Using Symbolic Computation to Analyze Zero-Hopf Bifurcations of Polynomial Differential Systems

Bo Huang

LMIB - School of Mathematical Sciences
Beihang University

FRK 2024 - Formal Reaction Kinetics and Related Questions
March 5, 2024

Outline

(1) Introduction
(2) Problem

- Hopf and Zero-Hopf Bifurcations
- The Method of Averaging
(3) Main Results
(4) Future Works

Introduction

We deal with polynomial differential systems in \mathbb{R}^{n} of the form

$$
\begin{equation*}
\dot{\mathrm{x}}=\mathbf{f}(\mathbf{x}, \boldsymbol{\mu}), \quad \mathbf{f}: \mathbb{R}^{n} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}, \tag{1}
\end{equation*}
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ are variables, $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{d}\right)$ are real parameters, and $\mathbf{f}=\left(f_{1}, \ldots, f_{n}\right)$ are polynomials in $\mathbb{R}[\mathbf{x}]$.

Many applications: physics, biology, chemistry and engineering.

- Zero-Hopf bifurcation of limit cycles

Hopf bifurcation

The Hopf Bifurcation Theorem [Guckenheimer and Holmes, 1983]
Let

$$
\begin{equation*}
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \boldsymbol{\mu}), \quad \mathbf{x} \in \mathbb{R}^{n}, \quad \boldsymbol{\mu} \in \mathbb{R}^{d} \tag{2}
\end{equation*}
$$

be a smooth n-dimensional vector field depending upon d parameters with the following properties:
(1) The system has a smooth curve of equilibria: $\mathbf{f}(\underline{\mathbf{x}}, \boldsymbol{\mu})=0$.
(2) The characteristic equation $|\lambda I-D \mathbf{f}(\underline{\mathbf{x}}, \underline{\boldsymbol{\mu}})|=0$, where $D \mathbf{f}(\underline{\mathbf{x}}, \underline{\mu})$ is the Jacobian matrix of the system at $(\underline{\mathbf{x}}, \underline{\boldsymbol{\mu}})$, has a pair of imaginary roots $(\lambda(\underline{\mathbf{x}}, \underline{\mu}), \bar{\lambda}(\underline{\mathbf{x}}, \underline{\mu}))$, and no other roots with zero real parts.
$\rightarrow \quad(\underline{\mathbf{x}}, \underline{\boldsymbol{\mu}}) \quad$ Hopf equilibria
(3) The real part $\operatorname{Re}(\lambda(\underline{\mathbf{x}}, \boldsymbol{\mu}))$ of $\lambda(\underline{\mathbf{x}}, \boldsymbol{\mu})$ satisfies

$$
\begin{equation*}
\left.\frac{\partial \operatorname{Re}(\lambda(\underline{\mathbf{x}}, \boldsymbol{\mu}))}{\partial \mu_{i}}\right|_{\mu_{i}=\underline{\boldsymbol{\mu}}} \neq 0 \tag{3}
\end{equation*}
$$

Then there is a smooth submanifold P of dimension $d+1$ containing $(\underline{\mathbf{x}}, \underline{\boldsymbol{\mu}})$ that is a union of periodic orbits and equilibrium points of f_{E}

Hopf bifurcation

A planar differential system with one parameter:

$$
\begin{equation*}
\dot{x}=\mu x-y-x\left(x^{2}+y^{2}\right), \quad \dot{y}=x+\mu y-y\left(x^{2}+y^{2}\right) \tag{4}
\end{equation*}
$$

1) $: O=(0,0)$,
2) $: \mu=0 \Longrightarrow \lambda_{1,2}= \pm i$,
3) $: \partial \operatorname{Re}(\lambda(O, \mu)) /\left.\partial \mu\right|_{\mu=0}=1 \neq 0$.

(a) Stable focus $(\mu=0)$

(b) Limit cycle $(\mu>0)$

An isolated periodic solution of system (4) is called a limit cycle.

Hopf bifurcation

Hopf bifurcation $\hookrightarrow\left[\pm i b(b \neq 0), \quad \operatorname{Re}\left(\lambda_{j}\right) \neq 0\right]$

T. J. Guckenheimer, M. Myers, B. Sturmfels. Computing Hopf Bifurcation I. SIAM Journal of Numerical Analysis, 1997
I J. Guckenheimer, M. Myers. Computing Hopf Bifurcation II: Three Examples from Neurophysiology. SIAM Journal on Scientific Computing, 1996
(W. Govaerts, J. Guckenheimer, A. Khibnik. Defining Functions for Multiple Hopf Bifurcations. SIAM Journal of Numerical Analysis, 1997

國 M. El Kahoui, A. Weber. Deciding Hopf Bifurcations by Quantifier Elimination in a Software-component Architecture. Journal of Symbolic Computation, 2000

!

Zero-Hopf bifurcation: $\hookrightarrow\left[\pm i b(b \neq 0), \quad \lambda_{j}=0, \quad j \in\{3, \ldots, n\}\right]$
Complete zero-Hopf bifurcation: $\hookrightarrow\left[\pm i b(b \neq 0), \quad \lambda_{3}=\cdots \lambda_{n}=0\right]$

