
Automated Generation of
Domain-Specific Graph Models

The CORE-DISC Challenge

Dániel Varró
McGill University, Canada

Dept. of Measurement and Information Systems, BME
MTA-BME Lendület Cyber-Physical Systems Research Group

IncQuery Labs Ltd.

Outline and Main Contributors

Graph Generator
(BME)

• O. Semeráth

• K. Marussy

• G. Szárnyas

• G. Bergmann

• R. Farkas

Graph Generator
(McGill)

• A. Babikian

• S. Pilarski

• B. Chen

• L. Li

• A. Li

• M. Ding

• V. Gidla

Lendület

• G. Bergmann

• A. Vörös

• M. Búr

• Cs. Debreceni

• R. Farkas

• B. Graics

• Á. Hajdú

• D. Honfi

• V. Molnár

• A. Nagy

• O. Semeráth

• G. Szárnyas

VIATRA

• I. Ráth

• Á. Horváth

• Á. Hegedüs

• Z. Ujhelyi

• G. Bergmann

• T. Szabó

• P. Lunk

• D. Segesdi

• I. Dávid

• I. Papp

• A. Nagy

• B. Grill

• D. Harmath

Graphs in Software Tools for
Safety-Critical Systems

The Need for
Automated Model Generators

Automated Generation of
Consistent Graph Models

Automated Synthesis of Diverse
Graph Models

GRAPHS IN SOFTWARE TOOLS FOR
SAFETY-CRITICAL SYSTEMS

Graphs in Software Tools for
Safety-Critical Systems

The Need for
Automated Model Generators

Automated Generation of
Consistent Graph Models

Automated Synthesis of Diverse
Graph Models

Model-Based Systems Engineering

▪ Models for engineering of
modern cars, aircrafts...

o Identify problems +
optimize the system
• Early in the design process

• Without physically building it

• Multidisciplinary models

• By simulations + testing +
optimization
E.g. virtual crash tests,
virtual test scenarios

o „Model-in-the-loop”
• Virtual software crashes

Image source:
http://virtualperformance.esi-group.com/

Motivation: Early validation of design rules

SystemSignalGroup design rule (from AUTOSAR)

o A SystemSignal and its group must be in the same IPdu

o Challenge: find violations quickly in large models

o New difficulties

• reverse
navigation

• complex
manual
solution

AUTOSAR:
• standardized SW architecture
of the automotive industry

• now supported by modern modeling tools
Design Rule/Well-formedness constraint:
• each valid car architecture needs to respect
• designers are immediately notified if violated
Challenge:
• >500 design rules in AUTOSAR tools
• >1 million elements in AUTOSAR models
• models constantly evolve by designers

Similar challenges at: Thales, NASA JPL, CEA, Ericsson, ThyssenKrupp ...

Metamodels and (Instance) Models

Meta-
model

Aggregation
(Edge Type)

Class/
(Node Type)

Attribute
(Type)

Generalization

Reference
(Edge Type)

Multiplicity

Derived
Feature

Enumeration
(Kind)

Metamodels and (Instance) Models

Meta-
model

Model

s1:Semaphore s2:Switch

s3:SegmentS4:Sensor

:between

:next

:sensor

:between
Object
(Node)

Link
(Edge)

Mathematically:
• Many engineering models ➔

typed, attributed graphs ➔
algebraic or logic specs

Validation of Well-formedness Constraints

Meta-
model

Model

pattern switchWOSignal(sw) {
Switch(sw);
neg find switchHasSignal(sw);

}

pattern switchHasSignal(sw) {
Switch(sw);
Signal(sig);
Signal.mountedTo(sig, sw);

}

Query

Modify

User

Result

Graph Pattern Matching for Queries

▪ Match:

o m: L → G
(graph morphism)

o CSP:

• Variables: Nodes of L

• Constraints: Edges of L

• Domain values: G

o Complexity: |G|^|L|

L

G
straight

left

route: Route sp: SwitchPosition

switch: Switchsensor: Sensor

follows

switch

sensor

routeDefinition

All sensors with a switch that belongs to a route must directly be linked to the same route.

