Stochastic processes with matrix exponential functions
(phase type and matrix exponential distributions, rational and Markov arrival processes)

Miklós Telek
Department of Telecommunications Technical University of Budapest
e-mail: telek@hit.bme.hu

October 25, 2011.

Outline

- Starting point: CTMC
- Processes with matrix exponential functions
- Phase type distributions
- Matrix exponential distributions
- Markov arrival process
- Rational arrival process
- Applications
- Fitting
- Queue analysis

Starting point: CTMC

$X(t) \in S$ is a CTMC.
$S=\{1,2, \ldots, n\}$: discrete finite state space.
$\mathrm{Q}=\left\{q_{i j}\right\}$ infinitesimal generator matrix.
$q_{i j}$: transition rate from state i to state $j(i \neq j)$.
$-q_{i i}$: departure rate from state i.
For a regular CTMC $q_{i i}=-\sum_{j \in S} q_{i j} \Rightarrow \mathrm{QII}=\mathbf{0}$,
where \mathbb{I} is a column vector of ones.
$\operatorname{Pr}(X(t)=j \mid X(0)=i)=\left[e^{\mathbf{Q} t}\right]_{i j}$
$e^{\mathbf{Q} t}$ is a stochastic matrix: $e^{\mathbf{Q} t} \mathbb{I}=\mathbf{I} \mathbb{I}+\underbrace{\sum_{i=1}^{\infty} \mathbf{Q}^{i} \mathbb{I} t^{i} / i!}_{\mathbf{0}}=\mathbb{I}$

Starting point: transient CTMC

$X(t) \in S$ is a transient CTMC.
$S=\{1,2, \ldots, n\}:$ discrete finite state space.
$\mathbf{A}=\left\{a_{i j}\right\}$ transient infinitesimal generator matrix.
$a_{i j}$: transition rate from state i to state $j(i \neq j)$.
$-a_{i i}$: departure rate from state i.
For a transient CTMC $a_{i i} \leq-\sum_{j \in S} a_{i j} \Rightarrow \mathbf{A I I} \leq \mathbf{0}$.
$\operatorname{Pr}(X(t)=j \mid X(0)=i)=\left[e^{\mathbf{A} t}\right]_{i j}$
$e^{\mathbf{A} t}$ is a sub-stochastic matrix: $e^{\mathbf{A} t} \mathbb{I} \leq \mathbb{I}$

Phase type distributions

T : time to absorption in a Markov chain with n transient, 1 absorbing state, initial probability vector α and transient generator \mathbf{A}.

Generator matrix: $\mathrm{Q}=\left[\begin{array}{cc}\mathbf{A} & \mathrm{a} \\ 0 & 0\end{array}\right] \quad(\mathrm{a}=-\mathrm{A} \mathbb{I})$

Properties of the generator matrix

Generator matrix: $\mathrm{Q}=\left[\begin{array}{cc}\mathrm{A} & \mathrm{a} \\ 0 & 0\end{array}\right] \quad(\mathrm{a}=-\mathrm{A} \mathbb{I})$

Transition probability matrix: $e^{\mathrm{Q} t}=\left[\begin{array}{cc}e^{\mathbf{A} t} & \star \\ 0 & 1\end{array}\right]$

For $i, j \leq n$:

$$
\operatorname{Pr}(X(t)=j \mid X(0)=i)=\left[e^{\mathbf{Q} t}\right]_{i j}=\left[e^{\mathbf{A} t}\right]_{i j}
$$

Properties of the generator matrix

States $1,2, \ldots, n$ are transient
$\Rightarrow \lim _{t \rightarrow \infty} \operatorname{Pr}(X(t)<n+1)=0$
\Rightarrow the eigenvalues of \mathbf{A} have negative real part
$\Rightarrow \mathbf{A}$ is non-singular
$\Rightarrow(-\mathbf{A})^{-1}$ has an important stochastic interpretation

Assumption: the CTMC starts from a transient state $(\alpha \mathbb{I}=1)$.

