldots,, y, \dot{y}, \ddot{y}, \ldots)=0 .
$$

3. Collect the coefficients of F_{j} as rational functions in terms of the parameters.
4. Compute the Wronskian $W r_{j}$ of the coefficients.

The Procedure

1. Construct a differential ideal from the model equations.
2. Using Rosenfeld-Gröbner algorithm, compute the characteristic set

$$
F_{j}(u, \dot{u}, \ddot{u}, \ldots,, y, \dot{y}, \ddot{y}, \ldots)=0 .
$$

3. Collect the coefficients of F_{j} as rational functions in terms of the parameters.
4. Compute the Wronskian $W r_{j}$ of the coefficients.
5. Check if $W r_{j}$ are non-singular by
6. Construct a differential ideal from the model equations.
7. Using Rosenfeld-Gröbner algorithm, compute the characteristic set

$$
F_{j}(u, \dot{u}, \ddot{u}, \ldots,, y, \dot{y}, \ddot{y}, \ldots)=0 .
$$

3. Collect the coefficients of F_{j} as rational functions in terms of the parameters.
4. Compute the Wronskian $W r_{j}$ of the coefficients.
5. Check if $W r_{j}$ are non-singular by
6. Compute the determinant det of $W r_{j}$ (which is a polynomial)
7. Construct a differential ideal from the model equations.
8. Using Rosenfeld-Gröbner algorithm, compute the characteristic set

$$
F_{j}(u, \dot{u}, \ddot{u}, \ldots,, y, \dot{y}, \ddot{y}, \ldots)=0
$$

3. Collect the coefficients of F_{j} as rational functions in terms of the parameters.
4. Compute the Wronskian $W r_{j}$ of the coefficients.
5. Check if $W r_{j}$ are non-singular by
6. Compute the determinant det of $W r_{j}$ (which is a polynomial)
7. Compute the normal form of the coefficients of det wrt F_{j}
8. Construct a differential ideal from the model equations.
9. Using Rosenfeld-Gröbner algorithm, compute the characteristic set

$$
F_{j}(u, \dot{u}, \ddot{u}, \ldots,, y, \dot{y}, \ddot{y}, \ldots)=0
$$

3. Collect the coefficients of F_{j} as rational functions in terms of the parameters.
4. Compute the Wronskian $W r_{j}$ of the coefficients.
5. Check if $W r_{j}$ are non-singular by
6. Compute the determinant det of $W r_{j}$ (which is a polynomial)
7. Compute the normal form of the coefficients of det wrt F_{j}
8. Obtain a sufficient condition \mathcal{C} for normal forms not to be zero
9. Construct a differential ideal from the model equations.
10. Using Rosenfeld-Gröbner algorithm, compute the characteristic set

$$
F_{j}(u, \dot{u}, \ddot{u}, \ldots,, y, \dot{y}, \ddot{y}, \ldots)=0
$$

3. Collect the coefficients of F_{j} as rational functions in terms of the parameters.
4. Compute the Wronskian $W r_{j}$ of the coefficients.
5. Check if $W r_{j}$ are non-singular by
6. Compute the determinant det of $W r_{j}$ (which is a polynomial)
7. Compute the normal form of the coefficients of det wrt F_{j}
8. Obtain a sufficient condition \mathcal{C} for normal forms not to be zero
9. Using initial/boundary conditions check if \mathcal{C} holds.

