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A. Modelling Overview 

• “The model” includes four components:  
(a) assumed distribution for the response variable (Y) – 

usually chosen from the exponential family 
(b) the link function connecting 𝝁 =  𝑬(𝒀) with the 

explanatory variable(s) and model parameters 
(c) the [mean] model function 𝜼(𝒙, 𝜽), which combines the 

explanatory variable(s) with the model parameters 
(d) the variance or variance function (perhaps depending on 

𝜽 and/or additional parameter(s)) 
 

Modelling: finding relationships – but mindful of potential 
confounding, mediating, and/or interacting variables 
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We’ll look only at experimental studies here 
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• Simple linear regression (SLR) entails the Normal 
distribution/likelihood, the identity link, the model function 
𝜼(𝒙, 𝜽) = 𝜶 + 𝜷𝒙, and constant variance 

• The Binary/Binomial Logistic Model is an illustration of a 
generalized linear model; it assumes the Binomial or 
Bernoulli distribution and (usually) the logit link:  

𝒍𝒐𝒈 (
𝝅

𝟏−𝝅
) = 𝜶 + 𝜷𝒙 or equivalently 𝝅 =

𝒆𝜶+𝜷𝒙

𝟏+𝒆𝜶+𝜷𝒙
.  No new 

variance parameter is introduced here (it comes from the 
binomial distribution) 

• In this Logistic Model, sometimes we write 𝝅 =
𝒆𝜷(𝒙−𝜸)

𝟏+𝒆𝜷(𝒙−𝜸)
 so 

that 𝜸 is the LD50/EC50 parameter, and this is a nonlinear 

model since now 𝒍𝒐𝒈 (
𝝅

𝟏−𝝅
) = 𝜷(𝒙 − 𝜸) 
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• In the applied sciences, we often use a nonlinear model 
function (i.e., nonlinear in the parameters), e.g. 𝜼(𝒙, 𝜽) =

𝜽𝟐 +
𝜽𝟏−𝜽𝟐

𝟏+(𝒙/𝜽𝟑)
𝜽𝟒

, and sometimes, this can be combined with 

the above Logistic Model to produce 𝝅 = 𝜽𝟐 +
𝜽𝟏−𝜽𝟐

𝟏+(𝒙/𝜽𝟑)
𝜽𝟒

 

(see next page) 

• In bioassay, researchers often focus on relative potency, 
wherein two parallel Logistic Regression Models are fit – for 
example for two viruses (WT and Mutant) or two different 
peptides – and where the relative potency parameter is the 

ratio of the two EC50’s: 𝝆 =
𝜸𝑴

𝜸𝑾𝑻
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Design points (dose, mg): 5.00 8.77 27.79 200.00 
Sample sizes:         39  45     56    140 
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To illustrate a nonlinear model, the homoskedastic two-
parameter log-logistic (𝑳𝑳𝟐) model function is written 
 

𝜼(𝒙, �⃗⃗� ) =
𝟏

𝟏 + 𝒕
=

𝟏

𝟏 + (𝒙/𝜽𝟐)
𝜽𝟑

 

 

In this expression, 𝜽𝟐 is the 𝑳𝑫𝟓𝟎 parameter and 𝜽𝟑 is the slope 

parameter.  Here, the ‘upper asymptote’ – the expected 

response for 𝒙 = 𝟎 – is one; the 𝑳𝑳𝟑 model puts 𝜽𝟏 in place of 

“1” in the numerator so that the upper asymptote would then 

need to be estimated as well.   
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Here is a graph of some data and the fitted 𝑳𝑳𝟐 curve. 
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LL2 fit to 6-point uniform design data

 

For these data, the 𝑳𝑫𝟓𝟎 is estimated to be 𝟑. 𝟕𝟒𝟎 and the 

slope is estimated to be 𝟏. 𝟐𝟏𝟕. 



13 | P a g e  
 

Some [rival] models can be complex – e.g., AIDS models: 
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• Compartmental models are [multivariate] nonlinear models 
defined by a system of differential equations, containing 
parameters to be estimated. 
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• In the Binomial Logistic case above, the outcome variable 
had 2 choices (S and F).  When it has > 𝟐 outcomes, there 
are at least four model function choices (all with the 
Multinomial distribution) and each in the multi-category 
logit (MCL) class of models: 

 

Continuation Ratio A (CRA) Logit 

{

𝒍𝒐𝒈(
𝝅𝟏
𝝅𝟐
) = 𝜶𝟏 + 𝜷𝟏𝒙

𝒍𝒐𝒈 (
𝝅𝟏 + 𝝅𝟐
𝝅𝟑

) = 𝜶𝟐 + 𝜷𝟐𝒙
 

Un-Proportional Odds (UPO) Logit 

{

𝒍𝒐𝒈 (
𝝅𝟏

𝝅𝟐 + 𝝅𝟑
) = 𝜶𝟏 + 𝜷𝟏𝒙

𝒍𝒐𝒈 (
𝝅𝟏 + 𝝅𝟐
𝝅𝟑

) = 𝜶𝟐 + 𝜷𝟐𝒙
 

Adjacent Category (AC) Logit 

{

𝒍𝒐𝒈(
𝝅𝟏
𝝅𝟐
) = 𝜶𝟏 + 𝜷𝟏𝒙

𝒍𝒐𝒈 (
𝝅𝟐
𝝅𝟑
) = 𝜶𝟐 + 𝜷𝟐𝒙

 

