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Outline

Deterministic delay is hard to represent in Markovian models.

Minimal SCV of phase type distribution: 1/N
Minimal SCV of matrix exponential distribution: O(1/N2)

How to obtain them?
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Matrix exponential (ME) distributions

Distributions with density function

f (x) = αeAx (−A)1,

where α is a row vector, A is a square matrix and 1 is the
column vector of ones
(of size 1× N, N × N and N × 1, respectively)
No sign constraints on α and A
→ lack of stochastic interpretation.

It is hard to check (in general) if f (x) is non-negative.
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Matrix exponential (ME) distributions

The k th moment of the ME with f (x) = αeAx (−A)1 is

µk =

∫
x

xk f (x)dx = k !α(−A)−k1,

and its squared coefficient of variation (SCV) is

SCV =
µ0µ2

µ2
1
− 1.

The SCV is insensitive to multiplication and scaling, i.e.
SCV (f (x)) = SCV (c1f (c2x)).
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Phase type (PH) distributions

Same as ME, but sign constraints apply for α and A:
α is non-negative,
A has negative diagonal and non-negative off-diagonal
elements, such that A1 ≤ 0.

α and A can be interpreted as the initial vector and the
generator of a transient continuous time Markov chain
→ time to absorption.
ME distributions of order N is a superset of phase type PH
distributions of order N.

Properties

Bounded SCV (Aldous-Shepp , O’Cinneide): SCV ≥ 1
N

.

Equality is provided by Erlang (Gamma) distribution.

Miklós Telek Concentrated matrix-exponential distributions and their applications



Introduction CME distribution Transient analysis Inverse Laplace transformation Summary

1 Introduction to ME and PH distributions

2 Concentrated ME distribution

3 Transient analysis

4 Inverse Laplace transformation

5 Summary

Miklós Telek Concentrated matrix-exponential distributions and their applications



Introduction CME distribution Transient analysis Inverse Laplace transformation Summary

Minimal SCV of matrix exponential distributions

Since it is hard to check if f (x) = αeAx (−A)1 is non-negative.
The constrained non-linear optimization problem:

min
α,A

SCV (f (x))

subject to f (x) ≥ 0, ∀x ≥ 0,

is hard to solve.

The solution of this problem is not known for N > 2 !!

Conjectures are available based on the following workaround
approach.
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A non-negative subset

Workaround approach:
Search for the minimum in a special subset, which is
non-negative by construction.

A promising candidate set is:

f +(t) = ce−ηt
n∏

i=1

cos2
(
ωt − φi

2

)
,

which is non-negative by construction.

Persisting (unproven) conjecture:
ME(2n + 1) with minimal SCV is an f +(t) of order n.
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Simplified non-linear optimization problem

The fact that f +(t) has a size N = 2n + 1 matrix exponential
representation is due to the trigonometric – exponential relation

f +(t) = ce−ηt
n∏

i=1

cos2
(
ωt − φi

2

)
=

2n∑
k=0

ηke−βk t = πeAt (−A)1,

with

π =

[
η1

β1
, . . . ,

ηN

βN

]
and A = −diag{β1, . . . , βN}
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Simplified non-linear optimization problem

The non-linear optimization problem associated with f +(t) is:

min
ω,φ1,...,φn

SCV (f +(x)).

Unfortunately, it does not offer nice symbolic solution
→ numerical optimization is required.
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Results for CME distributions

Numerical solutions of the non-linear problem

N SCV 1/SCV date optimization
3 0.20090 4.9776
5 0.081264 12.306
...

...
... 2006 Mathematica

15 0.0093128 107.38 built in
17 0.0072074 138.75
19 0.0057368 174.31
21 0.0046708 214.10
...

...
... 2016 Evolution

45 0.00088322 1132.2 strategy
47 0.00078490 1274.0
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Concentrated ME distributions
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SCV decays with ∼ 2/N2 instead of 1/N.
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Numerical optimization

For efficient numerical minimization of the SCV for N > 47
we need accurate and efficient computation methods with low
computational complexity for

i) for computation of the SCV based on the parameters,
ii) for minimization of the SCV.
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Concentrated ME distributions

Main bottleneck of the optimization:

inefficient computation of the moments based on
ce−ηt ∏n

i=1 cos2
(
ωt−φi

2

)
.