left

route: Route sp: SwitchPosition

switch: Switchsensor: Sensor

switchPosition

switch

sensor

routeDefinition

Graph Pattern Matching (Local Search)

▪ Search Plan:

o Select the first node
to be matched

o Define an ordering on
graph pattern edges

▪ Search is restarted from
scratch each time

1
2

0

3

4

straight

left

route: Route sp: SwitchPosition

switch: Switchsensor: Sensor

switchPosition

switch

sensor

routeDefinition

Incremental Graph Pattern Matching

▪ Main idea: More space to less time
o Cache matches of patterns

o Instantly retrieve match (if valid)

o Update caches upon model changes

o Notify about relevant changes

▪ Approaches:
o TREAT, LEAPS, RETE, …

o Tools: VIATRA, GROOVE, MoTE, TCore

straight

left

route sp switch sensor

r1 sp1 sw1

VIATRA: Open Source Software Project @Eclipse.org

▪ Incremental
graph query engine
o Declarative language

o Incremental graph queries

o Highly scalable

▪ Easy integration into tools
o On-the-fly validation

o Derived features

o Custom views

o Traceability

▪ Reactive model
transformation framework
o Event-based + reactive execution

o Internal DSL over Xtend

o Scalable M2M & M2T

▪ High-level features
o Complex event processing

o Design space exploration

o Reactive transformations

VIATRA An Eclipse project

Official Eclipse project
3 Project leads
10+ Eclipse committers

Tool integration with:
Papyrus UML, Sirius, RMF,
Capella, ARTOP, mbeddr

http://eclipse.org/viatra

How to improve scalability of modeling tools?

Industrial use at: Thales, CEA, ThyssenKrupp, Ericsson, Embraer, NASA, CERN, …

Industrial Applications of VIATRA

THE NEED FOR AUTOMATED
GRAPH MODEL GENERATORS

Graphs in Software Tools for
Safety-Critical Systems

The Need for
Automated Model Generators

Automated Generation of
Consistent Graph Models

Automated Synthesis of Diverse
Graph Models

How to Validate Software Tools?

High-Level
Requirements

Low-Level
Requirements
(System Spec)

System
Architecture

Software
Component

Design

Implementation
(Source Code)

Software
Component
Verification

System
Integration &
Verification

System
Validation

Final Acceptance
Test

Verification tools:
• fail to detect errors

Development tools:
• input ➔ output
deterministically
• introduce new errors

Promises of Tool Qualification
• reduce development + V&V cost
• increase quality and productivity
➔ reduce certification costs

Obstacles for Tool Qualification
➔ extreme qualification costs
• complex V&V for graph models?
• graph models as test input?

How to systematically test development and
verification tools used for critical systems?

Automated Model Generation of Test Context

▪ R3COP & R5COP EU projects:
Testing of autonomous robots

o Generate diverse test context
(with various obstacles)

o Test: Navigable by autonomous robot?

Related challenge:
How to generate test scenarios
for safety assurance of
autonomous vehicles?

Towards Automated Graph Generators

• Correct: All (well-formedness) constraints are satisfied

• Complete: All (and only) consistent models are derivedCOnsistent

• Cannot be distinguished from a real graph model

• By removing text+values and evaluating graph metricsREalistic

• Structural diversity within a single graph

• Large distance between any pair of graph modelsDIverse

• In size: the size of the graph grows

• In quantity: generation time of next graph is stableSCalable

How to automatically synthesize graph models which are...

ICSE’18 ICSE’19

MODELS’16 ICSE’20

FASE’18 STTT

AUTOMATED GENERATION OF
CONSISTENT GRAPH MODELS

Software Tools for
Safety-Critical Systems

The Need for
Automated Model Generators

Automated Generation of
Consistent Graph Models

Automated Synthesis of Diverse
Graph Models

Input of Model Generation: Domain Specification

21

Entry State

«abstract»

VertexTransition
src [1..1]

trg [1..1]

▪ Concepts + Relations

▪ Basic graph structure

▪ Statechart: Transitions, Entries, States, source, target

Metamodel

WF1: TrgToEntry WF2: NoSrcFromEntry WF3: MultipleSrc

e: Entry

t:Transition

trg

e: Entry

t:Transition

src

NEG

e: Entry

t1 t2

src src

t1 ≠ t2

▪ First order graph predicates (Graph Patterns / OCL)