Properties of phase type distributions

$$
\begin{aligned}
\operatorname{Pr}(T<t) & =\operatorname{Pr}(X(t)=n+1)=1-\sum_{i=1}^{n} \operatorname{Pr}(X(t)=i)= \\
& =1-\sum_{k=1}^{n} \sum_{i=1}^{n} \underbrace{\operatorname{Pr}(X(0)=k)}_{\alpha_{k}} \underbrace{\operatorname{Pr}(X(t)=i \mid X(0)=k)}_{\left[e^{\mathbf{A}_{t_{k i}}}\right.} \\
& =1-\alpha e^{\mathbf{A}_{t}} \mathbb{I}
\end{aligned}
$$

Representation: $\mathrm{PH}(\alpha, \mathbf{A})$
initial probability distribution ($\boldsymbol{\alpha}$) /n-1 parameters/ +
transient infinitesimal generator matrix $(\boldsymbol{A}) / n^{2} /$
Only for transient states. $/ n^{2}+n-1 /$

Properties of phase type distributions

CDF: $F(t)=1-\boldsymbol{\alpha} e^{\mathbf{A} t} \mathbb{I}$
PDF: $f(t)=\boldsymbol{\alpha} e^{\mathbf{A} t} \mathbf{a}$
moments: $\mu_{k}=E\left(T^{k}\right)=k!\boldsymbol{\alpha}(-\mathbf{A})^{-k} \mathbb{I}$
LST:

$$
\begin{gathered}
f^{*}(s)=\boldsymbol{\alpha}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{a}=\boldsymbol{\alpha}\left[\frac{\operatorname{det}(s \mathbf{I}-\mathbf{A})_{j i}}{\operatorname{det}(s \mathbf{I}-\mathbf{A})}\right] \mathbf{a}= \\
=\frac{s^{n-1}+a_{n-2} s^{n-2}+\ldots+a_{1} s+a_{0}}{s^{n}+b_{n-1} s^{n-1}+\ldots+b_{1} s+b_{0}} \\
\left.f^{*}(s)\right|_{s \rightarrow 0}=\int_{0}^{\infty} f(t) d t=1 \quad \Rightarrow \quad a_{0}=b_{0} \quad / 2 n-1 /
\end{gathered}
$$

Properties of phase type distributions

- rational Laplace tr.
- closed for min/max, mixture, summation, ...
- $f(t)>0$
- support on $(0, \infty)$
- exponential tail decay
- $C V_{\min }=\frac{1}{N}$ only for Erlang distribution

Similar PH distributions

If \mathbf{B} is nonsingular, $\mathbf{B} \mathbb{I}=\mathbb{I}, \gamma=\alpha \mathbf{B}$ and $\mathbf{G}=\mathbf{B}^{-1} \mathbf{A B}$
then $\mathrm{PH}(\alpha, \mathbf{A})=\mathrm{PH}(\gamma, \mathbf{G})$

$$
F(t)=1-\gamma e^{\mathrm{G} t} \mathbb{I}=1-\alpha \mathbf{B} e^{\mathbf{B}^{-1} \mathbf{A} \mathbf{B}_{t}} \mathbf{B}^{-1} \mathbb{I}=1-\boldsymbol{\alpha} e^{\mathbf{A} t} \mathbb{I}
$$

Identity of PH distributions of different sizes:

$$
\begin{aligned}
& \lambda_{1} \rightarrow \\
& \left(\frac{\lambda_{1}}{\lambda_{2}}\right) \frac{\lambda_{2}}{\lambda_{1}<\lambda_{2}} \frac{\lambda_{1}}{\lambda_{2}}: \longrightarrow \frac{\lambda_{2}}{s+\lambda_{2}}+\left(1-\frac{\lambda_{1}}{\lambda_{2}}\right) \frac{\lambda_{1}}{s+\lambda_{1}} \frac{\lambda_{2}}{s+\lambda_{2}}=\frac{\lambda_{1}}{s+\lambda_{1}}
\end{aligned}
$$

Special PH classes

A unique and minimal representation (canonical form) of the PH class is not available
\rightarrow use of simple PH subclasses:

- Acyclic PH distributions
- Hypo-exponential distr. ("series", "cv<1")
- Hyper-exponential distr. ("parallel", "cv>1")
- ...