Continuation Ratio B (CRB) Logit 

{

𝒍𝒐𝒈 (
𝝅𝟏

𝝅𝟐 + 𝝅𝟑
) = 𝜶𝟏 + 𝜷𝟏𝒙

𝒍𝒐𝒈 (
𝝅𝟐
𝝅𝟑
) = 𝜶𝟐 + 𝜷𝟐𝒙
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Pregnant Mice Example (data here and used below) 
 

Response variable is: Non-live, Malformation, Normal 

 

Concentration 
(mg/kg/day) 

𝟎 𝟔𝟐. 𝟓 𝟏𝟐𝟓 𝟐𝟓𝟎 𝟓𝟎𝟎 

𝒏𝒊 𝟐𝟗𝟕 𝟐𝟒𝟐 𝟑𝟏𝟐 𝟐𝟗𝟗 𝟐𝟖𝟓 
Non-live 𝟏𝟓 𝟏𝟕 𝟐𝟐 𝟑𝟖 𝟏𝟒𝟒 
Malformation 𝟏 𝟎 𝟕 𝟓𝟗 𝟏𝟑𝟐 
Normal 𝟐𝟖𝟏 𝟐𝟐𝟓 𝟐𝟖𝟑 𝟐𝟎𝟐 𝟗 
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B. Confidence Regions/Intervals Review 
 

For Normal Linear and Nonlinear Models: 

• Wald CR (WCR): with 𝑽𝒏×𝒑 = Jacobian matrix 

{𝜽 ∈ 𝚯: (𝜽 − �̂�)
𝑻
�̂�𝑻�̂�(𝜽 − �̂�) ≤ 𝒑𝒔𝟐𝑭𝜶} 

• Likelihood Ratio CR (LRCR): 

{𝜽 ∈ 𝚯: 𝑺(𝜽) − 𝑺(�̂�) ≤ 𝒑𝒔𝟐𝑭𝜶} 

where 𝑺(𝜽) = (𝒚 − 𝜼(𝒙, 𝜽))
𝑻
(𝒚 − 𝜼(𝒙, 𝜽)) = 𝜺𝑻𝜺 

• Connection: if 𝜼(𝒙, 𝜽) ≈ 𝜼(𝒙, �̂�) + �̂�(𝜽 − �̂�), then 

𝜺 ≈ �̂� − �̂�(𝜽 − �̂�), 𝑺(𝜽) ≈ 𝑺(�̂�) + (𝜽 − �̂�)
𝑻
�̂�𝑻�̂�(𝜽 − �̂�) 

• For non-Normal (asymptotic result) we use: 

{𝜽 ∈ 𝚯: 𝟐[𝑳𝑳(𝜽) − 𝑳𝑳(�̂�)] ≤ 𝝌𝜶
𝟐} 

Confidence intervals (CIs) are obtained by projection  
Illustration for a Normal nonlinear model – WCR is elliptical 
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C. Optimal Design Topics 
 

• For Normal Linear Models, the (Fisher) Information is 

𝑴(𝝃) = 𝑿𝑻𝑿 – since variance is proportional to (𝑿𝑻𝑿 )−𝟏 – 

and for Normal Nonlinear Models this is 𝑴(𝝃, 𝜽)  =  𝑽𝑻𝑽;  
D-optimal designs minimize the area/volume of the Wald 
confidence region 

• An n-point design is  

𝝃 = {
𝒙𝟏 𝒙𝟐 … 𝒙𝒏
𝝎𝟏 𝝎𝟐 … 𝝎𝒏

} 

Here the 𝝎𝒌 are non-negative ‘design weights’ which sum to 
one; the 𝒙𝒌 which may indeed be vectors (but called ‘design 
points’), belong to the design space, and are not necessarily 
distinct 
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• For the Normal case and model function 𝜼(𝒙, 𝜽), the 𝒏 × 𝒑 

Jacobian matrix is 𝑽 =  
𝝏𝜼

𝝏𝜽
 and the 𝒑 × 𝒑 information matrix 

is 𝑴(𝝃, 𝜽)  =  𝑽𝑻Ω𝑽, with 𝛀 =  𝒅𝒊𝒂𝒈{𝝎𝟏, 𝝎𝟐, … ,𝝎𝒏} 

• For the non-Normal case, 𝑴(𝝃, 𝜽) = −𝑬 [
𝝏𝟐𝑳𝑳

𝝏𝜽𝝏𝜽𝑻
] 

The first-order/asymptotic variance of the LS estimator of 

𝜽, �̂�, is proportional to 𝑴−𝟏(𝝃, 𝜽), so designs are often 

chosen to minimize some convex function of 𝑴−𝟏.  Designs 
which minimize its determinant are called D-optimal; those 
that minimize its trace are A-optimal.  

