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Model-Based Systems Engineering

▪ Models for engineering of 
modern cars, aircrafts...

o Identify problems + 
optimize the system 
• Early in the design process

• Without physically building it

• Multidisciplinary models

• By simulations + testing + 
optimization
E.g. virtual crash tests, 
virtual test scenarios

o „Model-in-the-loop”
• Virtual software crashes

Image source: 
http://virtualperformance.esi-group.com/



Motivation: Early validation of design rules

SystemSignalGroup design rule (from AUTOSAR)

o A SystemSignal and its group must be in the same IPdu

o Challenge: find violations quickly in large models

o New difficulties

• reverse
navigation

• complex
manual
solution

AUTOSAR: 
• standardized SW architecture 
of the automotive industry

• now supported by modern modeling tools
Design Rule/Well-formedness constraint: 
• each valid car architecture needs to respect
• designers are immediately notified if violated
Challenge: 
• >500 design rules in AUTOSAR tools
• >1 million elements in AUTOSAR models
• models constantly evolve by designers

Similar challenges at: Thales, NASA JPL, CEA, Ericsson, ThyssenKrupp ...



Metamodels and (Instance) Models

Meta-
model

Aggregation
(Edge Type)

Class/
(Node Type)

Attribute
(Type)

Generalization

Reference
(Edge Type)

Multiplicity

Derived
Feature

Enumeration
(Kind)



Metamodels and (Instance) Models

Meta-
model

Model

s1:Semaphore s2:Switch

s3:SegmentS4:Sensor

:between

:next

:sensor

:between
Object
(Node)

Link
(Edge)

Mathematically:
• Many engineering models ➔

typed, attributed graphs ➔
algebraic or logic specs



Validation of Well-formedness Constraints

Meta-
model

Model

pattern switchWOSignal(sw) {
Switch(sw);
neg find switchHasSignal(sw);

}

pattern switchHasSignal(sw) {
Switch(sw);
Signal(sig);
Signal.mountedTo(sig, sw);

}

Query

Modify

User

Result



Graph Pattern Matching for Queries

▪ Match: 

o m: L → G 
(graph morphism)

o CSP: 

• Variables: Nodes of L

• Constraints: Edges of L

• Domain values: G

o Complexity: |G|^|L|

L

G
straight

left

route: Route sp: SwitchPosition

switch: Switchsensor: Sensor

follows

switch

sensor

routeDefinition

All sensors with a switch that belongs to a route must directly be linked to the same route.

left





route: Route sp: SwitchPosition

switch: Switchsensor: Sensor

switchPosition

switch

sensor

routeDefinition

Graph Pattern Matching (Local Search)

▪ Search Plan: 

o Select the first node
to be matched

o Define an ordering on
graph pattern edges

▪ Search is restarted from
scratch each time

1
2

0

3

4

straight

left



route: Route sp: SwitchPosition

switch: Switchsensor: Sensor

switchPosition

switch

sensor

routeDefinition

Incremental Graph Pattern Matching

▪ Main idea: More space to less time
o Cache matches of patterns

o Instantly retrieve match (if valid)

o Update caches upon model changes

o Notify about relevant changes

▪ Approaches: 
o TREAT, LEAPS, RETE, …

o Tools:  VIATRA, GROOVE, MoTE, TCore

straight

left

route sp switch sensor

r1 sp1 sw1



VIATRA: Open Source Software Project @Eclipse.org

▪ Incremental 
graph query engine
o Declarative language

o Incremental graph queries

o Highly scalable

▪ Easy integration into tools
o On-the-fly validation

o Derived features 

o Custom views

o Traceability

▪ Reactive model 
transformation framework
o Event-based + reactive execution

o Internal DSL over Xtend

o Scalable M2M & M2T

▪ High-level features
o Complex event processing

o Design space exploration

o Reactive transformations

VIATRA An Eclipse project

Official Eclipse project
3 Project leads 
10+ Eclipse committers

Tool integration with: 
Papyrus UML, Sirius, RMF, 
Capella, ARTOP, mbeddr

http://eclipse.org/viatra

How to improve scalability of modeling tools?

Industrial use at: Thales, CEA, ThyssenKrupp, Ericsson, Embraer, NASA, CERN, …



Industrial Applications of VIATRA
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How to Validate Software Tools?

High-Level 
Requirements

Low-Level 
Requirements
(System Spec)

System 
Architecture

Software 
Component

Design

Implementation 
(Source Code)

Software 
Component
Verification

System 
Integration & 
Verification

System  
Validation

Final Acceptance 
Test

Verification tools:
• fail to detect errors

Development  tools:
• input ➔ output  
deterministically
• introduce new errors

Promises of Tool Qualification
• reduce development + V&V cost 
• increase quality and productivity
➔ reduce certification costs

Obstacles for Tool Qualification
➔ extreme qualification costs
• complex V&V for graph models? 
• graph models as test input?