Acyclic PH distributions

Each transient state is visited at most ones
\Rightarrow triangular generator
\Rightarrow real eigenvalues

The acyclic PH class allows a unique and minimal (canonical) representation with only $2 N-1$ parameters.

where $\lambda_{i}<\lambda_{i+1}$ and $\sum_{i} a_{i}=1 / 2 n-1 /$.

Matching with PH distributions

Moments matching:
Find a PH distribution with the same first K moments.

- Solution exists for $K=2 n-1$,
but the result is not necessarily a distribution.
- Open problem for $3<K<2 n-1$.

Fitting with PH distributions

Fitting:
given a non-negative distribution find a "similar" PH distribution.

Formally:

$$
\min _{\text {PHparameters }}\{\text { Distance }(P H, \text { Original })\}
$$

Distance:

- squared CDF difference: $\int_{0}^{\infty}(F(t)-\widehat{F}(t))^{2} d t$
- density difference: $\int_{0}^{\infty}|f(t)-\widehat{f}(t)| d t$
- relative entropy: $\int_{0}^{\infty} f(t) \log \left(\frac{f(t)}{\hat{f}(t)}\right) d t$

Fitting with PH distributions

Problems:

- vector-matrix representation:
$-\sim n^{2}$ parameters \rightarrow over-parameterized,
- easy to check the PH conditions,
- moments or Laplace representation:
- $2 n-1$ parameters \rightarrow minimal number of parameters,
- hard to check the PH conditions.

One possible solution:

- Acyclic PH with canonical representation:
- $2 n-1$ parameters,
- easy to check the PH conditions,
- but only for a subclass of PH distributions.

Fitting with PH distributions

Applications of Phase type distributions

Non-Markovian models \rightarrow Markovian analysis
(transient $p_{0} e^{\mathbf{Q} t}$, stationary $p \mathbf{Q}=0, p \mathbb{I}=1$)

- queueing models (matrix geometric methods)
- performance, performability models
- stochastic model description languages (Petri net, process algebra)

Matrix exponential distribution

T has a matrix exponential distribution is its CDF has the form

$$
F(t)=1-\alpha e^{\mathbf{A}^{t} \mathbb{I}}
$$

where α is a row vector and \mathbf{A} is a square matrix (without any structural restriction).

The vector matrix pair (α, \mathbf{A}) define a distribution if $F(t)=1-\alpha e^{\mathbf{A}_{t}} \mathbb{I}$ is monotone increasing.

- Easy to check necessary and sufficient conditions are not available.
- Closed form necessary and sufficient conditions are available for $n=3$.

Properties of matrix exponential distributions

- rational Laplace tr.
- closed for min/max, mixture, summation, ...
- $f(t) \leq 0$
- support on $(0, \infty)$
- exponential tail decay
- $C V_{\min } \ll \frac{1}{n}$

$$
\left(n=3: C V_{\min } \sim 1 / 5, n=15: C V_{\min } \sim 1 / 100\right)
$$

- $C V_{\min } \leftrightarrow$ only conjectures exit

Applications of matrix exponential distributions

Non-Markovian models \rightarrow easy to compute non-Markovian analysis (transient $p_{0} e^{\mathbf{Q} t}$, stationary $p \mathbf{Q}=0, p \mathbb{I}=1$)

- queueing models (matrix geometric methods)
- performance, performability models
- stochastic model description languages (Petri net, process algebra)

Markov arrival process

A point process characterized by a modulating CTMC.