• Variance function – the (first-order) variance of the 
predicted response at 𝑿 =  𝒙 is given by  

𝒅(𝒙, 𝝃, 𝜽) = (
𝝏𝜼(𝒙, 𝜽)

𝝏𝒙
)
𝑻

𝑴−𝟏(𝝃, 𝜽)
𝝏𝜼(𝒙, 𝜽)

𝝏𝒙
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• Designs that minimize (over ) the maximum (over x) of 
𝒅(𝒙, 𝝃, 𝜽) are called G-optimal. 

• The General Equivalence Theorem (GET) of Kiefer and 
Wolfowitz (1960) proves that D- and G-optimal designs are 
equivalent, that the variance function evaluated using the 
D-/G-optimal design does not exceed the line 𝒚 =  𝒑 – but 
that it will exceed this line for all other designs.  A corollary 
of the GET establishes that the maximum of the variance 
function is achieved for the D/G-optimal design at the 
support points of this design. 

• For the Binomial Logistic model with 𝜶 = 𝟎,𝜷 = 𝟏, the 

optimal design is {
−𝟏. 𝟓𝟒𝟑𝟒 𝟏. 𝟓𝟒𝟑𝟒
𝟏 𝟐⁄ 𝟏 𝟐⁄

}.   
 

This design is problematic since it has only 2 support points. 
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D. Two Examples from Toxicology 

• Pregnant Mice (𝒏 = 𝟏𝟒𝟑𝟓) from Price et al 1987, Fund. 
Appl. Toxicology, and Agresti p.192; chosen design is 

 

𝝃 = {
𝟎 𝟔𝟐. 𝟓
𝟐𝟗𝟕

𝟏𝟒𝟑𝟓

𝟐𝟒𝟐

𝟏𝟒𝟑𝟓

    
𝟏𝟐𝟓 𝟐𝟓𝟎
𝟑𝟏𝟐

𝟏𝟒𝟑𝟓

𝟐𝟗𝟗

𝟏𝟒𝟑𝟓

   
𝟓𝟎𝟎
𝟐𝟖𝟓

𝟏𝟒𝟑𝟓

} 

Outcome variable Y: dead, malformed, normal; x is 
concentration of ether in mg/kg per day 

 

• Emergence of House Flies (𝒏 = 𝟑𝟓𝟎𝟎) from Itepan 1995 and 
Zocchi & Atkinson 1999 Biometrics; chosen design is 

  

𝝃 = {
𝟖𝟎 𝟏𝟎𝟎
𝟓𝟎𝟎

𝟑𝟓𝟎𝟎

𝟓𝟎𝟎

𝟑𝟓𝟎𝟎

    
𝟏𝟐𝟎 𝟏𝟒𝟎
𝟓𝟎𝟎

𝟑𝟓𝟎𝟎

𝟓𝟎𝟎

𝟑𝟓𝟎𝟎

   
𝟏𝟔𝟎 𝟏𝟖𝟎 𝟐𝟎𝟎
𝟓𝟎𝟎

𝟑𝟓𝟎𝟎

𝟓𝟎𝟎

𝟑𝟓𝟎𝟎

𝟓𝟎𝟎

𝟑𝟓𝟎𝟎

} 

Y: dead, opened but died before complete emergence, 
complete emergence; x is dose of gamma radiation 
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E. Robust Design Strategies for Toxicology Examples 
 

Local optimal design strategies: 

• PO model: Perevozskaya, Rosenberger, Haines, 2003 

• CRA model: Fan & Chaloner, 2001 

• CRB model: Zocchi & Atkinson, 1999 
If model has 4 parameters, these designs often have ≤ 𝟒 
support points and are only ‘optimal’ for the assumed model.  
For Pregnant Mice example, these designs are: 
 

 

𝝃𝑪𝑹𝑨
∗ = {

𝟏𝟗𝟒. 𝟓 𝟒𝟐𝟖. 𝟏 𝟏𝟔𝟖𝟐. 𝟎
𝟎. 𝟑𝟎𝟐𝟑 𝟎. 𝟒𝟓𝟑𝟏 𝟎. 𝟐𝟒𝟒𝟓

} 

 

 

𝝃𝑼𝑷𝑶
∗ = {

𝟎 𝟑𝟓𝟑. 𝟐 𝟔𝟕𝟖. 𝟐
𝟎. 𝟑𝟓𝟕𝟓 𝟎. 𝟒𝟎𝟔𝟔 𝟎. 𝟐𝟑𝟓𝟗

} 

 
 