→ efficient moments computation based on
∑2n

k=0 ηke−βk t ,
since

µi =

∫ ∞
t=0

t i
2n∑

k=0

ηke−βk tdt =
2n∑

k=0

i!ηk

β i+1
k

.
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Hyper-trigonometric form of f +(t)

Theorem

An exponential cosine-square function can be transformed to
the following hyper-trigonometric form

f +(t) = e−t
n∏

i=1

cos2
(
ωt − φi

2

)
=

2n∑
k=0

ηke−βk t

= c(n) · e−t + e−t
n∑

k=1

a(n)
k cos(kωt)

+ e−t
n∑

k=1

b(n)
k sin(kωt),

where c(n) = 1
2a(n)

0 and the coefficients a(n)
k , b(n)

k can be
calculated recursively.
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Hyper-trigonometric representation of f +(t)

for n = 1: a(1)
0 = 1, b(1)

0 = 0, a(1)
1 = 1

2 cosφ1, b(1)
1 = 1

2 sinφ1,

for k > n,n ≥ 1: a(n)
k = b(n)

k = 0,

for k = 0,n ≥ 1:

a(n)
0 =

1
2

a(n−1)
0 +

1
2

a(n−1)
1 cosφn +

1
2

b(n−1)
1 sinφn,

b(n)
0 = 0,

for 1 ≤ k ≤ n,n ≥ 2:

a(n)
k =

1
2

a(n−1)
k +

1
2

a(n−1)
k−1 + a(n−1)

k+1

2
cosφn +

1
2

b(n−1)
k+1 − b(n−1)

k−1

2
sinφn,

b(n)
k =

1
2

b(n−1)
k +

1
2

b(n−1)
k−1 + b(n−1)

k+1

2
cosφn +

1
2

a(n−1)
k−1 − a(n−1)

k+1

2
sinφn.
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Hyper-trigonometric representation of f +(t)

Based on the a(n)
k , b(n)

k coefficients SCV is obtained efficiently.

Corollary

The µi , i = 0,1,2 moments of the exponential cosine-square
function are

µ0 = c(n) +
n∑

k=1

a(n)
k + b(n)

k kω
1 + (kω)2 ,

µ1 = c(n) +
n∑

k=1

a(n)
k + 2b(n)

k kω − a(n)
k (kω)2

(1 + (kω)2)2 ,

µ2 = 2c(n) +
n∑

k=1

2a(n)
k + 6b(n)

k kω − 6a(n)
k (kω)2 − 2b(n)

k (kω)3

(1 + (kω)2)3 .
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Floting point computation of the coefficients

The computation of a(n)
k , b(n)

k is prone to numerical errors
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Approximated

The precision loss in the computation is

Ln ≈ 1.487 + 0.647n

decimal digits.
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Floting point computation with the coefficients

Only the a(n)
k , b(n)

k coefficients need to be computed with
appropriate high precision,

standard double precision is sufficient for all other
computations.
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Optimization methods

For finding the parameters (ω, φi ) which provide the minimal
SCV we got success with evolution strategies (ES):

(1+1)-ES or Rechenberg method
CMA-ES: covariance matrix adoption ES
BIPOP-CMA-ES: CMA-ES with smart resart policies

Numerical experiences:

TCMA-ES < T(1+1)-ES << TBIPOP-CMA-ES,

QCMA-ES ∼ Q(1+1)-ES < QBIPOP-CMA-ES.

I. Rechenberg. Evolutionsstrategien. In Simulationsmethoden in der Medizin und Biologie, pages 83-114, 1978.
N. Hansen. The CMA evolution strategy: a comparing review. In Towards a New Evolutionary Computation,
pages 75-102. Springer, 2006.
N. Hansen. Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed. 11th Ann. Conf. on
Genetic and Evolutionary Computation, pages 2389-2396. ACM, 2009.
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Optimal parameters
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Complexity as a function of n

The number of parameters to optimize is n + 1,

→ complexity of optimization increases super linearly with n.

