1st Olympiad of Metropolises Mathematics • Day 1

Problem 1. Find all positive integers n such that there exist n consecutive positive integers whose sum is a perfect square.

Problem 2. Let a_{1}, \ldots, a_{n} be positive integers satisfying the inequality

$$
\sum_{i=1}^{n} \frac{1}{a_{i}} \leq \frac{1}{2}
$$

Every year, the government of Optimistica publishes its Annual Report with n economic indicators. For each $i=1, \ldots, n$, the possible values of the i-th indicator are $1,2, \ldots, a_{i}$. The Annual Report is said to be optimistic if at least $n-1$ indicators have higher values than in the previous report. Prove that the government can publish optimistic Annual Reports in an infinitely long sequence.

Problem 3. Let $A_{1} A_{2} \ldots A_{n}$ be a cyclic convex polygon whose circumcenter is strictly in its interior. Let $B_{1}, B_{2}, \ldots, B_{n}$ be arbitrary points on the sides $A_{1} A_{2}, A_{2} A_{3}, \ldots, A_{n} A_{1}$, respectively, other than the vertices. Prove that

$$
\frac{B_{1} B_{2}}{A_{1} A_{3}}+\frac{B_{2} B_{3}}{A_{2} A_{4}}+\ldots+\frac{B_{n} B_{1}}{A_{n} A_{2}}>1 .
$$