𝝃𝑨𝑪
∗ = {

𝟏𝟗𝟑. 𝟓 𝟒𝟐𝟓. 𝟓 𝟏𝟓𝟓𝟒. 𝟖
𝟎. 𝟑𝟎𝟑𝟕 𝟎. 𝟒𝟓𝟐𝟕 𝟎. 𝟐𝟒𝟑𝟓

} 

 

 

𝝃𝑪𝑹𝑩
∗ = {

𝟐𝟐𝟐. 𝟔 𝟒𝟎𝟏. 𝟑 𝟕𝟔𝟕. 𝟗
𝟎. 𝟒𝟎𝟓𝟖 𝟎. 𝟑𝟖𝟎𝟓 𝟎. 𝟐𝟏𝟑𝟔

} 

 



24 | P a g e  
 

• Often need a way to find near-optimal designs with extra 
support points.  One way to do this is via model nesting as 
suggested by Atkinson 1972; in the current case, note that 
each of the UPO, CRA, AC and CRB models are nested within 
the Generalized Ordinal Logit (GOL) model introduced and 
discussed in Jamroenpinyo et al 2012. 

• The GOL model with 3 categories is written as follows: 
 

{
 

 𝐥𝐨𝐠 (
𝝅𝟏

𝝅𝟐 + 𝜽𝟏𝝅𝟑
) = 𝜶𝟏 + 𝜷𝟏𝒙

𝐥𝐨𝐠 (
𝜽𝟐𝝅𝟏 + 𝝅𝟐

𝝅𝟑
) = 𝜶𝟐 + 𝜷𝟐𝒙

 

 
 

• This model has 6 different parameters, including 2 hyper-
parameters (nuisance parameters: 𝜽𝟏 and 𝜽𝟐) 
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• The ‘distance’ between two designs (𝝃 and 𝝃∗) can be 
measured by the so-called D-efficiency 

𝑫𝑬𝑭𝑭 = (
|𝑴(𝝃)|

|𝑴(𝝃∗)|
)

𝟏/𝒑

 

• In this expression, 𝑴(∙) is the 𝒑 × 𝒑 information matrix 
associated with the given model and 𝒑 is the number of 
model parameters (e.g., 𝒑 = 𝟒 for the UPO, CRB models) 

• The reason for the exponent is to adjust for the fact that 
|𝑴(𝝃)| increases with the dimension (𝒑) 

• Can think of 𝑫𝑬𝑭𝑭 in terms of sample size: if 𝑫𝑬𝑭𝑭 = 𝟎. 𝟖𝟎, 

since 
𝟏

𝑫𝑬𝑭𝑭
= 𝟏. 𝟐𝟓, then sample size if we use design 𝝃 needs 

to be 𝟐𝟓% higher versus had we used the design 𝝃∗ (e.g., 
𝒏 = 𝟓𝟎 instead of 𝒏 = 𝟒𝟎). 
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• For Normal nested models, let 𝑽𝒏×𝒑 = [𝑽𝟏|𝑽𝟐] where 

𝒏 × 𝒑𝟏 𝑽𝟏 corresponds to the sub-model and 𝒏 × 𝒑𝟐 𝑽𝟐 
corresponds to the extra parameters (𝒑 = 𝒑𝟏 + 𝒑𝟐), then 

 

𝑴 = 𝑽𝑻Ω𝑽 = [
𝑴𝟏𝟏 𝑴𝟏𝟐

𝑴𝟐𝟏 𝑴𝟐𝟐
] 

 

• Note that |𝑴| = |𝑴𝟏𝟏||𝑴𝟐𝟐 −𝑴𝟐𝟏𝑴𝟏𝟏
−𝟏𝑴𝟏𝟐| 

• New objective function (to maximize over 𝝃): 
 

𝝍(𝝃) =
𝟏 − 𝝓

𝒑𝟏
𝐥𝐨𝐠|𝑴𝟏𝟏| +

𝝓

𝒑𝟐
𝐥𝐨𝐠|𝑴𝟐𝟐 −𝑴𝟐𝟏𝑴𝟏𝟏

−𝟏𝑴𝟏𝟐| 
 

• In this expression, 𝝓 = 𝟎 corresponds to just the sub-model, 

𝝓 = 𝟏 corresponds to only the additional terms, and 
𝟏−𝝓

𝒑𝟏
=

 
𝝓

𝒑𝟐
 or 𝝓 =

𝒑𝟐

𝒑
 corresponds to all parameters.  
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F. Robust Strategy Applied to Toxicology Examples 
 

Pregnant Mice: For this example, best fitting model is CRB 
(−𝑳𝑳 = 𝟕𝟑𝟎. 𝟒) and second is UPO (−𝑳𝑳 = 𝟕𝟒𝟑. 𝟓), but note 
from above the ODEs for these two models are quite different 
(e.g., latter includes 0 but not former).  Also, D-efficiency of the 
original chosen design (with respect to 𝝃𝑪𝑹𝑩∗ ) is only 62.8%.  Yet, 
the ODE has only 3 support points and little/no ability to test 
for lack of fit. 
 