- \mathbf{D}_{0} : state (phase) transition rate without arrival
- \mathbf{D}_{1} : state (phase) transition rate with arrival
- $\mathbf{D}_{1 i i}$: arrival rate when the CTMC is in state i.
$\mathbf{D}=\mathrm{D}_{0}+\mathrm{D}_{1}$ generator of the modulating CTMC.
$\mathrm{D} \mathbb{I}=0$.

Properties of Markov arrival process

MAP: correlated arrivals
the phase distribution after an arrival depends on the previous interarrival time
$\{N(t), J(t)\}$ is a Markov chain, where

- $N(t)$: number of arrivals
- $J(t)$: phase of the CTMC

Markov arrival process

Structure of the generator matrix:

On the block level it is similar to the structure of a Poisson process.
\longrightarrow "quasi" birth process.

Properties of Markov arrival process

- the phase distribution at arrival instances form a DTMC with P $=\left(-D_{0}\right)^{-1} D_{1}$
\longrightarrow correlated initial phase distributions,
- inter-arrival time is PH distributed with representation ($\boldsymbol{\alpha}_{0}, \mathbf{D}_{0}$), $\left(\alpha_{1}, D_{0}\right),\left(\alpha_{2}, D_{0}\right), \ldots$
\longrightarrow correlated inter-arrival times,
- phase process $(J(t))$ is a CTMC with generator $\mathrm{D}=\mathrm{D}_{0}+\mathrm{D}_{1}$

Properties of Markov arrival process

- (embedded) stationary phase distribution after an arrival π is the solution of $\pi \mathrm{P}=\pi, \pi \mathbb{I}=1$.
- stationary inter arrival time is $\mathrm{PH}\left(\pi, \mathrm{D}_{0}\right)$.
- the stationary arrival intensity is $\lambda=\frac{1}{\pi\left(-\mathbf{D}_{0}\right)^{-1} \mathbb{I}}$.

Properties of Markov arrival process

The joint pdf of X_{0} and X_{k} is

$$
f_{X_{0}, X_{k}}(x, y)=\pi e^{\mathbf{D}_{0} x} \mathbf{D}_{1} \mathbf{P}^{k-1} e^{\mathrm{D}_{0} y} \mathbf{D}_{\mathbf{1}} \mathbb{I}
$$

Due to the Markovian behaviour of MAPs X_{0} and X_{k} depend only via their initial states !!!!

Lag k joint moment (\rightarrow correlation):

$$
\begin{aligned}
& E\left(X_{0} X_{k}\right)=\int_{t=0}^{\infty} \int_{\tau=0}^{\infty} t \tau \pi e^{\mathbf{D}_{0} t} \mathbf{D}_{1} \mathbf{P}^{k-1} e^{\mathbf{D}_{0} \tau} \mathbf{D}_{1} \mathbb{I} d \tau d t \\
& =\pi \underbrace{\int_{t=0}^{\infty} t e^{\mathbf{D}_{0} t} d t}_{\left(-\mathbf{D}_{0}\right)^{-2}} \mathbf{D}_{1} \mathbf{P}^{k-1} \underbrace{\int_{\tau=0}^{\infty} \tau e^{\mathbf{D}_{0} \tau}}_{\left(-\mathbf{D}_{0}\right)^{-2}} d \tau \mathbf{D}_{1} \mathbb{I} \\
& =\pi\left(-\mathbf{D}_{0}\right)^{-1} \mathbf{P}^{k}\left(-\mathbf{D}_{0}\right)^{-1} \mathbb{I}
\end{aligned}
$$