Zero-Hopf bifurcation

We assume that system (1) has a singularity at the origin. In this case, system (1) of degree at most N can be written in the form

$$
\begin{align*}
& \dot{x}_{1}=f_{1}=-b x_{2}+\sum_{m \geq 2}^{N} \sum_{i_{1}+\cdots+i_{n}=m} a_{i_{1}, \ldots, i_{n} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}},} \\
& \dot{x}_{2}=f_{2}=b x_{1}+\sum_{m \geq 2}^{N} \sum_{i_{1}+\cdots+i_{n}=m} b_{i_{1}, \ldots, i_{n}} i_{1}^{i_{1}} \cdots x_{n}^{i_{n}}, \tag{5}\\
& \dot{x}_{s}=f_{s}=\sum_{m \geq 2}^{N} \sum_{i_{1}+\cdots+i_{n}=m} c_{i_{1}, \ldots, i_{n}, s x_{1}^{i_{1}} \cdots x_{n}^{i_{n}},}
\end{align*}
$$

where $s=3, \ldots, n, b \neq 0, a_{i_{1}, i_{2}, \ldots, i_{n}}, b_{i_{1}, i_{2}, \ldots, i_{n}}$ and $c_{i_{1}, i_{2}, \ldots, i_{n}, s}$ are real parameters.
Goal: How many limit cycles can bifurcate from the origin, as a zero-Hopf equilibrium of system (5), when the system is perturbed inside the class of differential systems of the same form?
The main technique: The averaging method \hookrightarrow needs a small parameter ε

- Other methods: Center manifold theory \& Normal form theory
[Guckenheimer \& Holmes 1993], [Kuznetsov 2004], [Han \& Yu 2012]

Our problem

We consider the following perturbations of system (5)

$$
\begin{align*}
& \dot{x}_{1}=f_{1}+p_{1}\left(x_{1}, \ldots, x_{n}, \varepsilon\right), \\
& \dot{x}_{2}=f_{2}+p_{2}\left(x_{1}, \ldots, x_{n}, \varepsilon\right), \tag{6}\\
& \dot{x}_{s}=f_{s}+p_{s}\left(x_{1}, \ldots, x_{n}, \varepsilon\right), \quad s=3, \ldots, n,
\end{align*}
$$

where

$$
p_{s}=\sum_{j=1}^{k} \varepsilon^{j} \sum_{m^{*} \geq 1}^{N} \sum_{i_{1}+\cdots+i_{n}=m^{*}} p_{s, j, i_{1}, \ldots, i_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}},
$$

the constants $p_{s, j, i_{1}, \ldots, i_{n}}$ are real, and ε is a small parameter.
Problem 1. We are interested in the maximum number of limit cycles of system (6) for $|\varepsilon|$ sufficiently small, which bifurcate from the origin in a zero-Hopf bifurcation.
Techniques. The method of averaging \& Symbolic computation

The method of averaging

History of averaging

- [Fatou 1928], [Bogoliubov \& Krylov 1930's], [Bogoliubov 1945], [Hale 1963,1980], . . .
- A survey: [Sanders \& Verhulst 1985], [Sanders, Verhulst \& Murdock 2007], [Llibre, Moeckel \& Simó 2015]

樯
J. Llibre, D. Novaes, M. Teixeira. Higher order averaging theory for finding periodic solutions via Brouwer degree, Nonlinearity, 2014

Usually, the averaging method deals with differential systems in the following standard form

$$
\begin{equation*}
\frac{d \mathbf{x}}{d t}=\sum_{i=0}^{k} \varepsilon^{i} \mathbf{F}_{i}(t, \mathbf{x})+\varepsilon^{k+1} \mathbf{R}(t, \mathbf{x}, \varepsilon), \tag{7}
\end{equation*}
$$

where $\mathbf{F}_{i}: \mathbb{R} \times D \rightarrow \mathbb{R}^{n}$ for $i=0,1, \ldots, k$, and $\mathbf{R}: \mathbb{R} \times D \times\left(-\varepsilon_{0}, \varepsilon_{0}\right) \rightarrow \mathbb{R}^{n}$ are continuous functions, and T-periodic in the variable t, D being an open subset of \mathbb{R}^{n}.

The method of averaging

The process of using the averaging method [Huang \& Yap, J. Symbolic Comput., 2021]
STEP 1. Write the perturbed system (6) in the standard form of averaging (7) up to k-th order in ε.

Ideas:

$$
\begin{gathered}
\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\varepsilon X_{1}, \varepsilon X_{2}, \ldots, \varepsilon X_{n}\right) \Longleftarrow \text { rescale the variables } \Longrightarrow d X_{i} / d t \\
X_{1}=R \cos \theta, X_{2}=R \sin \theta, X_{s}=X_{s}(s=3, \ldots, n) \Longleftarrow \text { change of variables } \\
\frac{d R}{d \theta}=\frac{d R / d t}{d \theta / d t}=\varepsilon F_{1,1}(\theta, \boldsymbol{\eta})+\cdots+\varepsilon^{k} F_{k, 1}(\theta, \boldsymbol{\eta})+\mathcal{O}\left(\varepsilon^{k+1}\right) \Longleftarrow \text { Taylor expansion } \\
\frac{d X_{s}}{d \theta}=\frac{d X_{s} / d t}{d \theta / d t}=\varepsilon F_{1, s}(\theta, \boldsymbol{\eta})+\cdots+\varepsilon^{k} F_{k, s}(\theta, \boldsymbol{\eta})+\mathcal{O}\left(\varepsilon^{k+1}\right) \Longleftarrow \text { Taylor expansion }
\end{gathered}
$$

where $\boldsymbol{\eta}=\left(R, X_{3}, \ldots, X_{n}\right)$.

The method of averaging

Let L be a positive integer, let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in D, t \in \mathbb{R}$ and $\mathbf{y}_{j}=\left(y_{j 1}, \ldots, y_{j n}\right) \in \mathbb{R}^{n}$ for $j=1, \ldots, L$. The definition of the L-multilinear map is

$$
\begin{equation*}
\partial^{L} \mathbf{F}(t, \mathbf{x}) \bigodot_{j=1}^{L} \mathbf{y}_{j}=\sum_{i_{1}, \ldots, i_{L}=1}^{n} \frac{\partial^{L} \mathbf{F}(t, \mathbf{x})}{\partial x_{i_{1}} \cdots \partial x_{i_{L}}} y_{1 i_{1}} \cdots y_{L L_{L}} . \tag{8}
\end{equation*}
$$

The simple zeros of the i th $(i=1,2, \ldots, k)$ order averaged function

$$
\begin{equation*}
\mathbf{f}_{i}(\mathbf{z})=\frac{\mathbf{y}_{i}(T, \mathbf{z})}{i!}, \tag{9}
\end{equation*}
$$

controls the limit cycles of the differential system (7).

