Aspects of Counterparty Credit Risk Valuation

Lajos Vago, Quantitative Analyst

September 20, 2022

citi®

Information Classification: Public

Agenda

- 1. What is credit risk?
- 2. How to mitigate it?
- 3. What is CVA?
- 4. How to compute it?
- 5. A few example products and how to compute CVA for these
- 6. A practical challenge

What is credit risk?

- Financial contract ——> future cashflows
 - E.g.:
 - Corporate bond
 - European Option
- Traditional pricing theory: we take future cashflows granted
- What if my counterparty defaults?
 - If I owe them I just pay it back at market price
 - If they owe me I might get back some of my money

How to mitigate it?

- Netting
- Collateralization
 - Repurchase agreement (Repo)
- Clearing
 - Standardized contracts, e.g. Interest Rate Swaps
 - Variational margin, can be e.g. daily, weekly
 - Initial margin
- Hedging with Credit Default Swaps (CDS)
 - In case of a credit event, the issuer pays an agreed amount
 - In return, the buyer pays a regular premium

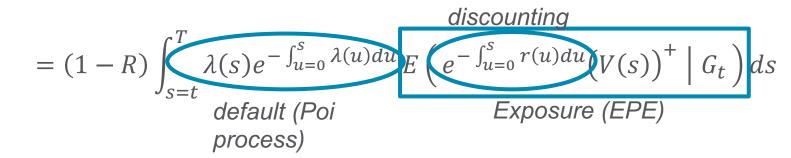
- Credit Valuation Adjustment
- Spread on contract price to cover credit risk due to:
 - Lack of other type of credit risk mitigation
 - Or residual risks, e.g.
 - Clearing happens only time-to time
 - Margin call happens only if exposure exceeds a limit

3 main components:

- Default distribution: probability of default around a future date
 - We assume an inhomogeneous Poisson process
 - Default rates are calibrated to CDS prices
- **Exposure distribution**: my exposure around a future date
 - Expected *Positive* Exposure (EPE)
 - E.g. Monte Carlo simulation
- Recovery rate
 - For simplicity say its constant, 40%

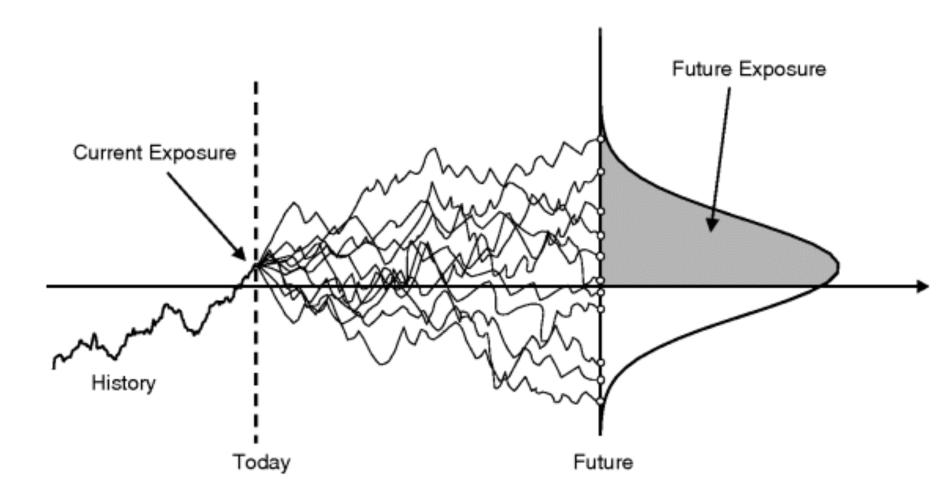
How to compute CVA? – unilateral formula [2]

 $CVA(t) = E((1 - R)(V(\tau))^{+} | F_t) =$



- τ is the (random) time of default, T is the maturity of the contract
- R is the recovery rate, V(s) is the (random) price of the contract
- F_t is the filtration containing all the info up to time t
- $\lambda(s)$ is the hazard rate
- r(u) is the discount rate
- G_t is the filtration containing info needed for exposure calculation

Where:



European call: We have an *option* to buy *q* shares of SP500 for \$*K* each at a forward time *T*.

Payoff at maturity:

 $q(S(T)-K)^+$

Can be priced using an analytic model (Black-Scholes, geometric Brownian motion) Price at maturity and before: lets draw...

Example: CVA for European Option

How to compute CVA?

- Discretize the integral
- For exposure:
 - Simulate the underlyings (e.g. SP500) with a MC model
 - Underlying simulation can be correlated with the default process (Wrong way risk)
 - On each path for each CVA date the contract can be priced using B-S formula
- Multiply exposures with prob. of default in given time interval

Example: Range Accrual

- A premium is paid for days when underlying falls in an interval (*L*, *H*)
- Payoff at maturity:

$$\frac{C}{n} \sum_{t \in \{t_1, ..., t_n\}} 1_{\{L < S(t) < H\}}$$

- Path dependent
- Pricing with Monte Carlo
- Draw...

Try the same as before:

- Discretize the integral
- For exposure:
 - Simulate the underlyings with a MC model
 - On each path for each CVA date price the contract
 - → that's MC in MC, super time-consuming

Longstaff-Schwartz [1]:

- Instead of a new MC on each MC path we would like to use the continuation of existing paths somehow
- How to use existing paths? Why is it not trivial? Lets draw...

Longstaff-Schwartz method

We do a tricky linear regression:

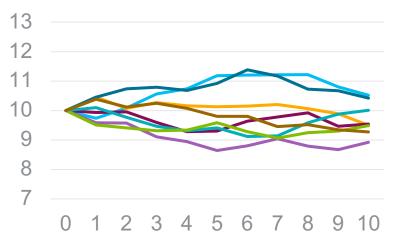
Target: price of the contract at a CVA date s on a path, i.e.

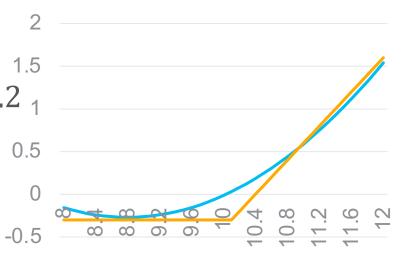
 $E(V(s) \mid S(s) = x)$

Regressors: const, underlying value S(s), its functions f(S(s)), etc.

Numeric example

European call, K = 10.1, T = 10 $(S(T) - K)^+ - 0.3$ What is EPE at t = 4? Regression: $p(x) = a + bx, +cx^2$ where x = S(4) will be used Calibration: a = 13.3, b = -3.1, c = 0.2





- LSM is calibrated
- MC simulation: 8 paths ©
- Substitute to p(x)
 - → exposure estimation
- Floor to zero to get positive exposure
- take average to get EPE

		pos.	
<i>S</i> (4)	p(S(4)	exp.	
10.74	0.40	0.40	
10.16	0.06	0.06	
9.28	-0.23	0.00	
8.94	-0.26	0.00	
9.32	-0.22	0.00	
9.34	-0.22	0.00	
10.68	0.36	0.36	
10.08	0.02	0.02	
		Ļ	
EPE = 0.10			

- [1] Francis A. Longstaff and Eduardo S. Schwartz
 Valuing American Options by Simulation: A Simple Least-Squares Approach, The Review of Financial Studies, 2001
- [2] Andrew Green XVA: Credit, Funding and Capital Valuation Adjustments, The Wiley Finance Series, 2015

Thank you!