To provide for LOF, we now nest the CRB model in the UPOCRB 
(which is GOL with 𝜽𝟏 = 𝟏) and with the CRB parameter 
estimates and 𝜽𝟐 = 𝟎.  For 𝝓 = 𝟎. 𝟎𝟓 (𝑫𝑬𝑭𝑭 = 𝟗𝟓. 𝟑%), the 
ODE is 

𝝃 = {
𝟎 𝟐𝟑𝟎. 𝟓 𝟒𝟎𝟓. 𝟖 𝟕𝟔𝟎. 𝟗

𝟎. 𝟎𝟖𝟓𝟔 𝟎. 𝟑𝟔𝟑𝟓 𝟎. 𝟑𝟓𝟕𝟐 𝟎. 𝟏𝟗𝟑𝟕
} 
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Next, we insist on a geometric-like design with x-points of the 

form 𝟎, 𝒂, 𝒂𝒃, 𝒂𝒃𝟐, 𝒂𝒃𝟑 and weights 𝝎∗, 𝟏−𝝎
∗

𝟒
, 𝟏−𝝎

∗

𝟒
, 𝟏−𝝎

∗

𝟒
, and 

𝟏−𝝎∗

𝟒
.  The “weighted” optimal design again with 𝝓 = 𝟎. 𝟎𝟓 

(𝑫𝑬𝑭𝑭 = 𝟗𝟎. 𝟕%) is 𝒂 = 𝟏𝟔𝟗. 𝟕, 𝒃 = 𝟏. 𝟓𝟖, 𝝎∗ = 𝟎. 𝟎𝟔𝟒 
 

𝝃 = {
𝟎 𝟏𝟔𝟗. 𝟕 𝟐𝟔𝟖. 𝟔 𝟒𝟐𝟒. 𝟗 𝟔𝟕𝟐. 𝟑
𝟗𝟏 𝟑𝟑𝟔 𝟑𝟑𝟔     𝟑𝟑𝟔    𝟑𝟑𝟔

} 
 

Finally, if we nest the CRB model in the GOL, and search for a 
geometric-like design as above, the “weighted” ODE with 𝝓 =
𝟎. 𝟏𝟎 (𝑫𝑬𝑭𝑭 = 𝟗𝟎. 𝟔%) is 𝒂 = 𝟏𝟔𝟎. 𝟐, 𝒃 = 𝟏. 𝟔𝟓, 𝝎∗ = 𝟎. 𝟎𝟓𝟒 is 
 

𝝃 = {
𝟎 𝟏𝟔𝟎. 𝟐 𝟐𝟔𝟒. 𝟐 𝟒𝟑𝟓. 𝟖 𝟕𝟏𝟖. 𝟗
𝟕𝟗 𝟑𝟑𝟗 𝟑𝟑𝟗     𝟑𝟑𝟗    𝟑𝟑𝟗

} 
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Flies: These data show significant nonlinearity, so we fit 
quadratic models – for the CRA model, this is 
 

{

𝒍𝒐𝒈(
𝝅𝟏
𝝅𝟐
) = 𝜶𝟏 + 𝜷𝟏𝒙 + 𝜸𝟏𝒙

𝟐

𝒍𝒐𝒈 (
𝝅𝟏 + 𝝅𝟐
𝝅𝟑

) = 𝜶𝟐 + 𝜷𝟐𝒙 + 𝜸𝟐𝒙
𝟐
 

 

The best fitting (quadratic) model is CRA (−𝑳𝑳 = 𝟏𝟕𝟖𝟐. 𝟎𝟒) and 
second is AC (−𝑳𝑳 = 𝟏𝟕𝟖𝟐. 𝟏𝟓), but all −𝑳𝑳 values very similar 
(fits are similar).  Over [𝟖, 𝟐𝟎], the ODE’s are: 
 

 

𝝃𝑪𝑹𝑨
∗ = {

𝟖 𝟏𝟐. 𝟓𝟐 𝟏𝟔. 𝟑𝟔
𝟏

𝟑

𝟏

𝟑

𝟏

𝟑

} 

 

 

𝝃𝑨𝑪
∗ = {

𝟖 𝟏𝟐. 𝟒𝟗 𝟏𝟔. 𝟑𝟏
𝟏

𝟑

𝟏

𝟑

𝟏

𝟑

} 
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Since all fits and designs are similar, we can just use the design 
for the CRA model (i.e., no nesting needed here).  Next, 
consider equal-weight uniform designs of the form 𝑨, 𝑨 + 𝑩, 
𝑨 + 𝟐𝑩, … 𝑨 + 𝟔𝑩.  In this case, the D-efficiency for the 
optimal uniform design exceeds that of the optimal geometric 
design, and we obtain the “weighted” seven-point design 
(𝑫𝑬𝑭𝑭 = 𝟗𝟐. 𝟔%) with 𝑨 = 𝟖, 𝑩 = 𝟏. 𝟓𝟖: 
 