→ complexity of the fastest method (CMA-ES) gets prohibitive
around n = 180.

→ low complexity suboptimal minimum is needed for n > 180.
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Heuristic approach

f +(t)et =
∏n

i=1 cos2
(
ωt−φi

2

)
is periodic with φi ∈ (−π, π).

Motivated by the location of the optimized φi values
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Main idea:
approximate the φi parameters with a function,
different function parameters below and above the spike.
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Heuristic approach

Assuming that i∗ zeros are below the main spike and
i∗ < n − 1, we apply two polynomial functions to approximate
the location of the φi parameters:

φi =

{
θ(i − γ)a if i ≤ i∗,
Θ(i − Γ)A if i∗ < i ≤ n,

(1)

where the auxiliary parameters, γ, θ, Γ,Θ, are obtained from the
equations

τ1 = pmin, τi∗ = p − w/2, τi∗+1 = p + w/2, τn+1 = 2π, (2)

and the following constraints apply:

0 ≤ pmin < p − w/2 < p + w/2 < 2π, a > 0, A > 0.
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Heuristic approach

Using (1) and (2) we get

γ =
(p − w/2)1/a − i∗p1/a

min

(p − w/2)1/a − p1/a
min

,

θ = pmin (1− γ)−a ,

Γ =
(n + 1)(p + w/2)1/A − (i∗ + 1)(2π)1/A

(p + w/2)1/A − (2π)1/A ,

Θ = 2π (n + 1− Γ)−A .
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Heuristic approach

The heuristic procedure sets the φi parameters based on the
following parameters

i∗: the number of φi parameters left to the main peak of the
function,
pmin: the smallest φi parameter,
p, w : the location of the main peak and its width,
a, A: shape parameters defining the distribution of φi left
and right to the main peak.
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Heuristic approach

10 20 50 100 200 500 10002000

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

n = (N − 1)/2

S
C

V
n

6-parameter heuristic
CMA-ES

The heuristic minimum follows the trend for n > 100 .
ME distributions with SCV< 10−6 can be obtained.
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Main messages about CME

While the min SCV of phase type distribution decays
linearly (1/N), the min SCV of matrix exponential
distribution decays faster than quadratically (< 1/N2).

We can compute concentrated matrix exponential
distribution up to order 104 with SCV < 10−8.

The precision loss of the computation is moderate.
Both representations of f +(t) can be used with standard
double precision.

f +(t) = ce−ηt
n∏

i=1

cos2
(
ωt − φi

2

)
=

2n∑
k=0

ηke−βk t ,
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The main concept

The transient analysis of some stochastic models is much
harder than their stationary analysis.

In this cases:
Extend the model with a random clock as follows

Run the model until the clock expire
When the clock expire reset the model to its initial state
Repeat the cycle

Compute the stationary distribution of the extended model
Obtain the transient measure from the stationary
distribution.

If the clock has very low variance with mean T
→ approximate transient analysis at time T .

Houdt BV, Blondia C: Approximated transient queue length and waiting time distributions via steady state analysis.
Stochastic Models 21(2-3):725–744 (2005)
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Simple application example (CTMC)

For a CTMC with generator Q and initial distribution π the
transient probability vector at time T is

p(T ) = πeQT ,

We are interested in the transient probability vector at a random
time θ, that is E(p(θ)),

where the pdf of θ is

f (x) = αeAxa,

with a = −A1.

Miklós Telek Concentrated matrix-exponential distributions and their applications
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Simple application example (CTMC)

We can compute E(p(θ)) based on the stationary analysis of
the extended Markov chain with generator

Q̄ =
−1 π ⊗α

1⊗ a Q ⊕ A
.

X̄ (t)

t
Exp(1) Exp(1)θ θ

0
1
2
3
4
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Simple application example (CTMC)

This extended Markov chain has
a block of size one which ”resets the CTMC to the initial
state”
a block of size |Q| × |A| which accounts for the evolution of
the CTMC and the clock together.