The method of averaging

Here $\mathbf{y}_{i}: \mathbb{R} \times D \rightarrow \mathbb{R}^{n}$, for $i=1,2, \ldots, k$, are defined recurrently by the following integral equations

$$
\begin{align*}
\mathbf{y}_{1}(t, \mathbf{z})= & \int_{0}^{t} \mathbf{F}_{1}(\theta, \mathbf{z}) d \theta \\
\mathbf{y}_{i}(t, \mathbf{z})= & i!\int_{0}^{t}\left(\mathbf{F}_{i}(\theta, \mathbf{z})+\sum_{\ell=1}^{i-1} \sum_{S_{\ell}} \frac{1}{b_{1}!b_{2}!2!^{b_{2}} \cdots b_{\ell}!\ell!^{b_{\ell}}}\right. \tag{10}\\
& \left.\times \partial^{L} \mathbf{F}_{i-\ell}(\theta, \mathbf{z}) \bigodot_{j=1}^{\ell} \mathbf{y}_{j}(\theta, \mathbf{z})^{b_{j}}\right) d \theta
\end{align*}
$$

where S_{ℓ} is the set of all ℓ-tuples of nonnegative integers $\left[b_{1}, b_{2}, \ldots, b_{\ell}\right]$ satisfying $b_{1}+2 b_{2}+\cdots+\ell b_{\ell}=\ell$ and $L=b_{1}+b_{2}+\cdots+b_{\ell}$.

Nonlinearity 27 (2014) 563

$$
\begin{aligned}
y_{4}(t, z)= & \int_{0}^{t}\left(24 F_{4}(s, z)+24 \partial F_{3}(s, z) y_{1}(s, z)\right. \\
& +12 \partial^{2} F_{2}(s, z) y_{1}(s, z)^{2}+12 \partial F_{2}(s, z) y_{2}(s, z)+12 \partial^{2} F_{1}(s, z) y_{1}(s, z) \odot y_{2}(s, z) \\
& \left.+4 \partial^{3} F_{1}(s, z) y_{1}(s, z)^{3}+4 \partial F_{1}(s, z) y_{3}(s, z)\right) \mathrm{d} s
\end{aligned}
$$

The method of averaging

STEP 2. Derive the symbolic expression of $\mathbf{f}_{i}(\mathbf{z})$ by (9).
Key substep: Compute the exact formula for $\mathbf{y}_{i}(t, \mathbf{z})$. Symbolic program Idea: Using the following Bell polynomial [Novaes 2017]

$$
\begin{equation*}
B_{p, q}\left(x_{1}, \ldots, x_{p-q+1}\right)=\sum_{\widetilde{S}_{p, q}} \frac{p!}{b_{1}!b_{2}!\cdots b_{p-q+1}!} \prod_{j=1}^{p-q+1}\left(\frac{x_{j}}{j!}\right)^{b_{j}} \tag{11}
\end{equation*}
$$

where $\widetilde{S}_{\ell, m}$ is the set of all ($p-q+1$)-tuples of nonnegative integers $\left[b_{1}, b_{2}, \ldots, b_{p-q+1}\right]$ satisfying $b_{1}+2 b_{2}+\cdots+(p-q+1) b_{p-q+1}=p$, and $b_{1}+b_{2}+\cdots+b_{p-q+1}=q$.

The method of averaging

STEP 2. Derive the symbolic expression of $\mathbf{f}_{i}(\mathbf{z})$ by (9).
Key substep: Compute the exact formula for $\mathbf{y}_{i}(t, \mathbf{z})$. Symbolic program Idea: Using the following Bell polynomial [Novaes 2017]

$$
\begin{equation*}
B_{p, q}\left(x_{1}, \ldots, x_{p-q+1}\right)=\sum_{\tilde{S}_{p, q}} \frac{p!}{b_{1}!b_{2}!\cdots b_{p-q+1}!} \prod_{j=1}^{p-q+1}\left(\frac{x_{j}}{j!}\right)^{b_{j}} \tag{11}
\end{equation*}
$$

where $\widetilde{S}_{\ell, m}$ is the set of all ($p-q+1$)-tuples of nonnegative integers $\left[b_{1}, b_{2}, \ldots, b_{p-q+1}\right]$ satisfying $b_{1}+2 b_{2}+\cdots+(p-q+1) b_{p-q+1}=p$, and $b_{1}+b_{2}+\cdots+b_{p-q+1}=q$.
Then equation (10) becomes
$\mathbf{y}_{1}(t, \mathbf{z})=\int_{0}^{t} \mathbf{F}_{1}(\theta, \mathbf{z}) d \theta$,
$\mathbf{y}_{i}(t, \mathbf{z})=i!\int_{0}^{t}\left(\mathbf{F}_{i}(\theta, \mathbf{z})+\sum_{\ell=1}^{i-1} \sum_{m=1}^{\ell} \frac{1}{\ell!} \partial^{m} \mathbf{F}_{i-\ell}(\theta, \mathbf{z}) B_{\ell, m}\left(\mathbf{y}_{1}(\theta, \mathbf{z}), \ldots, \mathbf{y}_{\ell-m+1}(\theta, \mathbf{z})\right)\right)$

Averaging theorem

Theorem 1 (Llibre-Novaes-Teixeira 2014)

Assume that the following conditions hold:
(1) for each $i=1,2, \ldots, k$ and $t \in \mathbb{R}$, the function $\mathbf{F}_{i}(t, \mathbf{x})$ is of class \mathcal{C}^{k-i}, $\partial^{k-i} \mathbf{F}_{i}$ is locally Lipschitz in \mathbf{x}, and \mathbf{R} is a continuous function locally Lipschitz in \mathbf{x};
(2) for some $j \in\{1,2, \ldots, k\}, \mathbf{f}_{i}=0$ for $i=1,2, \ldots, j-1$ and $\mathbf{f}_{j} \neq 0$;
(3) for some $z^{*} \in D$ with $f_{j}\left(z^{*}\right)=0$ we have $\operatorname{det}\left(J_{\mathrm{f}_{j}}\left(\mathrm{z}^{*}\right)\right) \neq 0$.

