
ON THE STABILITY IN AMBARZUMIAN THEOREMS

MIKLÓS HORVÁTH

Abstract. We provide extensions of the classical Ambarzumian
theorem for bounded C3 domains of any dimension. The simple
proof is based on classical spectral function asymptotics. We prove
a stability property by showing that if the perturbation of the
eigenvalues of the zero potential is small in some sense then the
L2-norm of the potential is also small.

1. Introduction

The classical theorem of Ambarzumian [1] states that if the eigenval-
ues λn(q) of the problem −y” + q(x)y = λy on (0, π), y′(0) = y′(π) = 0
with the potential q ∈ C[0, π] are identical to the eigenvalues λn(0)
corresponding to the zero potential q = 0 then q = 0. This statement
generated a lot of research in the inverse spectral theory, see e.g. in
[8]. However these are mainly one-dimensional results. Very little is
known in multidimensional situations. The following extension to two-
and three-dimensional Schrödinger operators is due to Kuznetsov 1962
[9]: Let Ω be a bounded domain of sufficiently smooth boundary in R2

or R3. Consider the Neumann eigenvalue problem

(1.1) −∆u+ q(x)u = λu on Ω,
∂u

∂ν
= 0 on ∂Ω

with a (real) potential q ∈ L∞(Ω). If

(1.2) λ1(q) = λ1(0) = 0 and
∑
n

(λn(q)−λn(0)) is a convergent series

then q = 0 a.e. The 3D case has been reconsidered in Ramm and
Stefanov [11] in 1992: Let Ω ⊂ R3 be a bounded domain with a C3-
smooth boundary ∂Ω ∈ C3 and let q ∈ Lipβ(Ω) be a real-valued Hölder
continuous potential with some 0 < β ≤ 1. Now if the eigenvalues of
(1.1) satisfy

(1.3) λ1(q) = λ1(0) = 0 and |λn(q)− λn(0)| ≤ c

nα
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for some α > 0 then q = 0. The first main result of the present paper
is the following common generalization and extension of [9] and [11] to
any dimensions:

Theorem 1.1. Let d ≥ 1 and Ω ∈ C3 be a bounded domain in Rd (or
Ω be a finite interval if d = 1). If q ∈ L∞(Ω) and if the eigenvalues of
(1.1) satisfy

(1.4) λ1(q) = λ1(0) = 0 and
1

n

n∑
k=1

(λk(q)− λk(0))→ 0 (n→∞)

then q = 0 a.e.

The key point of the proof is the following statement which says,
roughly speaking, that the average shift between the eigenvalues of the
potentials q and q∗ tends to the average shift of the potentials:

Theorem 1.2. Let d ≥ 1 and Ω ∈ C3 be a bounded domain in Rd (or Ω
be a finite interval if d = 1). If q, q∗ ∈ L∞(Ω) then for the eigenvalues
of (1.1) we have

(1.5)
1

n

n∑
k=1

(λk(q
∗)− λk(q))→

1

|Ω|

∫
Ω

(q∗ − q) (n→∞).

This theorem is not new: in Grinberg [6] the three-dimensional
case has been proved under the slightly stronger conditions Ω ∈ C3,
q, q∗ ∈ Lipβ for some 0 < β ≤ 1. Grinberg applied Green functions
in the proof. The one-dimensional case follows easily from the known
eigenvalue asymptotics

λn(q) = (n− 1)2 +
1

π

π∫
0

q + o(1) n→∞.

The case d 6= 1, 3 was not known before. Remark that for compact
symmetric spaces like spheres an analogous statement can be found in
Harrell [7].

Consider now the question of stability in Ambarzumian theorems.
Suppose that instead of (1.4) we only know that |λ1(q)| < δ and
1
n
|
∑n

k=1(λk(q) − λk(0))| < δ for sufficiently large n. Our aim is to
estimate the L2(Ω)-norm of q. We illustrate by the following exam-
ple that ‖q‖L2(Ω) ≤ cδ1/2 is the best possible upper estimate even for
bounded smooth potentials. Indeed, let Ω′ ⊂ Ω be a small subdomain
of volume δ and let q = χΩ′ be the characteristic function of Ω′. Then
‖q‖L2(Ω) = δ1/2 and by Theorem 1.2 1

n
|
∑n

k=1(λk(q) − λk(0))| < cδ for
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sufficiently large n. Finally consider the Rayleigh minimum principle
for the first Neumann eigenvalue

(1.6) λ1(q) = min
0 6=u∈H1(Ω)

∫
Ω

(|∇u|2 + qu2)∫
Ω

u2
.