How to systematically test development and 
verification tools used for critical systems?



Automated Model Generation of Test Context

▪ R3COP & R5COP EU projects:
Testing of autonomous robots

o Generate diverse test context
(with various obstacles)

o Test: Navigable by autonomous robot?

Related challenge: 
How to generate test scenarios 
for safety assurance of 
autonomous vehicles?



Towards Automated Graph Generators

• Correct: All (well-formedness) constraints are satisfied

• Complete:  All (and only) consistent models are derivedCOnsistent

• Cannot be distinguished from a real graph model

• By removing text+values and evaluating graph metricsREalistic

• Structural diversity within a single graph

• Large distance between any pair of graph modelsDIverse

• In size: the size of the graph grows

• In quantity: generation time of next graph is stableSCalable

How to automatically synthesize graph models which are...

ICSE’18 ICSE’19

MODELS’16 ICSE’20

FASE’18 STTT
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Input of Model Generation: Domain Specification

21

Entry State

«abstract»

VertexTransition
src [1..1]

trg [1..1]

▪ Concepts + Relations

▪ Basic graph structure

▪ Statechart: Transitions, Entries, States, source, target

Metamodel

WF1: TrgToEntry WF2: NoSrcFromEntry WF3: MultipleSrc

e: Entry

t:Transition

trg

e: Entry

t:Transition

src

NEG

e: Entry

t1 t2

src src

t1 ≠ t2

▪ First order graph predicates (Graph Patterns / OCL)

▪ Entry is invalid if:
▪ WF1: Has incoming transition

▪ WF2: Has no outgoing transition

▪ WF3: Multiple outgoing transitions

Well-formedness constraints

Domain Specification: Metamodel + Constraints

• Capella (Thales)
• Artop (AUTOSAR)
• Yakindu (Itemis)
• MagicDraw (NoMagic)
• Papyrus



Domain Specification

Output of Consistent Model Generation: Models

22

Metamodel

Entry State

«abstract»

VertexTransition
src [1..1]

trg [1..1]

Well-formedness constraints
WF1: TrgToEntry WF2: NoSrcFromEntry WF3: MultipleSrc

e: Entry

t:Transition

trg

e: Entry

t:Transition

src

NEG

e: Entry

t1 t2

src src

t1 ≠ t2

Instance Models

𝑴𝟏

s1:
State

e1:
Entry

t1:
Transition

t2:
Transition

src

trg

src trg

Model
Generator

𝑴𝒏+𝟏

𝑴𝟐

s2:
State

s1:
State

t2:
Transition

t3:
Transition

src

trg

src

trg

𝑴𝟑

s2:
State

s1:
State

t1:
Transition

t2:
Transition

src

trg

src trg

SAT

UNSAT



Language Specification

Model Generation Setup: Logic Solver
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Metamodel

Entry State

«abstract»

VertexTransition
src [1..1]

trg [1..1]

Well-formedness constraints
WF1: TrgToEntry WF2: NoSrcFromEntry WF3: MultipleSrc

e: Entry

t:Transition

trg

e: Entry

t:Transition

src

NEG

e: Entry

t1 t2

src src

t1 ≠ t2

Instance Models

𝑴𝟏

s1:
State

e1:
Entry

t1:
Transition

t2:
Transition

src

trg

src trg

Model
Generator

𝑴𝒏+𝟏

𝑴𝟐

s2:
State

s1:
State

t2:
Transition

t3:
Transition

src

trg

src

trg

𝑴𝟑

s2:
State

s1:
State

t1:
Transition

t2:
Transition

src

trg

src trg

SAT

UNSA

T

Challenge 1:
Existing solver-based techniques are 
unable to generate models for 
industrial modeling languages

• Alloy (MIT): 50-100 objects
• Z3 (Microsoft): 10-12 objects

Model
Generator

Logic Solver
Alloy: SAT (MIT)
Z3: SMT (Microsoft)

Challenge 2:
Logic solvers tend to create similar, 
highly symmetric models (Copy-Paste)

• No diversity guarantee
• Biased sampling

Graph solver

Approach: create a logic solver that 
operates natively over graphs



Challenges in Model Generation

▪ Representing graphs as predicates introduce a large number of 
variables
o 1 variable for each object and type (Transition, Vertex Entry, State)

o 1 variable for each object pair and reference type (src, trg) 

o For 100 objects: more than 20k Boolean variables

▪ Quantified well-formedness constraints are
unfolded into complex FOL constraints
o Each quantified variable is checked for each object

o ¬∃𝑒, 𝑡: Entry 𝑒 ∧ Transition 𝑡 ∧ src 𝑡, 𝑒 →

30k atomic expressions for 100 objects

▪ Existing solvers fail to generate graphs with more than 100 nodes

24

1 2

3 4



SAT Solver Overview: DPLL Algorithm

▪ DPLL: Well-known SAT-algorithm, 
basis of most modern solvers
(Davis–Putnam–Logemann–
Loveland)