Then, for any $|\varepsilon|>0$ sufficiently small, there exists a T-periodic solution $\mathbf{x}(t, \varepsilon)$ of (7) such that $\mathbf{x}(0, \varepsilon) \rightarrow \mathbf{z}^{*}$ when $\varepsilon \rightarrow 0$.

STEP 3. Determine the exact upper bound for the number $H_{k}(n, N)$ of real isolated solutions of $\mathbf{f}_{k}(\mathbf{z})$.

Some remarks

\# of limit cycles $\quad-\quad$ \# of real isolated solutions of $\mathbf{f}_{k}(\mathbf{z})$

Remark 1

Some advanced techniques from symbolic computation, such as Gröbner basis [Buchberger 1985], triangular decomposition [Wu 2000], [Wang 2001], quantifier elimination [Collins 1975), [Collins \& Hong 1991], and real solution classification [Yang \& Xia 2005] may be used to perform the task.

Problem 2: Given a perturbed differential system (6), how can we determine the symbolic expression of \mathbf{f}_{i} for $i=1, \ldots, k$? We provide an algorithmic approach to the solution (based on algorithms for STEPS 1,2).

Maple code: https://github.com/Bo-Math/zero-Hopf
Note: Updating the standard form of averaging by using
$f_{1} \equiv f_{2} \equiv \cdots \equiv f_{k-1} \equiv 0 \Longrightarrow$ improve efficiency of the algorithm.

Main results

Theorem $2\left(H_{1}(n, N)=2^{n-3}\right)$

For $k=1$ and $|\varepsilon|>0$ sufficiently small, there are systems of the form (6) having exactly $\ell \in\left\{0,1, \ldots, 2^{n-3}\right\}$ limit cycles bifurcating from the origin at $\varepsilon=0$.
\Longrightarrow polynomial equations

$$
\begin{aligned}
& a_{1,1,0,0, \mathbf{0}_{n-2}}+b_{1,0,1, \mathbf{0}_{n-2}}+\sum_{j=3}^{n}\left(a_{1,0, \mathbf{e}_{j}}+b_{0,1, e_{j}}\right) x_{j}=0, \quad \text { Bézout bound }=2^{n-3} \\
& \left(c_{2,0,0,0_{n-2}, s}+c_{0,2, \mathbf{0}_{n-2}, s}\right) R^{2}+2 \sum_{3 \leq j_{1} \leq j_{2} \leq n} c_{0,0, e_{j_{1}, 2}, s} x_{j_{1}} x_{j_{2}}+2 \sum_{j=3}^{n} c_{1,0,0, e_{j}, s} x_{j}=0, \quad s=3, \ldots, n .
\end{aligned}
$$

Main results

Theorem $2\left(H_{1}(n, N)=2^{n-3}\right)$
For $k=1$ and $|\varepsilon|>0$ sufficiently small, there are systems of the form (6) having exactly $\ell \in\left\{0,1, \ldots, 2^{n-3}\right\}$ limit cycles bifurcating from the origin at $\varepsilon=0$.
\Longrightarrow polynomial equations

$$
\begin{aligned}
& a_{1,1,0,0, \mathbf{o}_{n-2}}+b_{1,0,1, \mathbf{0}_{n-2}}+\sum_{j=3}^{n}\left(a_{1,0, \mathbf{e}_{j}}+b_{0,1, e_{j}}\right) x_{j}=0, \quad \text { Bézout bound }=2^{n-3} \\
& \left(c_{2,0,0, \mathbf{0}_{n-2}, s}+c_{0,2, \mathbf{0}_{n-2}, s}\right) R^{2}+2 \sum_{3 \leq j_{1} \leq j_{2} \leq n} c_{0,0, \mathbf{e}_{j_{12},}, s} x_{j_{1}} x_{j_{2}}+2 \sum_{j=3}^{n} c_{1,0,0, e_{j}, s} x_{j}=0, \quad s=3, \ldots, n .
\end{aligned}
$$

Denote the Jacobian of the function $\mathbf{f}_{k}(\boldsymbol{\eta})$ by $J_{f_{k}}(\boldsymbol{\eta})$. That is,

$$
J_{\boldsymbol{f}_{k}}(\boldsymbol{\eta})=\left[\begin{array}{cccc}
\frac{\partial f_{k, 1}}{\partial R} & \frac{\partial f_{k, 1}}{\partial x_{3}} & \ldots & \frac{\partial f_{k, 1}}{\partial x_{n}} \\
\frac{\partial f_{k, 3}}{\partial R} & \frac{\partial f_{k, 3}}{\partial x_{3}} & \ldots & \frac{\partial k_{k}}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{k, n}}{\partial R} & \frac{\partial f_{k, n}}{\partial x_{3}} & \ldots & \frac{\partial f_{k, n}}{\partial x_{n}}
\end{array}\right] .
$$

Main results

Let $D_{k}(\boldsymbol{\eta})$ be the determinate of the Jacobian $J_{\mathbf{f}_{k}}(\boldsymbol{\eta})$.