Properties of Markov arrival process

Generally for $a_{0}=0<a_{1}<a_{2}<\ldots<a_{k}$ the joint density is:

$$
\begin{aligned}
& f_{X_{a_{0}}, X_{a_{1}}, \ldots, X_{a_{k}}}\left(x_{0}, x_{1}, \ldots, x_{k}\right)= \\
& =\pi e^{\mathbf{D}_{0} x_{0}} \mathbf{D}_{\mathbf{1}} \mathbf{P}^{a_{1}-a_{0}-1} e^{\mathbf{D}_{0} x_{1}} \mathbf{D}_{1} \mathbf{P}^{a_{2}-a_{1}-1} \ldots e^{\mathbf{D}_{0} x_{k}} \mathbf{D}_{1} \mathbb{I}
\end{aligned}
$$

and the joint moment is:

$$
\begin{aligned}
& E\left(X_{a_{0}}^{i_{0}}, X_{a_{1}}^{i_{0}}, \ldots, X_{a_{k}}^{i_{0}}\right)= \\
& =\pi i_{0}!\left(-\mathbf{D}_{0}\right)^{-i_{0}} \mathbf{P}^{a_{1}-a_{0}} i_{1}!\left(-\mathbf{D}_{0}\right)^{-i_{1}} \mathbf{P}^{a_{2}-a_{1}} \ldots i_{k}!\left(-\mathbf{D}_{0}\right)^{-i_{k}} \mathbb{I}
\end{aligned}
$$

Batch Markov arrival process

MAP with batch arrivals

- D_{0} - phase transitions without arrival
- \mathbf{D}_{k} - phase transitions with k arrivals

$\longrightarrow\{N(t), J(t)\}$ is still a Markov chain.

Batch Markov arrival process
Structure of the generator matrix:

Properties of matrices D_{k} :

- $\mathbf{D}_{0}: \mathbf{D}_{0_{i j}} \geq 0$ for $i \neq j$, and $\mathbf{D}_{0 i i} \leq 0$
- for $k \geq 1: \mathbf{D}_{\mathbf{k} i j} \geq 0$

Examples of (batch) Markov arrival processes

- bath PH renewal process:
$\mathbf{D}_{0}=\mathbf{A}, \mathbf{D}_{\mathrm{k}}=p_{k} \mathbf{a} \boldsymbol{\alpha}$.
- MMPP (Markov modulated Poisson process):
$\mathbf{D}_{0}=\mathrm{Q}-\operatorname{diag}<\boldsymbol{\lambda}>, \mathrm{D}_{1}=\operatorname{diag}<\boldsymbol{\lambda}>$.
- IPP (Interrupted Poisson process):

$$
\mathbf{D}_{0}=\begin{array}{|c|c|}
\hline-\alpha-\lambda & \alpha \\
\hline 0 & -\beta \\
\hline
\end{array}, \quad \mathbf{D}_{1}=\begin{array}{|c|c|}
\hline \lambda & 0 \\
\hline 0 & 0 \\
\hline
\end{array} .
$$

- batch MMPP :
$\mathbf{D}_{0}=\mathbf{Q}-\operatorname{diag}<\boldsymbol{\lambda}>, \mathbf{D}_{\mathrm{k}}=p_{k}$ diag $<\boldsymbol{\lambda}>$.

Examples of (batch) Markov arrival processes

- filtered MAP (arrivals discarded with probability p):
$\mathbf{D}_{0}=\hat{\mathbf{D}}_{0}+p \hat{\mathbf{D}}_{1}, \mathbf{D}_{1}=(1-p) \hat{\mathbf{D}}_{1}$.
- cyclicly filtered MAP (every second arrivals are discarded with probability p):

$$
\mathbf{D}_{0}=\begin{array}{|c|c|}
\hline \hat{\mathbf{D}}_{0} & 0 \\
\hline p \hat{\mathbf{D}}_{1} & \hat{\mathbf{D}}_{0} \\
\hline
\end{array}, \quad \mathbf{D}_{1}=\begin{array}{|c|c|}
\hline \mathbf{0} & \hat{\mathbf{D}}_{1} \\
\hline(1-p) \hat{\mathbf{D}}_{1} & 0 \\
\hline
\end{array}
$$