▪ Entry is invalid if:
▪ WF1: Has incoming transition

▪ WF2: Has no outgoing transition

▪ WF3: Multiple outgoing transitions

Well-formedness constraints

Domain Specification: Metamodel + Constraints

• Capella (Thales)
• Artop (AUTOSAR)
• Yakindu (Itemis)
• MagicDraw (NoMagic)
• Papyrus

Domain Specification

Output of Consistent Model Generation: Models

22

Metamodel

Entry State

«abstract»

VertexTransition
src [1..1]

trg [1..1]

Well-formedness constraints
WF1: TrgToEntry WF2: NoSrcFromEntry WF3: MultipleSrc

e: Entry

t:Transition

trg

e: Entry

t:Transition

src

NEG

e: Entry

t1 t2

src src

t1 ≠ t2

Instance Models

𝑴𝟏

s1:
State

e1:
Entry

t1:
Transition

t2:
Transition

src

trg

src trg

Model
Generator

𝑴𝒏+𝟏

𝑴𝟐

s2:
State

s1:
State

t2:
Transition

t3:
Transition

src

trg

src

trg

𝑴𝟑

s2:
State

s1:
State

t1:
Transition

t2:
Transition

src

trg

src trg

SAT

UNSAT

Language Specification

Model Generation Setup: Logic Solver

23

Metamodel

Entry State

«abstract»

VertexTransition
src [1..1]

trg [1..1]

Well-formedness constraints
WF1: TrgToEntry WF2: NoSrcFromEntry WF3: MultipleSrc

e: Entry

t:Transition

trg

e: Entry

t:Transition

src

NEG

e: Entry

t1 t2

src src

t1 ≠ t2

Instance Models

𝑴𝟏

s1:
State

e1:
Entry

t1:
Transition

t2:
Transition

src

trg

src trg

Model
Generator

𝑴𝒏+𝟏

𝑴𝟐

s2:
State

s1:
State

t2:
Transition

t3:
Transition

src

trg

src

trg

𝑴𝟑

s2:
State

s1:
State

t1:
Transition

t2:
Transition

src

trg

src trg

SAT

UNSA

T

Challenge 1:
Existing solver-based techniques are
unable to generate models for
industrial modeling languages

• Alloy (MIT): 50-100 objects
• Z3 (Microsoft): 10-12 objects

Model
Generator

Logic Solver
Alloy: SAT (MIT)
Z3: SMT (Microsoft)

Challenge 2:
Logic solvers tend to create similar,
highly symmetric models (Copy-Paste)

• No diversity guarantee
• Biased sampling

Graph solver

Approach: create a logic solver that
operates natively over graphs

Challenges in Model Generation

▪ Representing graphs as predicates introduce a large number of
variables
o 1 variable for each object and type (Transition, Vertex Entry, State)

o 1 variable for each object pair and reference type (src, trg)

o For 100 objects: more than 20k Boolean variables

▪ Quantified well-formedness constraints are
unfolded into complex FOL constraints
o Each quantified variable is checked for each object

o ¬∃𝑒, 𝑡: Entry 𝑒 ∧ Transition 𝑡 ∧ src 𝑡, 𝑒 →

30k atomic expressions for 100 objects

▪ Existing solvers fail to generate graphs with more than 100 nodes

24

1 2

3 4

SAT Solver Overview: DPLL Algorithm

▪ DPLL: Well-known SAT-algorithm,
basis of most modern solvers
(Davis–Putnam–Logemann–
Loveland)

▪ Refines partial variable binding

▪ Decision rules +
Unit propagation

▪ Search Strategy:
Backtracking +
Backjumping +
Random restarts

25

[1,_,_,_]

[1,1,0,_] [1,0,0,_] [1,0,1,1]

(A ∨ B ∨ C)∧(¬C ∨ B ∨ D)∧(¬A ∨ B ∨ C)∧(¬A ∨ ¬B ∨ ¬C)

[1,_,1,_][1,_,0,_] [1,_,1,1]