Case Study: Nutrient Reaction-Diffusion

$-d \frac{\partial c(x, t)}{\partial x^{2}} c(x, t)-d c_{0} \frac{\partial c(x, t)}{\partial x^{2}}+\frac{\partial c(x, t)}{\partial t} c(x, t)+c_{0} \frac{\partial c(x, t)}{\partial t}-\lambda c(x, t)$,

- Initial Conditions:

$$
c(R, t)=1, \quad c(x, 0)=1,0 \leq x \leq R
$$

- Boundary Conditions:

$$
\frac{\partial c(0, t)}{\partial t}=0
$$

Case Study: Nutrient Reaction-Diffusion

> restart:
$=$
Setting up the PDE:
$>$ eq $:=\operatorname{diff}(c(x, t), t)-d * \operatorname{diff}(c(x, t), x \$ 2)-\operatorname{lambda*} c(x, t) /\left(c _0+c(x, t)\right)$;

$$
e q:=\frac{\partial}{\partial t} c(x, t)-d\left(\frac{\partial^{2}}{\partial x^{2}} c(x, t)\right)-\frac{\lambda c(x, t)}{c_{-} O+c(x, t)}
$$

Clearing out the numerators. This is our input-output equation (called IO-equation below):
$>$ numer (eq) ;

$$
-d\left(\frac{\partial^{2}}{\partial x^{2}} c(x, t)\right) c(x, t)-d\left(\frac{\partial^{2}}{\partial x^{2}} c(x, t)\right) c_{-} 0+\left(\frac{\partial}{\partial t} c(x, t)\right) c(x, t)+\left(\frac{\partial}{\partial t} c(x, t)\right) c_{-} O-\lambda c(x, t)
$$

${ }_{=}$Creating variables for the monomials of the input-output equation
$>$ M1 := simplify (diff $(c(x, t), x, x) * C(x, t))$:
M2 := simplify(diff(c(x, t), $x, x))$:
M3 := simplify(diff(c(x, t), t)):
M4 := $C(x, t)$:

Case Study: Nutrient Reaction-Diffusion

```
Creating the Wronskian of the monomials
> with(VectorCalculus):with(LinearAlgebra):
    Wr := simplify(Determinant(Wronskian([M1,M2,M3,M4],x))):
Setting up differential algebra to study the Wronskian
> with(DifferentialAlgebra):
    R := DifferentialRing(blocks = [c], derivations = [x,t], arbitrary =
    [lambda, c_0, d]):
    RG := RoseñfeldGroebner([eq], R):
```

Does the Wronskian vanish? Let us find out by computing the remainder modulo the IO-equation and listing the coefficients of the result as a polynomial in the parameters
$>$ cf := coeffs (expand (numer (simplify(NormalForm(Wr, RG))) [1]), [lambda, c_0,
d]) :
$>$ for i from 1 to nops ([cf]) do print (cf[i]); print(\n) od;

$$
3\left(\frac{\partial}{\partial t} c(x, t)\right)^{2}\left(\frac{\partial^{2}}{\partial t \partial x} c(x, t)\right)^{2} c(x, t)^{6}-3\left(\frac{\partial}{\partial x} c(x, t)\right)^{2}\left(\frac{\partial^{2}}{\partial t^{2}} c(x, t)\right)^{2} c(x, t)^{6}
$$

Case Study: Nutrient Reaction-Diffusion

$$
\begin{gather*}
-6\left(\frac{\partial}{\partial t} c(x, t)\right)\left(\frac{\partial^{2}}{\partial t \partial x} c(x, t)\right)^{2} c(x, t)^{6} \\
3\left(\frac{\partial^{2}}{\partial t \partial x} c(x, t)\right)^{2} c(x, t)^{6} \tag{3}
\end{gather*}
$$

Let us try to get useful consequences of the vanishing of the coefficients (we chose just 10 of those to run the _computation faster).
> Equations (RosenfeldGroebner ([cf[-1], cf [1..10]],R)) ;

$$
\begin{equation*}
\left[\left[\frac{\partial}{\partial t} c(x, t)\right],\left[\frac{\partial}{\partial x} c(x, t)\right]\right] \tag{4}
\end{equation*}
$$

- plugging in each of the above into the PDE, we obtain ODEs, and then using the initial conditions one can prove that the above expressions cannot be zero.