The stationary distribution of this extended Markov chain is
[c,γ], which is the solution of

c(π ⊗α) + γ(Q ⊕ A) = 0,

from which γ is

γ = −c(π ⊗α)(Q ⊕ A)−1.

Miklós Telek Concentrated matrix-exponential distributions and their applications
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Simple application example (CTMC)

E(p(θ)) can be obtained by conditioning on the occurrence of a
transition concluding the PH distributed θ long period according
to vector a, that is

E(p(θ)) =

lim
t→∞

lim
δ→0

the CTMC is in state i and the clock expires in (t , t + δ)

the clock expires in (t , t + δ)
=

γ(I ⊗ a)

γ(1⊗ a)
=
−(π ⊗α)(Q ⊕ A)−1(I ⊗ a)

−(π ⊗α)(Q ⊕ A)−1(1⊗ a)
.

If E(θ) = T and SCV (θ) is small, then E(p(θ)) ≈ p(T ).

Miklós Telek Concentrated matrix-exponential distributions and their applications
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Markov fluid queue (MFQ)

The state of a CTMC, S(t), governs the evolution of a
continuous variable X (t) which is bounded by 0 and B
→ {S(t),X (t)} is a Markov process.

S(t)

k

i

j

t

t

X(t)

r

ir
kr kr

j

B

0
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Markov fluid queue

During a sojourn of the CTMC in state i (S(t) = i) the fluid level
(X (t)) increases at rate ri when 0 < X (t) < B:

d
dt

X (t) = ri if S(t) = i ,0 < X (t) < B.

When X (t) = 0 the fluid level can not decrease:

d
dt

X (t) = max(ri ,0) if S(t) = i ,X (t) = 0.

When X (t) = B the fluid level can not increase:

d
dt

X (t) = min(ri ,0) if S(t) = i ,X (t) = B.
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Markov Fluid queue

That is

d
dt

X (t) =


rS(t), if 0 < X (t) < B,

max(rS(t),0), if X (t) = 0,
min(rS(t),0), if X (t) = B.

Model description:
generator matrix of the CMTC Q
diagonal matrix of the fluid rates R

Miklós Telek Concentrated matrix-exponential distributions and their applications
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Transient and stationary measures

f (i,a)(t , x) =
[
f (i,a)
1 (t , x) f (i,a)

2 (t , x) · · · f (i,a)
n (t , x)

]
,

where for 0 < x < B,1 ≤ k ≤ n

f (i,a)
k (t , x) =

d
dx

Pr{X (t) ≤ x , S(t) = k | X (0) = a,S(0) = i},

and
f (x) = lim

t→∞
f (i,a)(t , x).
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Transient analysis of MFQ

Extended fluid level dependent MFQ is defined as

Q̄(x) =

[
0 0

a ⊗ 1 A⊕Q(x)

]
, if x 6= a,

R̄(x) =

{
diag{1, I ⊗ R(x)} if x < a,
diag{−1, I ⊗ R(x)} if x > a,

The extended MFQ has an extra boundary at x = a with
parameters

Q̄(a) =

[
−1 α⊗ ei

a ⊗ 1 A⊕Q(a)

]
, (3)

R̄(a) = diag{0, I ⊗ R(a)}, (4)
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Transient analysis of MFQ

Fluid level

B

a

Fluid evolves according to the original MFQ Fluid is forced back to level a at state 0

time
θ θθ

State 0

State 0
State 0

Solution method
Stationary analysis of the extended MFQ (Q̄(x), R̄(x)),
Derivation of the stationary measure.
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Transient analysis of MFQ

Stationary measures of this extended MFQcan be obtained by
efficient numerical methods.