▪ Refines partial variable binding

▪ Decision rules +
Unit propagation

▪ Search Strategy:
Backtracking +
Backjumping +
Random restarts

25

[1,_,_,_]

[1,1,0,_] [1,0,0,_] [1,0,1,1]

(A ∨ B ∨ C)∧(¬C ∨ B ∨ D)∧(¬A ∨ B ∨ C)∧(¬A ∨ ¬B ∨ ¬C)

[1,_,1,_][1,_,0,_] [1,_,1,1]

Our approach: Boolean variables→ Graphs



Overview: 3-Valued Partial Models as States
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Entry Transition
src

«new»
trg

src
trg

~

trg

Entry Transition
src

«new»

src
trg

~

trg

State

src,trg

~

Entry Transition
src

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

trg

Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models



3-Valued Partial Models as States
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State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

trg
Entry Transition

src

«new»

src
trg

~

trg

State

src,trg

~

Entry Transition
src

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

Entry Transition
src

«new»
trg

src
trg

~

trg
Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

▪ Uncertain properties are
explicitly represented:
1 | 0 | ½: Unknown

½ edge

½ equivalence
½ node existence



Partial Model Refinement
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State

src,trg

~

Entry Transition
src

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

Entry Transition
src

«new»
trg

src
trg

~

trg
Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

▪ Uncertain properties are
explicitly represented:
1 | 0 | ½: Unknown

▪ Generation as monotonous 
partial model refinement:
½ → 1|0

▪ Decision +
Unit prop. →
Graph 
Transformation

Entry Transition
src

«new»

src
trg

~

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

trg

Uncertain edge refinement:
trg(Entry, Transition) → 1

trg(Entry, new) → 0

new→new+State
Uncertain equivalence 
refinement: Splitting
new → new + State

State«new»



Approximated Constraint Evaluation
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Entry Transition
src

«new»
trg

src
trg

~

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

3) Constraint evaluation by 
incremental 
graph query engine

▪ Constraint evaluated on
partial solutions

▪ Monotonous
reasoning

▪ Incremental 
constraint
reevaluation

Entry Transition
src

«new»

src
trg

~

trg

WF1: TrgToEntry

e: Entry

t:Transition

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg




Constraint evaluation respects refinement:

WF1 is violated in P ⇒
WF1 will be violated in all refinements of P

Approximated constraint evaluation is 
monotonous (despite the use of negation)



Overview of Refinement and Approximation

▪ Overview of refinement & 
constraint approximation

φ[P] φ[Q] 
(with P≻Q)

Action

1 1 Inconsistent, 
backtrack

0 0 Consistent

½ 1 Inconsistent, 
backtrack

½ 0 Consistent
(corrected)

½ ½ Unknown

31

M0

½

P2

½

Q1

½

R1

½

Q1

1

P1

1

P3

0



Equivalence Partitioning
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Entry Transition
src

«new»
trg

src
trg

~

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

trg
Entry Transition

src

«new»

src
trg

~

trg

State

src,trg

~

Entry Transition
src

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

3) Constraint evaluation by 
incremental 
graph query engine

4) Equivalence
detection
by graph
isomorphism

▪ State encoding





Equivalence Partitioning
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Entry Transition
src

«new»
trg

src
trg

~

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

trg
Entry Transition

src

«new»

src
trg

~

trg

State

src,trg

~

Entry Transition
src

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

3) Constraint evaluation by 
incremental 
graph query engine

4) Equivalence
detection
by graph
isomorphism

▪ State encoding

▪ Partial order reduction

Different Solutions



VIATRA Solver: An Open Source Tool

▪ Standard EMF as input and output| 
Configuration language | Visualization

▪ Incremental Query Engine:
o Constraint language: VIATRA Query

o Internally uses: Incremental constraint reevaluation, DPLL as VIATRA DSE

▪ Open source: github.com/viatra/VIATRA-Generator

36

https://github.com/viatra/VIATRA-Generator


Scalability Measurements

Maximal model size
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FAM: Industrial, Avionics

FS: File System example of Alloy

5 min timeout

Example comparison (FAM)

Yakindu: Industrial, Statemachine

Ecore: Metamodelling language

Our solver generates two orders of magnitude larger models



GENERATION OF 
DIVERSE GRAPH MODELS
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Conclusions



THANKS FOR YOUR ATTENTION

Links to tools: 

VIATRA: https://www.eclipse.org/viatra/

VIATRA Generator: https://github.com/viatra/VIATRA-Generator

https://www.eclipse.org/viatra/
https://github.com/viatra/VIATRA-Generator