Case Study: Fisher's Equation

$$
\Sigma:=\left\{\begin{array}{l}
\frac{\partial n(x, t)}{\partial t}-d \frac{\partial n(x, t)}{\partial x^{2}}-r n(x, t)\left(1-\frac{n(x, t) 1}{k}\right),\left\{\begin{array}{l}
-\infty<x<\infty \\
0<t
\end{array}\right. \\
\text { Boundary Cond: } n(x, t) \rightarrow \begin{cases}k & x \rightarrow-\infty \\
0 & x \rightarrow+\infty\end{cases} \\
\text { Initial Conds: } n(x, 0)=n_{0}(x), \\
n_{0}(x)=\frac{k e^{-\alpha x}}{1+e^{-\alpha x}} \begin{cases}K & x \rightarrow-\infty \\
0 & x \rightarrow+\infty\end{cases}
\end{array}\right.
$$

Case Study: Fisher's Equation

-> eq;

$$
\frac{\partial}{\partial t} n(x, t)-d\left(\frac{\partial^{2}}{\partial x^{2}} n(x, t)\right)+\frac{r n(x, t)(-k+n(x, t))}{k}
$$

=Creating variables for the monomials of the input-output equation

```
\(>\) M1 := simplify \(\left(\mathrm{n}(\mathrm{x}, \mathrm{t})^{\wedge} 2\right): \mid\)
    M2 := simplify (diff \((\mathrm{n}(\mathrm{x}, \mathrm{t}), \mathrm{x}, \mathrm{x})\) ):
    \(=\) M3 := simplify \((\mathrm{n}(\mathrm{x}, \mathrm{t}))\) :
```

$=$ Creating the Wronskian of the monomials
> with(VectorCalculus) : with (LinearAlgebra) :
Wr := simplify(Determinant (Wronskian ([M1, M2, M3], x))) ;
$W r:=-\left(\frac{\partial^{3}}{\partial x^{3}} n(x, t)\right)\left(\frac{\partial^{2}}{\partial x^{2}} n(x, t)\right) n(x, t)^{2}-2\left(\frac{\partial^{3}}{\partial x^{3}} n(x, t)\right)\left(\frac{\partial}{\partial x} n(x, t)\right)^{2} n(x, t)+2\left(\frac{\partial^{2}}{\partial x^{2}} n(x\right.$,
$t)\left(\frac{\partial}{\partial x} n(x, t)\right)^{3}+\left(\frac{\partial}{\partial x} n(x, t)\right)\left(\frac{\partial^{4}}{\partial x^{4}} n(x, t)\right) n(x, t)^{2}$

Case Study: Fisher's Equation

_Setting up differential algebra to study the Wronskian
> with (DifferentialAlgebra):
$>\mathrm{R}:=$ DifferentialRing (blocks $=[\mathrm{n}]$, derivations $=[\mathrm{x}, \mathrm{t}]$, arbitrary $=[\mathrm{d}, \mathrm{r}$,

- k]):
${ }^{-}$RG := RosenfeldGroebner ([eq], R) ; Equations (RG); $R G:=$ [regular_differential_chain]

$$
\left[\left[d\left(\frac{\partial^{2}}{\partial x^{2}} n(x, t)\right) k-\left(\frac{\partial}{\partial t} n(x, t)\right) k-r n(x, t)^{2}+r n(x, t) k\right]\right]
$$

Does the Wronskian vanish? Let us find out by computing the remainder modulo the IO-equation and listing the =coefficients of the result as a polynomial in the parameters
$>$ cf := coeffs (expand (numer (simplify (NormalForm(Wr, RG))) [1]), [k, r, d]);

$$
\begin{gathered}
c f:=-2\left(\frac{\partial^{2}}{\partial t \partial x} n(x, t)\right)\left(\frac{\partial}{\partial x} n(x, t)\right)^{2} n(x, t)+2\left(\frac{\partial}{\partial x} n(x, t)\right)^{3}\left(\frac{\partial}{\partial t} n(x, t)\right),\left(\frac{\partial^{2}}{\partial t \partial x} n(x, t)\right) n(x, \\
t)^{3}-\left(\frac{\partial}{\partial x} n(x, t)\right)\left(\frac{\partial}{\partial t} n(x, t)\right) n(x, t)^{2},-\left(\frac{\partial^{2}}{\partial t \partial x} n(x, t)\right) n(x, t)^{4}+2\left(\frac{\partial}{\partial x} n(x, t)\right)\left(\frac{\partial}{\partial t} n(x,\right.
\end{gathered}
$$