Let f̄ (s, x) and c̄(s, x) by the stationary density and boundary
probability:

f̄ (s, x) =
d
dx

lim
t→∞

Pr{X̄ (t) ≤ x , S̄(t) = s},

c̄(s, x) = lim
t→∞

Pr{X̄ (t) = x , S̄(t) = s}, x ∈ {0,B},

for s = 0 or s = (k , `),1 ≤ k ≤ N,1 ≤ ` ≤ n,
The vector of size N × n (for s = (k , `),1 ≤ k ≤ N,1 ≤ ` ≤ n)
composed by these elements are

f̄ (x) = [f̄ (s, x)] , c̄(x) = [c̄(s, x)]

Miklós Telek Concentrated matrix-exponential distributions and their applications
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Transient analysis of MFQ

Theorem

The transient measures at clock expiration are

f a,i
Θ (x) =

f̄ (x)(I ⊗ a)(∫ B
y=0 f̄ (y)dy + c̄(0) + c̄(B)

)
(1⊗ a)

,

ca,i
Θ (x) =

c̄(x)(I ⊗ a)(∫ B
y=0 f̄ (y)dy + c̄(0) + c̄(B)

)
(1⊗ a)

, x ∈ {0,B}

Miklós Telek Concentrated matrix-exponential distributions and their applications
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Clocks with low SCV

From

f +(t) =
N∑

k=1

ηke−βk t = −πeAt (−A)1

with low SCV, we have

π = [
η1

β1
, . . . ,

ηN

βN
] and A = −diag{β1, . . . , βN},

which require complex arithmetic or real representation of the
conjugate complex pairs.
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Laplace transformation

Laplace transform is defined as

h∗(s) =

∫ ∞
t=0

e−sth(t)dt . (5)

The inverse transform problem is to find an approximate value
of h at point T (i.e., h(T )) based on the complex function h∗(s).
Assumptions∫∞

t=0 e−sth(t)dt is finite for Re(s) > 0,
h∗(s) is not available for Re(s) ≤ 0.
h(t) is real
→ h∗(s̄) = h̄∗(s) and h∗(s̄) + h∗(s) = 2Re(h∗(s)).

Miklós Telek Concentrated matrix-exponential distributions and their applications
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Inverse Laplace transformation methods

There are several approaches for ILT.
Recently, the commonly used ones

Euler,
Talbot,
Gaver-Stehfest,
...

belong to the Abate-Whitt framework.

W. Whitt J. Abate., A unified framework for numerically inverting Laplace transforms. INFORMS Journal on
Computing, 18(4):408–421, 2006.

Miklós Telek Concentrated matrix-exponential distributions and their applications
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Abate-Whitt framework

The idea is to approximate h by a finite linear combination of
the transform values, via

h(T ) ≈ hn(T ) :=
n∑

k=1

ηk

T
h∗
(
βk

T

)
, T > 0, (6)

where the nodes βk and weights ηk are (potentially) complex
numbers, which depend on n, but not on the transform h∗() or
the time argument T .
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Gaver-Stehfest method

Only for even n!
For 1 ≤ k ≤ n

βk = k ln(2),

ηk = ln(2)(−1)n/2+k
min(k ,n/2)∑

j=b(k+1)/2c

jn/2+1

(n/2)!

(
n/2

j

)(
2j
j

)(
j

k − j

)
,

where bxc is the greatest integer less than or equal to x .
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Euler method

Only for odd n!
For 1 ≤ k ≤ n

βk =
(n − 1) ln(10)

6
+ πi(k − 1),

ηk = 10(n−1)/6(−1)kξk ,

where

ξ1 =
1
2

ξk = 1, 2 ≤ k ≤ (n + 1)/2

ξn =
1

2(n−1)/2

ξn−k = ξn−k+12−(n−1)/2
(

(n − 1)/2
k

)
for 1 ≤ k < (n − 1)/2.
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Talbot method

For 2 ≤ k ≤ n

β1 =
2n
5

βk =
2(k − 1)π

5

(
cot
(

(k − 1)π

n

)
+ i
)
,

η1 =
1
5

eβ1

ηk =
2
5

[
1 + i

(k−1)π

n

(
1+

[
cot
(

(k−1)π

n

)]2
)
− i cot

(
(k−1)π

n

)]
eβk .
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Location of nodes

Location of βk nodes on the complex plane for Gaver (n = 10),
Euler (n = 11), Talbot (n = 10) methods