Theorem 3

For $|\varepsilon|>0$ sufficiently small, system (6) up to the k th-order averaging has exactly ℓ limit cycles bifurcating from the origin if the following semi-algebraic system

$$
\left\{\begin{array}{l}
\bar{f}_{k, 1}(\boldsymbol{\eta}, \boldsymbol{\mu})=\bar{f}_{k, 3}(\boldsymbol{\eta}, \boldsymbol{\mu})=\cdots=\bar{f}_{k, n}(\boldsymbol{\eta}, \boldsymbol{\mu})=0 \tag{13}\\
R>0, \quad \bar{D}_{k}(\boldsymbol{\eta}, \boldsymbol{\mu}) \neq 0, \quad b \neq 0
\end{array}\right.
$$

has exactly ℓ distinct real solutions with respective to the variables $\boldsymbol{\eta}$. Here $\bar{f}_{k, j}(\boldsymbol{\eta}, \boldsymbol{\mu})$ $(j=1,3, \ldots, n)$, and $\bar{D}_{k}(\boldsymbol{\eta}, \boldsymbol{\mu})$ are respectively the numerator of the functions $f_{k, j}(\boldsymbol{\eta})$ and $D_{k}(\boldsymbol{\eta})$, with $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{p}\right)$ are parameters appearing in the averaged functions.

Software packages: QEPCAD + DV + DISCOVERER + RegularChains
\&-- CAD [Collins \& Hong 1991] discriminant varieties [Lazard \& Rouililier 2007] real solution classification [Yang \& Xia 2005]

STEP 3 t-- BKK Bound + Theorem 3

Main results

Mixed volumes and Bernstein's theorem
David A. Cox, John B. Little, Don O'Shea. Using Algebraic Geometry, Second Edition, Graduate Texts in Mathematics, Volume 185 Springer, 2005

Chap. 7 Polytopes, Resultants, and Equations

Table: Some values of the BKK bounds of $H_{2}(n, N)$.

n							
		3	4	5	6	7	\cdots
	2	3	9	27	81	243	
	3	3	9	27	81	243	
	4	3	9	27	81	243	
	5	3	9	27	81	243	
	6	3	9	27	81	243	
	7	3	9	27	81	243	
	\vdots						\ddots.

Emiris and Canny's algorithm: https://github.com/iemiris/MixedVolume-SparseResultants
Conjecture: BKK bound $=\mathrm{H}_{2}(n, N)=3^{n-2}$

Experiments

Table: Computational times (in seconds) of the function OrderKFormula (k, n).

k						
		1	2	3	4	5
	2	0.	0.024	0.034	0.055	0.107
	3	0.	0.027	0.052	0.137	0.685
	4	0.	0.031	0.076	0.399	4.071
	5	0.	0.033	0.125	1.033	21.699
	6	0.	0.039	0.203	2.563	103.486
	7	0.002	0.046	0.322	5.527	440.564

$$
\begin{aligned}
& >\int_{0}^{t}\left(6 F_{3,1}\left(\theta, z_{1}, z_{2}\right)+6\left(\frac{\partial}{\partial z_{1}} F_{2,1}\left(\theta, z_{1}, z_{2}\right)\right) y_{1,1}\left(\theta, z_{1}, z_{2}\right)+6\left(\frac{\partial}{\partial z_{2}} F_{2,1}\left(\theta, z_{1}, z_{2}\right)\right) y_{1,2}\left(\theta, z_{1}, z_{2}\right)+3\left(\frac { \partial } { \partial z _ { 1 } } F _ { 1 , 1 } \left(\theta, z_{1},\right.\right.\right. \\
& \left.\left.z_{2}\right)\right) y_{2,1}\left(\theta, z_{1}, z_{2}\right)+3\left(\frac{\partial}{\partial z_{2}} F_{1,1}\left(\theta, z_{1}, z_{2}\right)\right) y_{2,2}\left(\theta, z_{1}, z_{2}\right)+3\left(\frac{\partial^{2}}{\partial z_{1}^{2}} F_{1,1}\left(\theta, z_{1}, z_{2}\right)\right) y_{1,1}\left(\theta, z_{1}, z_{2}\right)^{2}+6\left(\frac { \partial ^ { 2 } } { \partial z _ { 2 } } \partial z _ { 1 } F _ { 1 , 1 } \left(\theta, z_{1},\right.\right. \\
& \left.\left.\left.z_{2}\right)\right) y_{1,1}\left(\theta, z_{1}, z_{2}\right) y_{1,2}\left(\theta, z_{1}, z_{2}\right)+3\left(\frac{\partial^{2}}{\partial z_{2}^{2}} F_{1,1}\left(\theta, z_{1}, z_{2}\right)\right) y_{1,2}\left(\theta, z_{1}, z_{2}\right)^{2}\right) d \theta, \int_{0}^{t}\left(6 F_{3,2}\left(\theta, z_{1}, z_{2}\right)+6\left(\frac { \partial } { \partial z _ { 1 } } F _ { 2 , 2 } \left(\theta, z_{1},\right.\right.\right. \\
& \left.\left.z_{2}\right)\right) y_{1,1}\left(\theta, z_{1}, z_{2}\right)+6\left(\frac{\partial}{\partial z_{2}} F_{2,2}\left(\theta, z_{1}, z_{2}\right)\right) y_{1,2}\left(\theta, z_{1}, z_{2}\right)+3\left(\frac{\partial}{\partial z_{1}} F_{1,2}\left(\theta, z_{1}, z_{2}\right)\right) y_{2,1}\left(\theta, z_{1}, z_{2}\right)+3\left(\frac { \partial } { \partial z _ { 2 } } F _ { 1 , 2 } \left(\theta, z_{1},\right.\right. \\
& \left.\left.z_{2}\right)\right) y_{2,2}\left(\theta, z_{1}, z_{2}\right)+3\left(\frac{\partial^{2}}{\partial z_{1}^{2}} F_{1,2}\left(\theta, z_{1}, z_{2}\right)\right) y_{1,1}\left(\theta, z_{1}, z_{2}\right)^{2}+6\left(\frac{\partial^{2}}{\partial z_{2}} \partial z_{1} F_{1,2}\left(\theta, z_{1}, z_{2}\right)\right) y_{1,1}\left(\theta, z_{1}, z_{2}\right) y_{1,2}\left(\theta, z_{1}, z_{2}\right) \\
& \left.\left.\quad+3\left(\frac{\partial^{2}}{\partial z_{2}^{2}} F_{1,2}\left(\theta, z_{1}, z_{2}\right)\right) y_{1,2}\left(\theta, z_{1}, z_{2}\right)^{2}\right) d \theta\right]
\end{aligned}
$$