 

𝝃 = {
𝟖 𝟗. 𝟓𝟖 𝟏𝟏. 𝟏𝟔 𝟏𝟐. 𝟕𝟓 𝟏𝟒. 𝟑𝟑 𝟏𝟓. 𝟗𝟏 𝟏𝟕. 𝟒𝟗
𝟓𝟎𝟎 𝟓𝟎𝟎  𝟓𝟎𝟎    𝟓𝟎𝟎     𝟓𝟎𝟎    𝟓𝟎𝟎      𝟓𝟎𝟎

} 
 

This design represents an improvement over the chosen seven-
point design (with 𝑨 = 𝟖 and 𝑩 = 𝟐), which results in a value 
𝑫𝑬𝑭𝑭 = 𝟖𝟒. 𝟏%). 
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G. General Robust Design Strategies 
 

We have introduced the following design strategies: 
 

• G.1. Q-optimality approach 
 

In contrast with D-optimality, Hamilton and Watts (1985) use a 
quadratic approximation to show that for an exact design the 
volume of the above likelihood-based confidence region is 
approximately equal to 
 

𝝂 = 𝒄|𝑽𝑻𝑽|
−
𝟏
𝟐|𝑫|−

𝟏
𝟐{𝟏 + 𝒌𝟐 × 𝒕𝒓(𝑫−𝟏𝑪)} 

 

Here, ‘𝒄’ and ‘𝒌’ are constants relative to the design, 𝑪 is a 
function of the parameter-effects curvature and 𝑫 measures 
the intrinsic curvature in the direction of the residual vector; 

we write 𝑫 = 𝑰𝒑–𝑩 and 𝑩 = 𝑳𝑻[𝒆𝑻] [𝑾] 𝑳.  Claiming that this 
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volume approximation cannot be used as a design criterion 
since the residual vector (𝒆) is not known at the design stage, 
Hamilton & Watts suggest obtaining designs to minimize the 
further volume approximation 

𝝂′ = 𝒄|𝑽𝑻𝑽|
−𝟏/𝟐

{𝟏 + 𝒌𝟐 × 𝒕𝒓(𝑪)} 

These designs are called Q´-optimal.  Hamilton & Watts also 
note that for all their examples, the (local) Q´-optimal designs 
have only 𝒏 = 𝒑 support points. 
 

Since the residual vector is always orthogonal to the tangent 
plane at the least-squares estimate, O’Brien (1992) points out 
that the residual vector can be written 𝒆 = 𝑵 𝜶; from the QR 

decomposition we write 𝑽 = 𝑸 𝑹 = [𝑼|𝑵]𝑹 = 𝑼 𝑳−𝟏.  Thus, 
when we have the sample size 𝒏 = 𝒑 + 𝟏, 𝜶 is a scalar, and we 

make the expected squared length of 𝒆 equal 𝝈𝟐.   
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We thus seek (local) Q-optimal designs which minimize the 
original second-order volume approximation (𝝂) above. 
To illustrate, we use the two-parameter intermediate product 
(𝑰𝑷𝟐) model function given by the expression 

 

𝜼(𝒙, �⃗⃗� ) =
𝜽𝟏

𝜽𝟏 − 𝜽𝟐
{𝒆−𝜽𝟐𝒙 − 𝒆−𝜽𝟏𝒙} 

 

This model can be reparameterized in three ways, and the 
corresponding 3-point local Q-optimal designs follow: 
 

 
Q-optimal designs also depend upon the assumed value of 𝝈. 
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We use the term ‘local’ here since this design is chosen using 
the a priori estimates 𝜽𝟏 = 𝟎. 𝟕 and 𝜽𝟐 = 𝟎. 𝟐; the Bayesian 
strategy (discussed below) extends this strategy. 
 

The above was extended in O’Brien et al (2010) in two ways: 
(1) to incorporate exact designs for 𝒏 = 𝒑 + 𝒔 support points  
(𝒔 > 𝟏) and (2) to incorporate continuous designs.  In these 
cases, Q-optimal designs minimize the expected volume, 
𝑬[𝝂(𝝓)], and use polar or spherical coordinates.  Design 
algorithms used to obtain these designs are computationally 
intensive: we use the GAUSS and SAS/IML programming 
languages and associated minimization routines. 
 

For the above 𝑰𝑷𝟐 model function, 4-point exact Q-optimal 
designs are easily obtained; designs with a greater number of 
support points ‘collapse’ to just 4 support point designs. 
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• G.2. Discrimination-Estimation approach 
Suppose that we have a given model function in mind, and can 
obtain a reasonable [non-nested] rival model function (or 
maybe several).  To illustrate, the 𝑺𝑬𝟏 model function,  

𝜼𝟏 = 𝒆
−𝜽𝟏𝒙, may model a given process; a good rival model 

function is the 𝑴𝑴𝟏 model function, 𝜼𝟐 = 𝜽𝟐 (𝜽𝟐 + 𝒙)⁄ . 
 