Gaver

Euler

Talbot

-30 -20 -10 10
Re

5

10

15

20

25

30

Im
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Integral interpretation

For Re(βk ) > 0, ∀k , we reformulate the Abate–Whitt framework
as

hn(T ) =
n∑

k=1

ηk

T
h∗
(
βk

T

)
=

n∑
k=1

ηk

T

∫ ∞
0

e−
βk
T th(t)dt

=
n∑

k=1

ηk

∫ ∞
0

e−βk th(tT )dt =

∫ ∞
0

h(tT )fn(t)dt ,

i.e. the numerical approximation of the Laplace inverse at point
T is obtained as the integral of a scaled version of the original
function, h(tT ), with

fn(t) =
n∑

k=1

ηke−βk t .

If fn(t) was the Dirac impulse function at one then the Laplace
inversion would be perfect, that is hn(T ) = h(T ).
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Properties of fn(t)

But fn(t) differs from the Dirac impulse function depending on
the order of the approximation (n), the applied inverse
transformation method (weights ηk , nodes βk ).

Euler

Gaver

0.5 1.0 1.5 2.0

-2

2

4

6

8

Gaver (n = 10), Euler (n = 11)

Euler

Gaver

0.5 1.0 1.5 2.0

-5

5

10

15

Gaver (n = 22), Euler (n = 23)

Miklós Telek Concentrated matrix-exponential distributions and their applications



Introduction CME distribution Transient analysis Inverse Laplace transformation Summary

Consequence in ILT

The ILT of the unit step function at 1, h∗(s) = e−s

s , with Gaver
and Euler methods

Euler

Gaver

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

1.2

Gaver (n = 10), Euler (n = 11)

Euler
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0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

1.2

Gaver (n = 22), Euler (n = 23)
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Martix exponential distributions with low cv

As discussed above CME distributions can be obtained in the
form:

fME(t) = c e−λt
(N−1)/2∏

i=0

cos2(ωt − φi) =
N∑

i=1

ηie−βi t ,

which is compatible with the form of the Abate–Whitt framework
and closely approximates the unit impulse function.
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Martix exponential distributions with low cv

For example for n = 4

i 1 2 3 4
ηi 38.5032 −18.9855− 23.2984i −2.70326 + 13.374i 2.47829 − 1.37694i
βi −3.93763 −3.93763 + 3.48448i −3.93763 + 6.96896i −3.93763 + 10.4534i
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CME versus Euler and Gaver

fn(t) for order 10 and 20

Euler

Gaver

CME

0.5 1.0 1.5 2.0

-2

2

4

6

8

Euler

Gaver

CME

0.5 1.0 1.5 2.0

-5

5

10

15

For the CME method fn(t) ≥ 0 !!
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Numerical experiment

Set of test functions:

exp sin heaviside shifted exp staircase square wave
h(t) e−t sin t 1(t>1) 1(t>1) e1−t btc btc mod 2

h∗(s) 1
1+s

1
s2+1

1
s e−s e−s

1+s
1
s

1
es−1

1
s

1
es+1
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Numerical experiment

Inverse Laplace transformation of the h(t) = btc mod 2 function

0 1 2 3 4 5 6 7 8 9 10
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Exact
Gaver(n=10)
Gaver(n=50)
Gaver(n=64)

0 1 2 3 4 5 6 7 8 9 10
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-2

-1
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2
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Euler(n=11)
Euler(n=51)
Euler(n=101)

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Exact
CME(n=10)
CME(n=50)
CME(n=500)

No overshoot/undershoot for the CME method due to fn(t) ≥ 0
!!
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ILT of the shifted exponential function

h(t) = 1(t > 1)e1−t with order 17 and 60

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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ILT of the staircase function

h(t) = btc with order 17 and 60
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‖ · ‖1 errors (T = 5,M = 100)