Experiments

3D jerk system

$$
\begin{align*}
& \dot{x}=y, \quad \dot{y}=z, \\
& \dot{z}=-a z-b x+c y+x y^{2}-x^{3}, \quad a, b, c \in \mathbb{R} . \tag{14}
\end{align*}
$$

The origin is a zero-Hopf equilibrium when $a=b=0$ and $c<0$.
We consider the vector (a, b, c) given by the second order averaging

$$
\begin{aligned}
& a=\varepsilon a_{1}+\varepsilon^{2} a_{2}, \quad b=\varepsilon b_{1}+\varepsilon^{2} b_{2}, \\
& c=-\beta^{2}+\varepsilon c_{1}+\varepsilon^{2} c_{2}, \quad \beta \neq 0,
\end{aligned}
$$

where the constants a_{i}, b_{i} and c_{i} are all real parameters. Then the jerk system becomes

$$
\begin{align*}
\dot{x}= & y, \quad \dot{y}=z, \\
\dot{z}= & -\left(\varepsilon a_{1}+\varepsilon^{2} a_{2}\right) z-\left(\varepsilon b_{1}+\varepsilon^{2} b_{2}\right) x \tag{15}\\
& +\left(-\beta^{2}+\varepsilon c_{1}+\varepsilon^{2} c_{2}\right) y+x y^{2}-x^{3} .
\end{align*}
$$

Experiments

Theorem 4

The following statements hold for $|\varepsilon|>0$ sufficiently small.
(i) The first-order averaging does not provide any information about limit cycles that bifurcate from the origin.
(ii) System (15) has, up to the second-order averaging, at most 3 limit cycles bifurcating from the origin, and this number can be reached if one of the following 2 conditions holds:

$$
\begin{align*}
& \mathcal{C}_{0}=\left[R_{1}<0, R_{2}<0,0<R_{3}, 0<R_{4}\right] \wedge \overline{\mathcal{C}}, \\
& \mathcal{C}_{1}=\left[0<R_{1}, 0<R_{2}, 0<R_{3}, R_{4}<0\right] \wedge \overline{\mathcal{C}}, \tag{16}
\end{align*}
$$

where

$$
\begin{aligned}
& R_{1}=\beta^{2}-3, \quad R_{2}=\beta^{2} a_{2}+2 b_{2}, \quad R_{3}=2 \beta^{2} a_{2}-b_{2}, \\
& R_{4}=\beta^{2} a_{2}-b_{2}, \quad \overline{\mathcal{C}}=\left[\beta \neq 0, R_{1} \neq 0, R_{2} \neq 0, R_{3} \neq 0, R_{4} \neq 0\right] .
\end{aligned}
$$

Note: the second-order averaged functions cannot be identically zero!

Experiments

A class of generalized Lorenz systems

Consider the following integrable deformation of Lorenz system:

$$
\begin{align*}
& \dot{x}=a(y-x)+d y(z-c) \\
& \dot{y}=c x-x z-y \tag{17}\\
& \dot{z}=-b z+x y+s x
\end{align*}
$$

where a, b, c, d, s are real parameters.
The origin is a zero-Hopf equilibrium when $a=-1, b=0$ and $c^{2} d+c-1>0$. Now consider the vector (a, b, c, d, s) given by the third order averaging

$$
\begin{aligned}
& a=-1+\varepsilon a_{1}+\varepsilon^{2} a_{2}+\varepsilon^{3} a_{3}, \quad b=\varepsilon b_{1}+\varepsilon^{2} b_{2}+\varepsilon^{3} b_{3} \\
& c=c_{0}+\varepsilon c_{1}+\varepsilon^{2} c_{2}+\varepsilon^{3} c_{3}, \quad s=s_{0}+\varepsilon s_{1}+\varepsilon^{2} s_{2}+\varepsilon^{3} s_{3} \\
& d=\frac{\beta^{2}-c_{0}+1}{c_{0}^{2}}+\varepsilon d_{1}+\varepsilon^{2} d_{2}+\varepsilon^{3} d_{3}, \quad \beta>0
\end{aligned}
$$

where the constants $a_{i}, b_{i}, c_{i}, d_{i}$ and s_{i} are all real parameters with $c_{0} \neq 0$.

Experiments

Theorem 5

The following statements hold for $|\varepsilon|>0$ sufficiently small.
(i) The first-order averaging does not provide any information about limit cycles that bifurcate from the origin.
(ii) System (17) has, up to the second-order averaging, at most 1 limit cycle bifurcating from the origin, and this number can be reached if one of the following 2 conditions holds:

$$
\begin{align*}
& \mathcal{C}_{2}=\left[a_{2}<0,2 \beta^{2}+2-c_{0}<0\right] \wedge[\beta>0], \\
& \mathcal{C}_{3}=\left[0<a_{2}, 0<2 \beta^{2}+2-c_{0}\right] \wedge\left[\beta>0, c_{0} \neq 0\right] . \tag{18}
\end{align*}
$$

(iii) System (17) has, up to the third-order averaging, at most 3 limit cycles bifurcating from the origin, and this number can be reached if we take the condition $\mathcal{C}^{*}=\left[c_{1}=d_{1}=1, d_{2}=s_{2}=2\right]$ and the sample points of $\left(b_{3}, a_{3}, \delta\right)$ listed below, where $\delta=\sqrt{\beta^{2}+1}$.