In general, for the class of 𝒎 rival model functions with 
respective parameter numbers 𝒑𝟏, 𝒑𝟐, … 𝒑𝒎, the estimation 
measure is 

𝑬(𝝃) =∑(𝝅𝒌 𝒑𝒌⁄ )𝒍𝒐𝒈|𝑴𝒌(𝝃)| 
 

The weights 𝝅𝟏, 𝝅𝟐, …𝝅𝒎 (which sum to one) control the 
emphasis placed upon each of the m rival models.  O’Brien & 
Rawlings (1996) introduces an analogous term so-called 
discrimination measure, 𝑫(𝝃), and these two terms are 
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combined into the single estimation-discrimination measure 
 

𝑩(𝝃) = 𝜶 × 𝑬(𝝃) + (𝟏 − 𝜶) × 𝑫(𝝃)

= 𝒃 × 𝒍𝒐𝒈|𝑴(𝝃)| +∑𝒄𝒌 × 𝒍𝒐𝒈|𝑴𝒌(𝝃)| 
  

We also provide a GET; 𝑫𝑩-optimality of an estimation- 
discrimination design can then be verified.  For example, the 
following graph confirms optimality as it lies below 𝒚 = 𝟏. 
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• G.3. Model Nesting approach 
 

In the context of linear models, suppose that we have faith that 
the true model is 𝜼𝑨 = 𝑭𝟏𝜷𝟏 but we feel that a better model 
may be the larger ‘super-model’ 𝜼𝑩 = 𝑭𝟏𝜷𝟏 + 𝑭𝟐𝜷𝟐.  We seek 
a design that is efficient for 𝜼𝑨 but that be used to check for 
departures “in the direction of” 𝜼𝑩.  To illustrate, we might feel 
that a quadratic two-factor RSM or mixture model may well fit 
a given process, but may want to check if cubic term(s) may be 
significant.  In this case, a compound design criterion function 
(objective function) is 

 

𝚽(𝝃) =
𝜿

𝒓
𝒍𝒐𝒈|𝑴𝟏𝟏| +

𝟏 − 𝜿

𝒔
𝒍𝒐𝒈|𝑴𝟐𝟐 −𝑴𝟐𝟏𝑴𝟏𝟏

−𝟏𝑴𝟏𝟐| 

In this expression, the sub-model contains ‘𝒓’ parameters, the 
super-model contains ‘𝒔’ additional parameters, and 𝜅 (which 
lies between 0 and 1) controls the emphasis placed on the 
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original versus the additional parameters.  Again, D-optimality 
is confirmed by plotting the corresponding variance function 
plot and noting whether or not the graph exceeds the relevant 
horizontal line. 
 

Nonlinear cases are more complicated, so we restrict our 
attention to just sigmoidal models, and these are of the 
logistic/Richards, Weibull, and log-logistic families.  A super-
model which generalizes the latter two families is the three-
parameter Eclectic (EC3) model function 

 

𝜼(𝒙, 𝜽) =
𝟏

(𝟏 +
(𝒙/𝜽𝟐)

𝜽𝟑

𝜽𝟓
)
𝜽𝟓

 

      

We obtain the LL2 model function when 𝜽𝟓 = 𝟏, and the 
WEIB2 model for 𝜽𝟓 → ∞.  The strategy here is analogous to 
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the above linear case since we are using D-optimality (linear 
approximation), but since the models are nonlinear, we use 
either a ‘local’ approach or a Bayesian one.  For example, we 
can find a three-point design with high efficiency for the 
𝑳𝑳𝟐 model but which protects for departures in the direction 
of all other sigmoidal functions.  Basic results are given in 
O’Brien (1994) and extensions in O’Brien et al (2009). 
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G.4. A General Departures approach  
 
In our 1995 publication, we took another robust design 
approach akin to space-filling designs, which were then being 
explored by Randy Tobias at SAS.  We focused instead on the 
general replicated-point LOF (lack of fit) test from an assumed 
model function, but in the direction of any departure from this 
model.  Similar results are given a 2008 JSPI article by Bogacka 
et al.   
We proposed the following three-step approach: 

 

• The D-optimal design (𝝃𝑫) is obtained (often with only 𝒑 
support points) and the variance function is obtained; 

• To this D-optimal design are added (perhaps on a second 
replication, perhaps not) the (𝒕) points where the variance 
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function cuts the line 𝒚 = 𝒑 {[
(𝒑+𝟏)𝜹

𝒑
]
𝒑
− 𝟏} with say 𝜹 =

𝟎. 𝟗𝟎 and 𝒑 = # of model function parameters); 

• Choose as the final design 𝒓𝟏 replicates of the 𝒑 D-optimal 
support points and 𝒓𝟐 replicates of the 𝒕 support points 
from the previous step. 