From q ≥ 0 we get λ1(q) ≥ 0, and taking u = 1 in (1.6) we obtain
λ1(q) ≤ 1

|Ω|

∫
Ω

q = cδ. Thus, if smoothness is not required, ‖q‖L2(Ω) ≤

cδ1/2 is the best possible stability bound. Remark that smoothing
by convolution gives similar examples q ∈ C∞ but the norm of the
derivatives will not be bounded.

The following result guarantees a stability estimate of order δ1/2−ε

for sufficiently smooth domain and potential.

Theorem 1.3. Let k ≥ [d/2] + 3, Ω ∈ Ck be a bounded domain in Rd,
q ∈ Ck−2(Ω), ‖q‖Ck−2 ≤ K and suppose

(1.7) |λ1(q)| < δ, lim
n→∞

∣∣∣ 1
n

n∑
k=1

(λk(q)− λk(0))
∣∣∣ < δ.

Then

(1.8) ‖q‖L2 ≤ cδ
k−2

2(k−1) , c = c(k,K, d,Ω).

2. Proof of the Ambarzumian theorem

Introduce the spectral function eλ(x, y) of the Schrödinger operator
Lu = −∆u+ qu on Ω with Neumann boundary condition by

(2.1) eλ(x, y) =
∑
λn<λ

un(x)un(y)

where the eigenfunctions un of (1.1) form an orthonormal basis in
L2(Ω). Then eλ is the kernel of the spectral measure Eλ of the differ-
ential operator corresponding to (1.1). We also consider the counting
function of the eigenvalues

(2.2) n(λ) =
∑
λn<λ

1 =

∫
Ω

eλ(x, x) dx.

The asymptotic behavior of eλ(x, x) and n(λ) for large λ is a classical
topic starting from the early works of Weil and Courant. We need the
following variant due to Beals [2], Theorem B’ and C (remark that the
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operator in (1.1) is selfadjoint with the domain {u ∈ H2(Ω) : ∂u/∂ν =
0}, see e.g. in Mizohata [10], 3.16). Let

c0 =
1

(2
√
π)dΓ(d/2 + 1)

=
ωd

(2π)d

where ωd is the volume of the unit ball in Rd. Then by Beals [2]

∑
λk<λ

u2
k(x) = c0λ

d/2(1 + o(1)), λ→∞, locally uniformly in x ∈ Ω,

(2.3)

(2.4)
∑
λk<λ

u2
k(x) ≤ Kλd/2, λ→∞, uniformly in x ∈ Ω,

and consequently, by integration in x,

n(λ) = c0|Ω|λd/2(1 + o(1)), λ→∞.(2.5)

Remark that in case of multiple eigenvalues λk−1 < λk = · · · = λk1 <
λk1+1 the substitutions λ = λk and λ = λk + 0 yield

(2.6)
k1

k
= 1 + o(1)

and then (2.5) gives the eigenvalue asymptotics

(2.7) λk = [c0|Ω|]−2/dk2/d(1 + o(1)).

Lemma 2.1. Let Ω ∈ C3 be a bounded domain and q ∈ L∞(Ω) (or sup-
pose any conditions ensuring (2.3) and (2.4) . Then for every function
f ∈ L1(Ω)

(2.8)

∫
Ω

f
u2

1 + · · ·+ u2
n

n
→ 1

|Ω|

∫
Ω

f.

Proof. By (2.6) it is enough to show that

1

n(r)

∫
Ω

f
∑
λk<r

u2
k →

1

|Ω|

∫
Ω

f.

Indeed, if λk−1 < λk = · · · = λk1 < λk1+1 then for k < k0 < k1

u2
1 + · · ·+ u2

k0

k0

−
u2

1 + · · ·+ u2
k1

k1

= (u2
1 + · · ·+ u2

k0
)
( 1

k0

− 1

k1

)
−
u2
k0+1 + · · ·+ u2

k1

k1

= I1 − I2.

From (2.4), (2.5) (2.6) it follows that I1 → 0 uniformly, and then∫
Ω
fI1 → 0. Taking (2.3) into account we see that |I2| ≤ K and I2 → 0
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locally uniformly, so
∫

Ω
fI2 → 0 follows from the Lebesgue dominated

convergence theorem.
Introduce the functions

gr(x) =
1

n(r)

∑
λk<r

u2
k(x),

then we have to check that

(2.9)

∫
Ω

(
gr −

1

|Ω|

)
f → 0, r →∞.