‖h − hn‖1 =
∫ T

0 |h(t)− hn(t)|dt ≈ 1
M
∑M

m=1

∣∣∣h (mT
M

)
− hn

(
mT
M

)∣∣∣ .
Gaver Euler Talbot P–W Laguerre CME

order h(t) = sin t
10 1.34E−01 3.06E−04 1.40E−03 2.12E−01 1.65E−01 1.68E−02
30 7.37E−05 8.09E−11 2.30E−17 8.92E−02 7.61E−02 2.10E−03
50 7.29E−10 2.09E−17 2.30E−17 5.62E−02 3.43E−02 7.40E−04

100 p. inf. 2.33E−26 2.30E−17 2.92E−02 7.94E−02 1.80E−04
500 p. inf. p. inf. p. inf. p. inf. p. inf. 6.47E−06

order h(t) = 1(t > 1)e1−t

10 4.70E−02 2.03E−02 p. inf. 7.78E−02 8.02E−02 1.37E−02
30 1.84E−02 1.32E−02 p. inf. 4.07E−02 5.98E−02 4.45E−03
50 1.21E−02 1.80E−02 p. inf. 2.99E−02 4.93E−02 2.65E−03

100 p. inf. 9.82E−02 p. inf. 1.97E−02 3.69E−02 8.36E−04
500 p. inf. p. inf. p. inf. p. inf. p. inf. 8.69E−07

order h(t) = btc
10 2.18E−01 1.28E−01 p. inf. 2.19E−01 8.37E + 00 1.39E−01
30 1.69E−01 7.58E−02 p. inf. 2.02E−01 p. inf. 5.37E−02
50 1.18E−01 9.73E−02 p. inf. 1.89E−01 p. inf. 3.28E−02

100 p. inf. 5.24E−01 p. inf. 1.68E−01 p. inf. 1.58E−02
500 p. inf. p. inf. p. inf. p. inf. p. inf. 5.44E−03

order h(t) = btc mod 2
10 3.64E−01 1.21E−01 3.64E−01 3.88E−01 4.17E−01 1.48E−01
30 1.58E−01 8.70E−02 1.34E−01 3.11E−01 3.00E + 01 5.37E−02
50 1.12E−01 9.12E−02 2.50E−01 2.62E−01 2.05E + 01 3.28E−02

100 p. inf. 5.13E−01 7.81E−02 p. inf. p. inf. 1.58E−02
500 p. inf. p. inf. p. inf. p. inf. p. inf. 5.44E−03

Miklós Telek Concentrated matrix-exponential distributions and their applications



Introduction CME distribution Transient analysis Inverse Laplace transformation Summary

Summary of NILT

We proposed a NILT method based on CME distributions.
The CME method is a member of the Abate–Whitt
framework and inherits many if its properties

+ simple and cheap computation,
but it differs in other properties

+ improves with increasing order,
+ fn(t) is non-negative→ no overshooting,
+ numerically stable

works fine with double precision arithmetic up to n = 1000,
- no explicit expressions for the nodes βk and weights ηk

a priori numerical optimization & stored parameters.

Implementation and technical details:
https://inverselaplace.org

Miklós Telek Concentrated matrix-exponential distributions and their applications
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Summary

Concentrated matrix exponential distributions are available
with SCV< 1/N2 up to n = 103 (with SCV< 10−6).
Gabor Horvath, Illes Horvath, and Miklos Telek. High order concentrated matrix-exponential distributions.
Stochastic Models, doi:10.1080/15326349.2019.1702058

Stochastic models augmented with a matrix exponential
distribution can be used to compute transient measures.
Nail Akar, Omer Gursoy, Gabor Horvath and Miklos Telek. Transient and First Passage Time Distributions of
First and Second-order Multi-regime Markov Fluid Queues via ME-fication. Methodology and Computing in
Applied Probability, doi:10.1007/s11009-020-09812-y

Concentrated matrix exponential distributions can be
efficiently used in

various stochastic models to represent deterministic delays,
numerical inverse Laplace transformation.
Illes Horvath, Gabor Horvath, Salah Al-Deen Almousa, and Miklos Telek. Numerical inverse
Laplace transformation using concentrated matrix exponential distributions. Performance
Evaluation, doi:10.1016/j.peva.2019.102067
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