 

The justification for the above strategy as follows:  Let 𝝃𝒙 
represent the one-point design which puts all weight at the one 
support point 𝒙, and suppose that the minimal D-optimal 
design (𝝃𝑫) is D-optimal.  Then the design  

 

𝝃𝑵 =
𝒑

𝒑 + 𝟏
𝝃𝑫 +

𝟏

𝒑 + 𝟏
𝝃𝒙 
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associates the weight 𝟏/(𝒑 +  𝟏) with each of the 𝒑 D-
optimal support points and 𝒙.  A measure of the ‘distance’ 

between 𝝃𝑫 and 𝝃𝑵 is the D-efficiency, 𝜹 = [
|𝑴(𝝃𝑵)|

|𝑴(𝝃𝑫)|
]
𝟏/𝒑

  

In this case, this is equal to 
𝒑

𝒑+𝟏
[𝟏 +

𝟏

𝒑
𝒅(𝒙, 𝝃𝑫)]

𝟏/𝒑
. 

When this is solved, we obtain the above equation for cutting 
the variance function. 
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To illustrate, consider again the 𝑰𝑷𝟐 model function given in 
§E.1 again with the prior estimates 𝜽𝟏 = 𝟎. 𝟕 and 𝜽𝟐 = 𝟎. 𝟐; in 
this case, the local D-optimal support points are 𝒙 = 𝟏. 𝟐𝟐𝟗 and 
𝒙 = 𝟔. 𝟖𝟓𝟖, which are to be replicated 𝒓𝟏 times.  With 𝒑 = 𝟐 
and 𝜹 = 𝟎. 𝟗, the above cut-line is 𝒚 = 𝟏. 𝟔𝟒𝟓.  This gives the 
𝒕 = 𝟒 additional points 𝒙 = 𝟎. 𝟕𝟔𝟏, 𝟏. 𝟗𝟎𝟗, 𝟒. 𝟖𝟗𝟎, 𝟗. 𝟑𝟔𝟔 (to be 
replicated 𝒓𝟐 times).  In terms of final efficiencies, note that for 
𝒓𝟏 = 𝒓𝟐 = 𝟏, the final D-efficiency is 𝟖𝟖%, meaning that only 
𝟏𝟐% efficiency has been sacrificed in order that we can test for 
LOF of the assumed model function. 
 

In general, final D-efficiencies can be obtained by the 
expression  

𝑫𝑬𝑭 =
(𝒓𝟏𝒑)

𝟏−𝒕/𝒑

𝒓𝟏𝒑 + 𝒓𝟐𝒕
|𝒓𝟏𝒑𝑰𝒕 + 𝒓𝟐𝑫(�⃗⃗� , 𝝃𝑫, �̂�)|

𝟏/𝒑
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H. Bayesian and Geometric Design Strategies 
 

Further robust design strategies for nonlinear models include: 
 

• H.1. A Bayesian approach 
Local designs for nonlinear model suffer from the criticism that 
they are only efficient for the required a priori guess of (some 
or all of) the model parameters.  Several authors have 
explored how to obtain designs that are ‘efficient’ regardless 
of the parameter values.  Although several alternatives are 
possible and important, when we have at our disposal a prior 

distribution of parameter values p(), a reasonable strategy is 
to obtain designs to minimize the expected log-generalized 
variance, 

 

𝑬{𝒍𝒐𝒈|𝑴−𝟏(𝝃, 𝜽)|} = ∫ 𝒍𝒐𝒈|𝑴−𝟏(𝝃, 𝜽)|𝒑(𝜽)𝒅𝜽 
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References include Chaloner & Larntz (1989) and Atkinson et al 
(2007, Chap.18); these sources point out that the above is only 
one of several criteria function which may be chosen.  In 
general, Bayesian optimal designs have at least 𝒑 support 
points (often more), and the number of support points usually 
increases with the dispersion of the assumed prior.  Of course, 
like ‘local’ designs, Bayesian designs suffer from criticism too: 
(a) obtaining a reasonable prior is often difficult in practice, and 
(b) these designs are often not robust to the assumed prior 
distribution. 
 

• H.2. Strategies for Geometric and Uniform Designs 
 

Geometric designs of the form: 𝒙𝟏 = 𝒂, 𝒙𝟐 = 𝒂𝒃, 𝒙𝟑 =

𝒂𝒃𝟐…𝒙𝒌 = 𝒂𝒃
𝒌−𝟏 (as well as uniform designs): optimal choices 

for 𝒂 and 𝒃 are explored in O’Brien et al (2009b). 
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I. Conclusion and Comments 

• Designs that are “optimal” only for the assumed model 
are obviously of limited use 

• Often several models can fit a given dataset/situation, 
and we need the ability to judge which is ‘best’ 

• Robust designs – such as those obtained by model nesting 
(provided one can find an adequate larger model) – are 
often more useful in practice 

• Could also consider robustness to the chosen parameter 
values, link function, etc. 

• Future work: robust optimal design useful to test for drug 
or similar compounds synergy, and developing easy-to use 
computational tools for the practitioner. 

 

Thank You! 
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