Our approach: Boolean variables→ Graphs

Overview: 3-Valued Partial Models as States

26

Entry Transition
src

«new»
trg

src
trg

~

trg

Entry Transition
src

«new»

src
trg

~

trg

State

src,trg

~

Entry Transition
src

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

trg

Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

3-Valued Partial Models as States

27

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

trg
Entry Transition

src

«new»

src
trg

~

trg

State

src,trg

~

Entry Transition
src

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

Entry Transition
src

«new»
trg

src
trg

~

trg
Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

▪ Uncertain properties are
explicitly represented:
1 | 0 | ½: Unknown

½ edge

½ equivalence
½ node existence

Partial Model Refinement

29

State

src,trg

~

Entry Transition
src

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

Entry Transition
src

«new»
trg

src
trg

~

trg
Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

▪ Uncertain properties are
explicitly represented:
1 | 0 | ½: Unknown

▪ Generation as monotonous
partial model refinement:
½ → 1|0

▪ Decision +
Unit prop. →
Graph
Transformation

Entry Transition
src

«new»

src
trg

~

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

trg

Uncertain edge refinement:
trg(Entry, Transition) → 1

trg(Entry, new) → 0

new→new+State
Uncertain equivalence
refinement: Splitting
new → new + State

State«new»

Approximated Constraint Evaluation

30

Entry Transition
src

«new»
trg

src
trg

~

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

3) Constraint evaluation by
incremental
graph query engine

▪ Constraint evaluated on
partial solutions

▪ Monotonous
reasoning

▪ Incremental
constraint
reevaluation

Entry Transition
src

«new»

src
trg

~

trg

WF1: TrgToEntry

e: Entry

t:Transition

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

Constraint evaluation respects refinement:

WF1 is violated in P ⇒
WF1 will be violated in all refinements of P

Approximated constraint evaluation is
monotonous (despite the use of negation)

Overview of Refinement and Approximation

▪ Overview of refinement &
constraint approximation

φ[P] φ[Q]
(with P≻Q)

Action

1 1 Inconsistent,
backtrack

0 0 Consistent

½ 1 Inconsistent,
backtrack

½ 0 Consistent
(corrected)

½ ½ Unknown

31

M0

½

P2

½

Q1

½

R1

½

Q1

1

P1

1

P3

0

Equivalence Partitioning

32

Entry Transition
src

«new»
trg

src
trg

~

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

trg
Entry Transition

src

«new»

src
trg

~

trg

State

src,trg

~

Entry Transition
src

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

3) Constraint evaluation by
incremental
graph query engine

4) Equivalence
detection
by graph
isomorphism

▪ State encoding

Equivalence Partitioning

33

Entry Transition
src

«new»
trg

src
trg

~

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

trg
Entry Transition

src

«new»

src
trg

~

trg

State

src,trg

~

Entry Transition
src

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

3) Constraint evaluation by
incremental
graph query engine

4) Equivalence
detection
by graph
isomorphism

▪ State encoding

▪ Partial order reduction

Different Solutions

VIATRA Solver: An Open Source Tool

▪ Standard EMF as input and output|
Configuration language | Visualization

▪ Incremental Query Engine:
o Constraint language: VIATRA Query

o Internally uses: Incremental constraint reevaluation, DPLL as VIATRA DSE

▪ Open source: github.com/viatra/VIATRA-Generator

36

https://github.com/viatra/VIATRA-Generator

Scalability Measurements

Maximal model size

37

FAM: Industrial, Avionics

FS: File System example of Alloy

5 min timeout

Example comparison (FAM)

Yakindu: Industrial, Statemachine

Ecore: Metamodelling language

Our solver generates two orders of magnitude larger models

GENERATION OF
DIVERSE GRAPH MODELS

38

Graphs in Software Tools for
Safety-Critical Systems

The Need for
Automated Model Generators

Automated Generation of
Consistent Graph Models

Automated Synthesis of Diverse
Graph Models

Conclusions

THANKS FOR YOUR ATTENTION

Links to tools:

VIATRA: https://www.eclipse.org/viatra/

VIATRA Generator: https://github.com/viatra/VIATRA-Generator

https://www.eclipse.org/viatra/
https://github.com/viatra/VIATRA-Generator