Case Study: Fisher's Equation

$>$ Equations (RosenfeldGroebner([cf[-1], cf[1..4]],R));

$$
\left[\left[\frac{\partial}{\partial x} n(x, t)\right],\left[\frac{\partial}{\partial t} n(x, t)\right]\right]
$$

So if $\mathrm{dn} / \mathrm{dt}<>0$ and $\mathrm{dn} / \mathrm{dx}<>0$, then we have identifiability.
_CASE 1. If $\mathrm{d} n / \mathrm{dx}=0$, then the PDE become the folling ODE:
$>$ eqt $:=$ simplify $(\operatorname{diff}(n(t), t))-r * n(t)+(1 / k) *(n(t))^{\wedge} 2$;

$$
\text { eqt }:=\frac{\mathrm{d}}{\mathrm{~d} t} n(t)-r n(t)+\frac{n(t)^{2}}{k}
$$

- This can be refuted using the fact that the initial condition does not depend on t.

Case Study: Fisher's Equation

```
-------CASE 2. dn/dt=0:
\(>\) eqx \(:=\) simplify \(\left(-d * \operatorname{diff}(\mathrm{n}(\mathrm{x}), \mathrm{x} \$ 2)-\mathrm{r}_{\mathrm{n}} \mathrm{n}(\mathrm{x})+(1 / \mathrm{k}) *(\mathrm{n}(\mathrm{x}))^{\wedge} 2\right)\);
    \(e q x:=-d\left(\frac{\mathrm{~d}^{2}}{\mathrm{~d}^{2}} n(x)\right)-r n(x)+\frac{n(x)^{2}}{k}\)
```

${ }^{=}$But at $\mathrm{t}=0$, IC leads to describing $\mathrm{n}(\mathrm{x}, \mathrm{t}=0)$ in terms of \exp :
$>$ IC: $=\mathrm{n}(\mathrm{x})=\operatorname{simplify}((\mathrm{k} * \exp (-\mathrm{a} * \mathrm{x})) /(1+\exp (-\mathrm{a} * \mathrm{x})))$;

$$
I C:=n(x)=\frac{k \mathrm{e}^{-a x}}{1+\mathrm{e}^{-a x}}
$$

> ICdiff:=simplify(diff(IC,x));

$$
\text { ICdiff }:=\frac{\mathrm{d}}{\mathrm{~d} x} n(x)=-\frac{k a \mathrm{e}^{-a x}}{\left(1+\mathrm{e}^{-a x}\right)^{2}}
$$

= Which can be plugged into (20), leading to:
" $>$ eqnx:=simplify(eval (eqx,IC));

$$
\text { eqn } x:=\frac{k\left(\left(d a^{2}-2 r+1\right) \mathrm{e}^{-a x}+(-r+1) \mathrm{e}^{-2 a x}-d a^{2}-r\right) \mathrm{e}^{-a x}}{\left(1+\mathrm{e}^{-a x}\right)^{3}}
$$

This cannot happen because the latter expression must be zero according to the initial condition.