Since

|gr| ≤ K, gr →
1

|Ω|
locally uniformly

hence (2.9) follows again by dominated convergence. �
Proof of Theorem 1.2 Let A = −∆ + q and A∗ = −∆ + q∗ be the

operators defined by Neumann boundary conditions and let uk denote
the orthonormal system of eigenfunctions of A. By definition,

〈A∗uk, uk〉 = λk(q) +

∫
Ω

(q∗ − q)u2
k.

From the orthonormality of u1, . . . , un we have

〈A∗u1, u1〉+ · · ·+ 〈A∗un, un〉 ≥ λ1(q∗) + · · ·+ λn(q∗).

Consequently

1

n

n∑
k=1

(λk(q
∗)−λk(q)) ≤

∫
Ω

(q∗−q)u
2
1 + · · ·+ u2

n

n
=

1

|Ω|

∫
Ω

(q∗−q)+o(1)

that is,

1

n

n∑
k=1

(λk(q
∗)− λk(q))−

1

|Ω|

∫
Ω

(q∗ − q) ≤ o(1).

Interchanging q and q∗ gives (1.5). �
Proof of Theorem 1.1 It is standard after Theorem 1.2. Indeed,

from (1.6) we see by taking the constant function u = 1 that

λ1(q) ≤ 1

|Ω|

∫
Ω

q

and in case of equality the function u = 1 is an eigenfunction and then
q = λ1(q) a.e. In our case λ1(q) = 0 and by Theorem 1.2

∫
Ω
q = 0,

hence q = 0 a.e, as asserted. �
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3. Proof of the stability theorem

In this section we adopt notations and use several classical results
from the monograph of Gilbarg and Trudinger [5]. First we need a
stronger form of the fact that the first Neumann eigenfunctions are
positive:

Lemma 3.1. Let k ≥ [d/2] + 3, Ω ∈ Ck be a bounded domain in Rd,
q ∈ Ck−2(Ω), ‖q‖C1 ≤ K. Then the eigenfunction u corresponding to
the first Neumann eigenvalue is positive and

(3.1) max
Ω

u ≤ cmin
Ω
u

with a constant c = c(k,K, d,Ω) independent of q.

Remark that the condition q ∈ Ck−2(Ω) is needed only to ensure
u ∈ C2,1/2(Ω).

Proof. From Theorems 8.10 and 9.19 of [5] we know that the weak
eigenfunction u ∈ H1(Ω) is in fact in Hk(Ω), see also [12], Theorem
15.2. By Theorem 5.6.6 of Evans [4], Hk(Ω) ⊂ Ck−[d/2]−1,1/2(Ω) and
hence u ∈ C2,1/2(Ω). It is easy to check that for f ∈ H1 |f | is also in
H1 and

∇|f | =


∇f a.e. if f > 0

0 a.e. if u = 0

−∇f a.e. if f < 0.

That is, if u ∈ H1 minimizes the Rayleigh quotient (1.6) then |u| does
the same. Thus, |u| is an eigenfuntion, and then |u| ∈ C2,1/2. Now
the Harnack inequality (e.g. Theorem 8.20 in [5]) implies |u| > 0 in Ω.
Since Ω is connected, u has constant sign; we will assume that u > 0 in
Ω. Next we show that u > 0 also on the boundary. Indirectly suppose
that u(x0) = 0 for some x0 ∈ ∂Ω. Apply the Hopf lemma (6.4.2 in
[4]) stating that if u ∈ C2(Ω) ∩ C1(Ω), 0 ≤ q ∈ C(Ω), −∆u + qu ≥ 0,
u > 0 on Ω, u(x0) = 0 for some x0 ∈ ∂Ω and if there exists a ball
B ⊂ Ω with x0 ∈ ∂B (which is automatically fulfilled for Ω ∈ C2) then
∂u/∂ν(x0) < 0. In our case −∆u + (q − λ1)+u = (q − λ1)−u ≥ 0,
hence ∂u/∂ν(x0) < 0 which contradicts to the Neumann boundary
condition. Thus, u have positive lower and upper bounds. Suppose
indirectly that there are potentials qi satisfying the conditions of the
Lemma and that the eigenfunctions ui > 0 corresponding to the first
Neumann eigenvalue λi = λ1(qi) satisfy

(3.2)

max
Ω

ui

min
Ω
ui
→∞.
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We will suppose that ‖ui‖C2,1/2(Ω) = 1. The embeddings C1(Ω) ⊂ C(Ω)

and C2,1/2(Ω) ⊂ C2(Ω) are compact (see e.g. [5], Lemma 6.36), thus
taking subsequences we can assume that

qi → q∗ in C(Ω) and ui → u∗ in C2(Ω).