- superposition of BMAPs:
$\mathbf{D}_{\mathrm{k}}=\hat{\mathbf{D}}_{\mathrm{k}} \bigoplus \tilde{\mathrm{D}}_{\mathrm{k}}$,

Kronecker product: $\mathbf{A} \otimes \mathbf{B}=\begin{array}{ccc}A_{11} \mathbf{B} & \ldots & A_{1 n} \mathbf{B} \\ \vdots & & \vdots \\ A_{n 1} \mathbf{B} & \ldots & A_{n n} \mathbf{B}\end{array}$
Kronecker sum: $\mathbf{A} \bigoplus \mathbf{B}=\mathbf{A} \otimes \mathbf{I}_{\mathrm{B}}+\mathbf{I}_{\mathrm{A}} \otimes \mathrm{B}$

Examples of (batch) Markov arrival processes

- Departure process of an $M / M / 1 / 2$ queue:

- Overflow process of an $M / M / 1 / 2$ queue:

$$
\mathbf{D}_{0}=\begin{array}{|c|c|c|}
\hline-\lambda & \lambda & \\
\hline \mu & -\lambda-\mu & \lambda \\
\hline & \mu & -\lambda-\mu \\
\hline
\end{array}
$$

- Correlated inter-arrivals $\left(\lambda_{1} \neq \lambda_{2}\right)$:

$$
\mathbf{D}_{0}=\begin{array}{|c|c|}
\hline-\lambda_{1} & 0 \\
\hline 0 & -\lambda 2 \\
\hline
\end{array} \quad \mathbf{D}_{1}=\begin{array}{|c|c|}
\hline p \lambda_{1} & (1-p) \lambda_{1} \\
\hline(1-p) \lambda_{2} & p \lambda_{2} \\
\hline
\end{array}
$$

$p \sim 1 \rightarrow$ positive correlated consecutive inter-arrivals
$p \sim 0 \rightarrow$ negative correlated consecutive inter-arrivals

Rational arrival process

A point process with inter-arrival time X_{0}, X_{1}, \ldots is a Rational arrival process if its joint density for $a_{0}=0<a_{1}<a_{2}<\ldots<a_{k}$ has the form:

$$
\begin{aligned}
& f_{X_{a_{0}}, X_{a_{1}}, \ldots, X_{a_{k}}}\left(x_{0}, x_{1}, \ldots, x_{k}\right)= \\
& =\pi e^{\mathbf{D}_{0} x_{0}} \mathbf{D}_{1} \mathbf{P}^{a_{1}-a_{0}-1} e^{\mathbf{D}_{0} x_{1}} \mathbf{D}_{1} \mathbf{P}^{a_{2}-a_{1}-1} \ldots e^{\mathrm{D}_{0} x_{k}} \mathbf{D}_{1} \mathbb{I}
\end{aligned}
$$

The matrix pair $\mathbf{D}_{0}, \mathbf{D}_{1}$ (without any structural description) define a Rational arrival process if

$$
f_{X_{a_{0}}, X_{a_{1}}, \ldots, X_{a_{k}}}\left(x_{0}, x_{1}, \ldots, x_{k}\right) \geq 0
$$

for $\forall k, a_{0}<a_{1}<a_{2}<\ldots<a_{k}, x_{0}, x_{1}, \ldots, x_{k}$.

Queues with PH, MAP arrival/departure

Example: $\mathrm{PH} / \mathrm{M} / 1$ queue

- arrival process: $\mathrm{PH}(\tau, \mathbf{T})$ renewal process $(t=-\mathbf{T} \mathbb{I})$
- service time: exponentially distributed with parameter μ.