Case Study: Lotka Volterra Equation

$$
\Sigma:=\left\{\begin{array}{l}
\frac{\partial u(x, t)}{\partial t}-d_{1} \frac{\partial u(x, t)}{\partial x^{2}}-u(x, t)\left(a_{1}-b_{1} u(x, t)-c_{1} v(x, t)\right), \\
\frac{\partial v(x, t)}{\partial t}-d_{2} \frac{\partial v(x, t)}{\partial x^{2}}-v(x, t)\left(a_{2}-b_{2} u(x, t)-c_{2} v(x, t)\right) \\
-\infty<x<\infty, \quad 0<t \\
\text { Boundary Cond.s: } \quad u(x, t) \rightarrow \begin{cases}\frac{a_{1}}{b_{1}} & x \rightarrow-\infty \\
0 & x \rightarrow+\infty\end{cases} \\
\quad v(x, t) \rightarrow \begin{cases}\frac{a_{2}}{c_{2}} & x \rightarrow-\infty \\
0 & x \rightarrow+\infty\end{cases}
\end{array}\right.
$$

Initial Cond.s:

$$
\begin{aligned}
& u_{0}(x)=\frac{\left(a_{1} / b_{1}\right) e^{-\alpha_{U} x}}{1+e^{-\alpha_{U} x}} \begin{cases}a_{1} / a_{2} & x \rightarrow-\infty \\
0 & x \rightarrow+\infty\end{cases} \\
& v_{0}(x)=\frac{\left(a_{1} / b_{1}\right) e^{-\alpha_{U} x}}{1+e^{-\alpha_{U x}}} \begin{cases}a_{1} / a_{2} & x \rightarrow-\infty \\
0 & x \rightarrow+\infty\end{cases}
\end{aligned}
$$

Case Study: Lotka Volterra Equation

```
> restart: with(DifferentialAlgebra): with(LinearAlgebra):
    sys := [
        diff(u(x, t), t) - d1 * diff(u(x, t), x$2) - u(x, t) * (a1 - b1 *
    u(x,t) - c1 * v(x, t)),
        diff(v(x, t), t) - d2 * diff(v (x, t), x$2) - v(x, t) * (a2 - b2 *
    u(x,t) - c2 * v(x,t)),
        y1 (x,t) - u(x, t),
        Y2(x,t) - v(x,t)
        ];
```

$s y s:=\left[\frac{\partial}{\partial t} u(x, t)-d 1\left(\frac{\partial^{2}}{\partial x^{2}} u(x, t)\right)-u(x, t)(a 1-b 1 u(x, t)-c 1 v(x, t)), \frac{\partial}{\partial t} v(x, t)-d 2\left(\frac{\partial^{2}}{\partial x^{2}}\right.\right.$
$\left.v(x, t))-v(x, t)\left(a^{2}-b 2 u(x, t)-c 2 v(x, t)\right), y 1(x, t)-u(x, t), y 2(x, t)-v(x, t)\right]$
$>R:=$ DifferentialRing(blocks $=[[u, v],[y 1, y 2]]$, derivations $=[x, t]$,
arbitrary $=$ [a1, b1, c1, d1, a2, b2, c2, d2]):
$\stackrel{\text { RG }}{ }>$:= RosenfeldGroebner (sys, R) ;

Case Study: Lotka Volterra Equation

```
> IOeqs := Equations(RG[1])[-2..-1];
IOeqs \(:=\left[\left(\frac{\partial^{2}}{\partial x^{2}} y 1(x, t)\right) d 1-\frac{\partial}{\partial t} y 1(x, t)-y 1(x, t)^{2} b 1-y 1(x, t) y 2(x, t) c 1+y 1(x, t) a 1,\left(\frac{\partial^{2}}{\partial x^{2}}\right.\right.\)
    \(\left.y 2(x, t)) d 2-\frac{\partial}{\partial t} y 2(x, t)-y 1(x, t) y 2(x, t) b 2-y 2(x, t)^{2} c 2+y 2(x, t) a 2\right]\)
\(\stackrel{=}{>}\) Ms1 := map2(coeff, IOeqs[1], [a1, b1, c1, d1], 1);
    \(M s 1:=\left[y 1(x, t),-y 1(x, t)^{2},-y 1(x, t) y 2(x, t), \frac{\partial^{2}}{\partial x^{2}} y 1(x, t)\right]\)
    \(\stackrel{=}{>}\) Ms2 := map2 (coeff, IOeqs [2], [a2, b2, c2, d2], 1);
    \(M s 2:=\left[y 2(x, t),-y 1(x, t) y 2(x, t),-y 2(x, t)^{2}, \frac{\partial^{2}}{\partial x^{2}} y 2(x, t)\right]\)
    \(>\) with(VectorCalculus):
    \(>\) Wr1 := Wronskian (Ms1, x) :
        Wr2 := Wronskian (Ms2, x):
```