The semi-algebraic system (13) contains many parameters \rightarrow time consuming

Selected sample points of $\left(b_{3}, a_{3}, \delta\right)$

60 sample points of $\left(b_{3}, a_{3}, \delta\right)$ with $\delta=\sqrt{\beta^{2}+1}$

$b_{3}=\frac{3}{512}, a_{3}=-\frac{461}{16384}, \delta=\frac{17477}{16384}$	$b_{3}=\frac{3}{512}, a_{3}=-\frac{117}{8192}, \delta=\frac{34903}{32768}$	$b_{3}=\frac{3}{512}, a_{3}=-\frac{117}{8192}, \delta=\frac{17465}{16384}$
$b_{3}=\frac{3}{512}, a_{3}=-\frac{159}{16384}, \delta=\frac{8709}{8192}$	$b_{3}=\frac{3}{512}, a_{3}=-\frac{159}{16384}, \delta=\frac{8725}{8192}$	$b_{3}=\frac{3}{512}, a_{3}=-\frac{159}{16384}, \delta=\frac{8733}{8192}$
$b_{3}=\frac{3}{512}, a_{3}=\frac{127}{32768}, \delta=\frac{8709}{8192}$	$b_{3}=\frac{3}{512}, a_{3}=\frac{127}{32768}, \delta=\frac{8725}{8192}$	$b_{3}=\frac{3}{512}, a_{3}=\frac{127}{32768}, \delta=\frac{8733}{8192}$
$b_{3}=\frac{3}{512}, a_{3}=\frac{69}{8192}, \delta=\frac{34903}{32768}$	$b_{3}=\frac{3}{512}, a_{3}=\frac{69}{8192}, \delta=\frac{17465}{16384}$	$b_{3}=\frac{3}{512}, a_{3}=\frac{365}{16384}, \delta=\frac{17477}{16384}$
$b_{3}=\frac{1739}{32768}, a_{3}=-\frac{795}{4096}, \delta=\frac{34939}{32768}$	$b_{3}=\frac{1739}{32768}, a_{3}=-\frac{281}{2048}, \delta=\frac{8729}{8192}$	$b_{3}=\frac{1739}{32768}, a_{3}=-\frac{281}{2048}, \delta=\frac{8733}{8192}$
$b_{3}=\frac{1739}{32768}, a_{3}=-\frac{345}{4096}, \delta=\frac{1087}{1024}$	$b_{3}=\frac{1739}{32768}, a_{3}=-\frac{345}{4096}, \delta=\frac{8725}{8192}$	$b_{3}=\frac{1739}{32768}, a_{3}=-\frac{345}{4096}, \delta=\frac{8733}{8192}$
$b_{3}=\frac{1739}{32768}, a_{3}=\frac{127}{4096}, \delta=\frac{1087}{1024}$	$b_{3}=\frac{1739}{32768}, a_{3}=\frac{127}{4096}, \delta=\frac{8725}{8192}$	$b_{3}=\frac{1739}{32768}, a_{3}=\frac{127}{4096}, \delta=\frac{8733}{8192}$
$b_{3}=\frac{1739}{32768}, a_{3}=\frac{43}{512}, \delta=\frac{8729}{8192}$	$b_{3}=\frac{1739}{32768}, a_{3}=\frac{43}{512}, \delta=\frac{8733}{8192}$	$b_{3}=\frac{1739}{32768}, a_{3}=\frac{9}{64}, \delta=\frac{34939}{32768}$
$b_{3}=\frac{51843751309}{549755813888}, a_{3}=-\frac{1429}{4096}, \delta=\frac{279481}{262144}$	$b_{3}=\frac{51843751309}{549755813888}, a_{3}=-\frac{275}{1024}, \delta=\frac{279443}{262144}$	$b_{3}=\frac{51843751309}{549755813888}, a_{3}=-\frac{275}{1024}, \delta=\frac{34933}{32768}$
$b_{3}=\frac{51843751309}{549755813888}, a_{3}=-\frac{313}{2048}, \delta=\frac{2175}{2048}$	$b_{3}=\frac{51843751309}{549755813888}, a_{3}=-\frac{313}{2048}, \delta=\frac{17871791}{16777216}$	$b_{3}=\frac{51843751309}{549755813888}, a_{3}=-\frac{313}{2048}, \delta=\frac{17885025}{16777216}$
$b_{3}=\frac{51843751309}{549755813888}, a_{3}=-\frac{207}{2048}, \delta=\frac{8565}{8192}$	$b_{3}=\frac{51843751309}{549755813888}, a_{3}=-\frac{207}{2048}, \delta=\frac{4575160993}{4294967296}$	$b_{3}=\frac{51843751309}{549755813888}, a_{3}=-\frac{195}{2048}, \delta=\frac{542193}{524288}$
$b_{3}=\frac{51843751309}{549755813888}, a_{3}=-\frac{195}{2048}, \delta=\frac{285947481}{268435456}$	$b_{3}=\frac{51843751309}{549755813888}, a_{3}=-\frac{195}{2048}, \delta=\frac{4578528035}{4294967296}$	$b_{3}=\frac{51843751309}{549755813888}, a_{3}=\frac{71}{65536}, \delta=\frac{271227}{262144}$
$b_{3}=\frac{51843751309}{549755813888}, a_{3}=\frac{71}{65536}, \delta=\frac{9150319465}{8589934592}$	$b_{3}=\frac{51843751309}{549755813888}, a_{3}=\frac{71}{65536}, \delta=\frac{9157056213}{8589934592}$	$b_{3}=\frac{51843751309}{549755813888}, a_{3}=\frac{115}{16384}, \delta=\frac{1071}{1024}$
$b_{3}=\frac{51843751309}{549755813888}, a_{3}=\frac{115}{16384}, \delta=\frac{4575161051}{4294967296}$	$b_{3}=\frac{51843751309}{549755813888}, a_{3}=\frac{477}{8192}, \delta=\frac{2175}{2048}$	$b_{3}=\frac{51843751309}{549755813888}, a_{3}=\frac{477}{8192}, \delta=\frac{17871791}{16777216}$
$b_{3}=\frac{51843751309}{549755813888}, a_{3}=\frac{477}{8192}, \delta=\frac{17885025}{16777216}$	$b_{3}=\frac{51843751309}{549755813888}, a_{3}=\frac{89}{512}, \delta=\frac{279443}{262144}$	$b_{3}=\frac{51843751309}{549755813888}, a_{3}=\frac{89}{512}, \delta=\frac{558927}{524288}$
$b_{3}=\frac{51843751309}{549755813888}, a_{3}=\frac{65}{256}, \delta=\frac{279481}{262144}$	$b_{3}=\frac{25922055879}{274877906944}, a_{3}=-\frac{1429}{4096}, \delta=\frac{279481}{262144}$	$b_{3}=\frac{25922055879}{274877906944}, a_{3}=-\frac{275}{1024}, \delta=\frac{279443}{262144}$
$b_{3}=\frac{25922055879}{274877906944}, a_{3}=-\frac{275}{1024}, \delta=\frac{34933}{32768}$	$b_{3}=\frac{25922055879}{274877906944}, a_{3}=-\frac{5}{32}, \delta=\frac{2175}{2048}$	$b_{3}=\frac{25922055879}{274877906944}, a_{3}=-\frac{5}{32}, \delta=\frac{4467949}{4194304}$
$b_{3}=\frac{25922055879}{274877906944}, a_{3}=-\frac{5}{32}, \delta=\frac{8942519}{8388608}$	$b_{3}=\frac{25922055879}{274877906944}, a_{3}=-\frac{53}{512}, \delta=\frac{2147}{2048}$	$b_{3}=\frac{25922055879}{274877906944}, a_{3}=-\frac{53}{512}, \delta=\frac{142973799}{134217728}$
$b_{3}=\frac{25922055879}{274877906944}, a_{3}=\frac{77}{8192}, \delta=\frac{8589}{8192}$	$b_{3}=\frac{25922055879}{274877906944}, a_{3}=\frac{77}{8192}, \delta=\frac{285947601}{268435456}$	$b_{3}=\frac{25922055879}{274877906944}, a_{3}=\frac{253}{4096}, \delta=\frac{2175}{2048}$
$b_{3}=\frac{25922055879}{274877906944}, a_{3}=\frac{253}{4096}, \delta=\frac{17871797}{16777216}$	$b_{3}=\frac{25922055879}{274877906944}, a_{3}=\frac{253}{4096}, \delta=\frac{17885037}{16777216}$	$b_{3}=\frac{25922055879}{274877906944}, a_{3}=\frac{89}{512}, \delta=\frac{279443}{262144}$