$\mathbf{Q}=$| \mathbf{T} | $t \tau$ | | | |
| :---: | :---: | :---: | :---: | :---: |
| $\mu \mathbf{I}$ | $\mathbf{T}-\mu \mathbf{I}$ | $t \tau$ | | |
| | $\mu \mathbf{I}$ | $\mathbf{T}-\mu \mathbf{I}$ | $t \tau$ | |
| | | $\mu \mathbf{I}$ | $\mathbf{T}-\mu \mathbf{I}$ | $t \tau$ |
| | | | \ddots | \ddots |

$\longrightarrow\{N(t), J(t)\}$ is a Markov chain with generator

Queues with PH, MAP arrival/departure

Example: MAP/PH/1 queue

- arrival process: $\operatorname{MAP}\left(\mathrm{D}_{0}, \mathrm{D}_{1}\right)$,
- service time: $\mathrm{PH}(\tau, \mathbf{T}),(t=-\mathbf{T I I})$.

$\mathbf{Q}=$| \mathbf{L}^{\prime} | \mathbf{F}^{\prime} | | |
| :---: | :---: | :---: | :---: |
| \mathbf{B}^{\prime} | \mathbf{L} | \mathbf{F} | |
| | \mathbf{B} | \mathbf{L} | \ddots |
| | | \ddots | \ddots |

where
$\mathbf{F}=\mathbf{D}_{1} \otimes \mathbf{I}, \mathbf{L}=\mathbf{D}_{0} \oplus \mathbf{T}, \mathbf{B}=\mathbf{I} \otimes t \tau$, $\mathbf{F}^{\prime}=\mathrm{D}_{1} \otimes \tau, \mathbf{L}^{\prime}=\mathrm{D}_{0}, \mathrm{~B}^{\prime}=\mathbf{I} \otimes \mathrm{T}$.

Quasi birth-death process

- $N(t)$ is the "level" process (e.g., number of customers in a queue), - $J(t)$ is the "phase" process (e.g., state of the environment).

The CTMC $\{N(t), J(t)\}$ is a Quasi birth-death process if transitions are restricted to one level up or down or inside the same level.

Level 0 is irregular (e.g., no departure).

Quasi birth-death process

Structure of the transition probability matrix:

$\mathbf{Q}=$| \mathbf{L}^{\prime} | \mathbf{F} | | | |
| :---: | :---: | :---: | :---: | :---: |
| \mathbf{B} | \mathbf{L} | \mathbf{F} | | |
| | \mathbf{B} | \mathbf{L} | \mathbf{F} | |
| | | \mathbf{B} | \mathbf{L} | \mathbf{F} |
| | | | \ddots | \ddots |

On the block level it has a birth-death structure
\longrightarrow "quasi" birth-death process.

Matrix geometric distribution

Stationary solution: $\pi \mathrm{Q}=0, \pi \mathbb{I}=1$.
Partitioning $\boldsymbol{\pi}: \boldsymbol{\pi}=\left\{\boldsymbol{\pi}_{0}, \boldsymbol{\pi}_{1}, \boldsymbol{\pi}_{2}, \ldots\right\}$
Decomposed stationary equations:

$$
\begin{array}{r}
\boldsymbol{\pi}_{0} \mathbf{L}^{\prime}+\boldsymbol{\pi}_{1} \mathbf{B}=\mathbf{0} \\
\boldsymbol{\pi}_{n-1} \mathbf{F}+\boldsymbol{\pi}_{n} \mathbf{L}+\boldsymbol{\pi}_{n+1} \mathbf{B}=\mathbf{0} \quad \forall n \geq 1
\end{array}
$$

$$
\sum_{n=0}^{\infty} \boldsymbol{\pi}_{n} \mathbb{I}=1
$$

Conjecture: $\boldsymbol{\pi}_{n}=\boldsymbol{\pi}_{n-1} \mathbf{R} \quad \rightarrow \quad \boldsymbol{\pi}_{n}=\boldsymbol{\pi}_{0} \mathbf{R}^{n} \quad$ and

$$
\boldsymbol{\pi}_{0} \mathbf{L}^{\prime}+\boldsymbol{\pi}_{0} \mathbf{R B}=\mathbf{0}
$$