Case Study: Lotka Volterra Equation

$\mid>\mathrm{R} 2$: $=$ DifferentialRing(blocks $=\left[\left[y 1, y^{2}, u, v\right]\right]$, derivations $=[x, t]$, arbitrary $=[a 1, b 1, c 1, d 1, a 2, b 2, c 2, d 2]):$
" $>$ RG2 := RosenfeldGroebner (sys, R2):
Equations (RosenfeldGroebner (sys, R2)) ;
$\left[\left[d 1\left(\frac{\partial^{2}}{\partial x^{2}} u(x, t)\right)-\frac{\partial}{\partial t} u(x, t)-u(x, t)^{2} b 1-u(x, t) v(x, t) c 1+u(x, t) a 1, d 2\left(\frac{\partial^{2}}{\partial x^{2}} v(x, t)\right)-\frac{\partial}{\partial t}\right.\right.$

$$
\left.v(x, t)-u(x, t) v(x, t) b_{2}-v(x, t)^{2} c 2+v(x, t) a 2, y 1(x, t)-u(x, t), y 2(x, t)-v(x, t)\right]
$$

$>$ NF1 := NormalForm(simplify (Determinant(Wr1)), RG2):
$[>$ cfs $:=$ coeffs (expand (numer (NF1)) [1], $[a 1, b 1, c 1, d 1, a 2, b 2, c 2, d 2]):$
\gg for $c f$ in cfs do print (cf) ; print() od;
$8\left(\frac{\partial}{\partial x} u(x, t)\right)^{3}\left(\frac{\partial}{\partial t} u(x, t)\right)\left(\frac{\partial}{\partial x} v(x, t)\right) u(x, t) v(x, t)-8\left(\frac{\partial^{2}}{\partial t \partial x} u(x, t)\right)\left(\frac{\partial}{\partial x} u(x, t)\right)^{2}\left(\frac{\partial}{\partial x} v(x\right.$,
$t) u(x, t)^{2} v(x, t)+2\left(\frac{\partial}{\partial x} u(x, t)\right)^{2}\left(\frac{\partial}{\partial t} u(x, t)\right)\left(\frac{\partial}{\partial x} v(x, t)\right)^{2} u(x, t)^{2}-2\left(\frac{\partial^{2}}{\partial t \partial x} u(x, t)\right)\left(\frac{\partial}{\partial x}\right.$

Case Study: Lotka Volterra Equation

-> Equations (RosenfeldGroebner ([cfs[-1], cfs[1..10]],R2));

$$
\left[\left[\frac{\partial}{\partial t} u(x, t), \frac{\partial}{\partial t} v(x, t)\right],[v(x, t)],\left[\frac{\partial}{\partial x} u(x, t)\right]\right]
$$

Case 2. $v(x, t)=0$.
In contrast w the boundary condition $v \rightarrow \frac{a l}{b 1}$ when $x \rightarrow$ infinity.
Case 3. $\frac{\partial}{\partial x} u(x, t)=0$
Contradicts because in this case u only depends on t, but the boundary conditions says $u(x, 0)$ varies (exponentially) with respect to alpha*x but we assume alpha non zero.
Case 1. $\frac{\partial}{\partial t} u(x, t)=0, \frac{\partial}{\partial t} v(x, t)=0$
Therefore $u=u(x)$ and $v=v(x)$ and are given by the initial conditions $u(x, 0)$ and $v(x, 0)$, which are exponential functions. This means that We cannot say anything about identifiability.