Experiments

Y. Tian, B. Huang. Local stability and Hopf bifurcations analysis of the

Muthuswamy-Chua-Ginoux system, Nonlinear Dynamics, 109, 1135-1151, 2022
Muthuswamy-Chua-Ginoux (MCG) circuit:

$$
\begin{align*}
& \dot{x}=k_{1} y, \\
& \dot{y}=k_{2}(x+f(y)+R(z) y), \tag{19}\\
& \dot{z}=R(z) y^{2}-\epsilon z,
\end{align*}
$$

where $k_{1}=1 / \alpha, k_{2}=-1 / \eta, f(y)=a y+b y^{3}$ and $R(z)=c z^{2}+d z+s$. We consider the vector ($a, b, c, d, s, k_{1}, k_{2}, \epsilon$) given by

$$
\begin{aligned}
& a \leftarrow a+\sum_{i=1}^{3} \varepsilon^{i} a_{i}, \quad b \leftarrow b+\sum_{i=1}^{3} \varepsilon^{i} b_{i}, \quad c \leftarrow c+\sum_{i=1}^{3} \varepsilon^{i} c_{i} \\
& d \leftarrow d+\sum_{i=1}^{3} \varepsilon^{i} d_{i}, \quad s \leftarrow-a, \quad k_{1} \leftarrow k_{1}+\sum_{i=1}^{3} \varepsilon^{i} \ell_{i} \\
& k_{2} \leftarrow-\frac{\omega^{2}}{k_{1}}+\sum_{i=1}^{3} \varepsilon^{i} m_{i}, \quad \epsilon \leftarrow \sum_{i=1}^{3} \varepsilon^{i} \epsilon_{i} .
\end{aligned}
$$

Future works

- Generalizations to high-dimensional discontinuous differential systems
- Complexity analysis
- Algorithmic approach to write the linear part of a given system at the origin in its real Jordan normal form or avoid such a step!
\Longrightarrow Suggestion welcome!
- Provide lower and upper bounds for the number $H_{k}(n, N)(k \geq 2)$
- Application to reaction networks

目
B. Huang. Using symbolic computation to analyze zero-Hopf bifurcations of polynomial differential systems, Proceedings of ISSAC 2023, pp. 307-314, 2023
B. Huang, D. Wang. Zero-Hopf bifurcation of limit cycles in certain differential systems, arXiv: 2205.14450

Thanks for your attention!