$$
\boldsymbol{\pi}_{0} \mathbf{R}^{n-1} \mathbf{F}+\boldsymbol{\pi}_{0} \mathbf{R}^{n} \mathbf{L}+\boldsymbol{\pi}_{0} \mathbf{R}^{n+1} \mathbf{B}=\mathbf{0} \quad \forall n \geq 1
$$

$$
\sum_{n=0}^{\infty} \boldsymbol{\pi}_{0} \mathbf{R}^{n} \mathbb{I}=\boldsymbol{\pi}_{0}(\mathbf{I}-\mathbf{R})^{-1} \mathbb{I}=1
$$

Matrix geometric distribution

The solution is defined by vector π_{0} and matrix \mathbf{R} :
Matrix \mathbf{R} is the solution of the matrix equation:

$$
\mathbf{F}+\mathbf{R L}+\mathbf{R}^{2} \mathbf{B}=0
$$

Vector π_{0} is the solution of linear system:

$$
\begin{gathered}
\pi_{0}\left(\mathbf{L}^{\prime}+\mathbf{R B}\right)=0 \\
\boldsymbol{\pi}_{0}(\mathbf{I}-\mathbf{R})^{-1} \mathbb{I}=1
\end{gathered}
$$

Minimal solution of the quadratic equation

From

$$
\mathbf{F}+\mathbf{R L}+\mathbf{R}^{2} \mathbf{B}=0
$$

we have

$$
\mathbf{R}=\mathbf{F}(-\mathbf{L}-\mathbf{R B})^{-1}
$$

A simple numerical algorithm to calculate \mathbf{R} :

$$
\begin{aligned}
& \mathbf{R}:=\mathbf{0} ; \\
& \mathbf{R E P E A T} \\
& \quad \mathbf{R}_{\text {old }}:=\mathbf{R} ; \\
& \mathbf{R}:=\mathbf{F}(-\mathbf{L}-\mathbf{R B})^{-1} \\
& \text { UNTIL }\left\|\mathbf{R}-\mathbf{R}_{o l d}\right\| \leq \epsilon
\end{aligned}
$$

Performance measures

The typical performance measures can be computed in an efficient way based on the stationary distribution.

For example, the mean number of customers in the queue is

$$
\sum_{i=0}^{\infty} i \pi_{i} \mathbb{I}=\pi_{0} \sum_{i=0}^{\infty} i \mathbf{R}^{i} \mathbb{I}=\pi_{0} \mathbf{R}(\mathbf{I}-\mathbf{R})^{-2} \mathbb{I}
$$

Queues with ME, RAP arrival/departure

Example: RAP/ME/1 queue

- arrival process: $\operatorname{RAP}\left(\mathrm{D}_{0}, \mathrm{D}_{1}\right)$,
- service time: $\operatorname{ME}(\tau, \mathbf{T})$, $(t=-\mathbf{T I I})$.

where
$\mathbf{F}=\mathrm{D}_{1} \otimes \mathbf{I}, \mathbf{L}=\mathrm{D}_{0} \oplus \mathbf{T}, \mathbf{B}=\mathbf{I} \otimes t \tau$, $\mathbf{F}^{\prime}=\mathbf{D}_{\mathbf{1}} \otimes \tau, \mathbf{L}^{\prime}=\mathbf{D}_{0}, \mathbf{B}^{\prime}=\mathbf{I} \otimes \mathbf{T}$.

The same analysis applies as for the Markovian models!!!

Open problems

- Markovian models
- canonical representation of the PH class
- structural restrictions of MAPs
- efficient PH fitting (whole PH class)
- efficient MAP fitting
- non-Markovian models
- efficient check if (α, \mathbf{A}) defines an ME distribution.
- efficient check if $\left(D_{0}, D_{1}\right)$ defines a RAP.
- structural restrictions of RAPs
- ME fitting
- RAP fitting

