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SYSTEM IDENTIFICATION



SYSTEM IDENTIFICATION

 Basically, how to represent the reality in the virtual space as 

mathematical model based on measurements:

 Which can be used to predict/simulate the behavior of the 

reality in a much compact and cheaper way.
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MODELING

 Black-box

 Input/output behavior 

 White-box

 Model is created based on the field specific 
knowledge: differential equations, reaction 
equations, etc...

 Frequency-domain representation

 Integral transformed linear differential equation.

 Discrete-time models are applied usually for 
computational purposes.

 Identifiability

 Which makes modeling the most crucial step in 
indentification.



EXPERIMENT DESIGN

How to excite the system in order to 

get the most information possible?

Can contain also optimization.

 Select the best input signal 

(magnitude, shape and frequency)



EXPERIMENT

 Perform the activity that is needed to gather the 

data for identification and validation.

Highly process dependent task.

 Physical measurements.

 Big-data analysis.

 ...



OPTIMIZATION

 The frontline application of numerical mathematics

 Classical parameter estimation using least squares for dynamic 

systems in time- and frequency domain. 

 ෝ𝒚(𝒌, 𝜽) can be generated using a large set of different models.

 Modern one-step method using subspace-based techniques.

 Recursive subspace-based techniques. 

𝑱(𝜽) =
𝟏

𝑵
෍

𝒌=𝟎

𝑵−𝟏

𝒚 𝒌 − ෝ𝒚(𝒌, 𝜽) 𝟐

𝒀𝒅 = 𝑮𝑿𝒅 +𝑯𝑼𝒅

𝒙𝒌+𝟏 = 𝑨𝒙𝒌 + 𝑩𝒖𝒌
𝒚𝒌 = 𝑪𝒙𝒌 +𝑫𝒖𝒌

𝑮𝑿𝒅

𝑯𝑼𝒅

𝒀𝒅



VALIDATION

Check if the model behaves similarly 

(witihin an error range of accaptance) 

as the reality does.

 This step contains simulation of the 

estimated model based on 

experimental data gathered on the 

real system.



APPLICATION IN TKP

 Permanent magnet synchronous motor parameter 

identification for motor control purposes:

ሶ𝒙 = 𝑓 𝜽, 𝒙, 𝒖
𝒚 = 𝑔(𝜽, 𝒙, 𝒖)



APPLICATION IN TKP

 Electro-mechanical steering system model identification.

 Nonlinear white box model identification for simulation purposes. 

Models are sent to customers.

 Linear white-box model for controller and estimator design

ሶ𝒙 = 𝑓 𝜽, 𝒙, 𝒖
𝒚 = 𝑔(𝜽, 𝒙, 𝒖)

ሶ𝒙 = 𝑨(𝜽)𝒙 + 𝑩(𝜽)𝒖
𝒚 = 𝑪(𝜽)𝒙 + 𝑫(𝜽)𝒖



APPLICATION IN TKP

Dynamic equations:

Algebraic equations:



APPLICATION IN TKP



APPLICATION IN TKP

 White-box vehicle model identification

 Linear and nonlinear vehicle model in state-space form. These 

models are used to simulate dangerous vehicle movements.

 Autonomous Driving Controllers and algorithms developement 

use these vehicle models.

ሶ𝒙 = 𝑨(𝜽)𝒙 + 𝑩(𝜽)𝒖
𝒚 = 𝑪(𝜽)𝒙 + 𝑫(𝜽)𝒖



APPLICATION IN TKP

 Black-box vehicle model identification

 Models used for stability analysis in a complete software in the loop 
environment.

 Nyquist stability criterion is used to proove the vehicle level sytability.

ሶ𝒙 = 𝑨𝒙 + 𝑩𝒖
𝒚 = 𝑪𝒙 + 𝑫𝒖



APPLICATION IN TKP

 Permanent magnet synchronous motor parameter 
identification for motor control purposes:

 Electro-mechanical steering system model identification.

 White-box linear and nonlinear

 White-box vehicle model identification

 Black-box vehicle model identification



WHERE A MATEMATICIAN CAN 

ENTER INTO THIS PICTURE

 Development and maintenance of the numerical 
optimization tools (bypassing matlab toolboxes)

 Performing identification, controller design and 
optimization.

 Processing the obtained simulation results. 

 Analyitycal investigation of every aspects of the system:

 Feasibility studies for controller and function design.

 Mechanical change effect on the system behavior. 

 Seeking for better optimization tools and methods.

 Model-based controller design for the steering system, 
autonomous driving.
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EXAMPLE



LPV MODELING

ሶ𝒙 = 𝑓 𝒙, 𝒖
𝒚 = 𝑔(𝒙, 𝒖)

ሶ𝒙 = 𝑨𝐿𝑃𝑉 𝒑 𝒙 + 𝑩𝐿𝑃𝑉 𝒑 𝒖
𝒚 = 𝑪𝐿𝑃𝑉 𝒑 𝒙 + 𝑫𝐿𝑃𝑉 𝒑 𝒖

Equations of the nonlinear system LPV model

Rational LPV model (LPV/LFR)

𝑴(𝜽)

Δ𝑝

𝑨𝐿𝑃𝑉 𝒑 𝑩𝐿𝑃𝑉 𝒑

𝑪𝐿𝑃𝑉 𝒑 𝑫𝐿𝑃𝑉 𝒑
=

𝑨𝟎 𝑩𝟎

𝑪𝟎 𝑫𝟎
+

𝑩𝒘

𝑫𝒚𝒘
Δ𝑝 𝑰 − 𝑫𝒛𝒘Δ𝑝

−𝟏
𝑪𝒛 𝑫𝒛𝒖

Δ𝑝 = 𝑑𝑖𝑎𝑔 𝑝1𝐼𝑟1 , … , 𝑝𝑛𝑝 𝐼𝑟𝑛𝑝

𝑴(𝜽) =

𝑫𝒛𝒘 𝑪𝒛 𝑫𝒛𝒖

𝑩𝒘 𝑨𝟎 𝑩𝟎

𝑫𝒚𝒘 𝑪𝟎 𝑫𝟎



• 11 operating points are selected: 
𝜋

8
:
𝜋

16
:
6𝜋

8
;

• 4x2 MIMO black-box local LTI models are 

estimated by using a subspace-based technique;

• The estimated models are validated locally (BFT 

%);

• A white-box 2x2 MIMO LPV model is estimated by 

using a frequency-domain interpolation method 

based on the 1,3,5,7,9,11th working points;

LOCAL MODEL ESTIMATION 



LPV MODEL IDENTIFICATION

min
𝜃

෍

𝑖=1

𝑁

𝑮𝑖𝐵𝐵 𝑗𝜔 − 𝑮𝐿𝑃𝑉 𝑗𝜔, 𝒑𝑖, 𝜃 ∞
2

Concatenation of the black-box LTI models.

Forzen LPV model. 
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