By a global Schauder estimate (Theorem 6.30 in [5], see also Theorem
7.3 in [12])

1 = ‖ui‖C2,1/2 ≤ c(k,K, d,Ω)‖ui‖L∞ → c(k,K, d,Ω)‖u∗‖L∞
which implies that u∗ 6= 0. Next we verify that u∗ is the first Neumann
eigenfunction of q∗. Introduce the Rayleigh quotients

Ji(u) =

∫
Ω

(|∇u|2 + qiu
2)∫

Ω
u2

, J∗(u) =

∫
Ω

(|∇u|2 + q∗u2)∫
Ω
u2

.

We know that Ji is minimal at u = ui and that Ji tends uniformly to
J∗, since

|Ji(u)− J∗(u)| =
∣∣∣∫Ω

(qi − q∗)u2∫
Ω
u2

∣∣∣ ≤ ‖qi − q∗‖L∞ → 0

Suppose indirectly that J∗ is not minimal at u∗, that is, there exists
ũ ∈ H1(Ω) with J∗(ũ) < J∗(u∗). Denote δ = J∗(u∗)−J∗(ũ) > 0. From
the uniform convergence it follows that for large i

(3.3) Ji(ũ) + δ/2 < Ji(u
∗).

Consider the decomposition

Ji(ui)− Ji(u∗) =

∫
Ω

(
|∇ui|2 − |∇u∗|2 + qi(u

2
i − u∗2)

)∫
Ω
u2
i

+

∫
Ω

(
|∇u∗|2 + qiu

∗2)( 1∫
Ω
u2
i

− 1∫
Ω
u∗2

)
= I1 + I2.

Since the convergence of u2
i → u∗2 6= 0, ∇ui → ∇u∗ and qi → q∗

are uniform on Ω, we get that Ji(ui) − Ji(u
∗) → 0. Comparing this

with (3.3) gives that Ji(ũ) < Ji(ui) for large i, a contradiction. Con-
sequently J∗ is minimal at u∗ and then 0 ≤ u∗ ∈ C2(Ω) is the first
Neumann eigenfunction for q∗. Again by the Harnack inequality and
the Hopf lemma we get u∗ > 0 on Ω. But this is impossible: the uni-
form convergence of ui to u∗ and (3.2) imply that u∗ must have a zero
on Ω. The contradiction proves the Lemma. �

Proof of Theorem 1.3 Let u > 0 be the first Neumann eigenfunc-
tion corresponding to q normalized by max

Ω
u = 1. Using an integration
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by parts and taking into account Theorem 1.2 we get

(3.4)

∫
Ω

|∇u|2 ≤
∫
Ω

|∇u|2

u2
=

∫
Ω

∆u · 1

u
=

∫
Ω

(q − λ1) < 2|Ω|δ.

We have seen that u ∈ Hk(Ω). We need the estimate

‖u‖Hk ≤ c(k,K, d,Ω)‖u‖L2 ≤ c(k,K, d,Ω)

see e.g. Theorem 15.2 in [12] or repeated use of Theorem 9.26 in [3].
We will apply a compactness estimate (Theorem 7.28 in [5]) to uxi ∈
Hk−1(Ω):

‖uxixi‖L2 ≤ ε‖uxi‖Hk−1 + c(k,Ω)ε
1

1−(k−1) .

Summing up in i gives

‖∆u‖L2 ≤ dε‖u‖Hk + c(k,Ω)ε
1

2−k

∑
i

‖uxi‖L2

Putting here (3.4) and the boundedness of ‖u‖Hk we get
(3.5)

‖∆u‖L2 ≤ c(k,K, d,Ω)(ε+ ε
1

2−k ‖∇u‖L2) ≤ c(k,K, d,Ω)(ε+ ε
1

2−k

√
δ).

The right hand side is minimal if the summands are equal, that is, if

ε = δ
k−2

2(k−1) and then

‖∆u‖L2 ≤ c(k,K, d,Ω)δ
k−2

2(k−1) .

On the other hand by Lemma 3.1 we have

‖∆u‖2
L2

=

∫
Ω

(∆u)2 =

∫
Ω

(q − λ1)2u2 ≥ c

∫
Ω

(q − λ1)2

and then

‖q‖L2 ≤ ‖q − λ1‖L2 + ‖λ1‖L2 ≤ c(‖∆u‖L2 + δ) ≤ cδ
k−2

2(k−1)

with c = c(k,K, d,Ω). The proof is complete. �
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