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Starting point: CTMC

X(t) e Sisa CTMC.

S={1,2,...,n}: discrete finite state space.

Q = {q;} infinitesimal generator matrix.

gi;: transition rate from state i to state j (i # j).
—q;;. departure rate from state q.

For a regular CTMC ¢is = —) ;cqqi; = QI=0,
where 1 is a column vector of ones.

Pr(X (1) = jIX(0) = i) =[]

¥}

0
eQt is a stochastic matrix: QI =11+ d Qut/il=1
=1
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Starting point: transient CTMC

X(t) € S is a transient CTMC.

S={1,2,...,n}: discrete finite state space.

A = {a;;} transient infinitesimal generator matrix.
ai;. transition rate from state ¢ to state j (i # j).
—a;;. departure rate from state «.

For a transient CTMC a;; < —> ._ca;; = AILO.

JES

Pr(X(t) = j|X(0) =i) = [GAt]

¥}

eAt is 3 sub-stochastic matrix: eAtT <1



Phase type distributions

T:. time to absorption in a Markov chain with n transient, 1 absorbing
state, initial probability vector «« and transient generator A .

Generator matrix: Q = [ 18‘ 8 ] (a= —AT)



Properties of the generator matrix

Generator matrix: Q = [ 18‘ 8 ] (a= —AT)
L . . eAt %

Transition probability matrix: eQf = 0 1

For 7,7 < n:

Pr(X(t) = j1X(0) = i) = [eQ!];; = [¢A1];



Properties of the generator matrix

States 1,2,...,n are transient

= lim Pr(X(t) <n+1) =0

= the eigenvalues of A have negative real part
= A is non-singular

= (—=A)~! has an important stochastic interpretation

Assumption: the CTMC starts from a transient state (ol =1).



Properties of phase type distributions

Pr(T<t) =Pr(X(t)=n+1)= 1—iPr(X(t) =1) =

=1
=1-) > Pr(X(0)=k)Pr(X(t) =i|X(0) =k)
k=11:1=1 (o' [eA-t]ki
=1-— ozeAt]I

Representation: PH(«a, A)
initial probability distribution (o) /n — 1 parameters/ +
transient infinitesimal generator matrix (A) /n?/

Only for transient states. /n°>+n—1/



Properties of phase type distributions

CDF: F(t) =1 — ae?1
PDF: f(t) = ae*a
moments: p = E(T*) = k! a(—A)~*1

LST:

f'(s) = oa(sI-— A)—la — o [det(sl — A)ji]

det(sI — A)

s" 1 4a, 28" 24 ... 4+a1s+ ao
s* 4+ b, 15" 14 ...+ b1s+ by

f*(S)\s—>o=/ooof(t)dt=1 = aog =bo /2n—1/



Properties of phase type distributions

e rational Laplace tr.

e closed for min/max, mixture, summation, ...
e f(t)>0

e support on (0, 0)

e exponential tail decay

1
o C'Vyin = N only for Erlang distribution
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Similar PH distributions

If B is nonsingular, BI=1, v =aB and G =B 'AB

then PH(a, A) =PH(v, G)

Ft) =1—~e%1=1-0aB B ABUB-11 — 1 _ el

Identity of PH distributions of different sizes:

A1 Ao + 1_>\1 A\ X\
Ao/ s+ Mo M) s+ X s+ s+ )\

11



Special PH classes

A unique and minimal representation (canonical form) of the PH class
is not available

— use of simple PH subclasses:
e Acyclic PH distributions
e Hypo-exponential distr. (‘series”, “cv < 1")

e Hyper-exponential distr. (“parallel”, “cv > 1")
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Acyclic PH distributions

Each transient state is visited at most ones
= triangular generator

= real eigenvalues

The acyclic PH class allows a unique and minimal (canonical) repre-
sentation with only 2N — 1 parameters.

ai as an

OO 050

where \; < A\j+1 and Zai =1/2n-1/.
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Matching with PH distributions

Moments matching:

Find a PH distribution with the same first K moments.

e Solution exists for K = 2n — 1,

but the result is not necessarily a distribution.

e Open problem for 3 < K <2n — 1.
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Fitting with PH distributions

Fitting:
given a non-negative distribution find a ‘similar’ PH distribution.

Formally:
min {Distance(PH, Origz'nal)}

P Hparameters

Distance:

e squared CDF difference: / (F(t) — F(t))2dt
0

e density difference: / |f(t) — f(t)|dt
0

e relative entropy: /Oo f(t) log (;Agg) dt
0
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Fitting with PH distributions

Problems:
e vector-matrix representation:

— ~ n? parameters — over-parameterized,

— easy to check the PH conditions,

e moments or Laplace representation:
— 2n — 1 parameters — minimal number of parameters,

— hard to check the PH conditions.

One possible solution:
e Acyclic PH with canonical representation:

— 2n — 1 parameters,
— easy to check the PH conditions,

— .... but only for a subclass of PH distributions.
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Fitting with PH distributions

W1 - Weibull [1, 1.5]

W2 - Weibull [1, 0.5]

L1-Lognormal [1, 1.8]

L2- Lognormal [1, 0.8]

Density

U2 - Uniform [1-2]

Density
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Applications of Phase type distributions

Non-Markovian models — Markovian analysis

(transient pert, stationary pQ = 0,pI=1)
e queueing models (matrix geometric methods)
e performance, performability models

e stochastic model description languages (Petri net, process alge-
bra)
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Matrix exponential distribution

T has a matrix exponential distribution is its CDF has the form

F(i)=1- aeM
where « is a row vector and A is a square matrix (without any structural
restriction).

The vector matrix pair (a, A) define a distribution if F'(t) =1 — aeM T
IS monotone increasing.

e Easy to check necessary and sufficient conditions are not available.

e Closed form necessary and sufficient conditions are available for
n = 3.
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Properties of matrix exponential distributions

e rational Laplace tr.

e closed for min/max, mixture, summation, ...
o f(t) <O

e support on (0, 0)

e exponential tail decay

1
n
(n=3: CVpin~1/5, n=15: CVypin ~ 1/100)
o C'V,in < Only conjectures exit
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Applications of matrix exponential distributions

Non-Markovian models — easy to compute non-Markovian analysis

(transient pert, stationary pQ = 0,pI=1)
e queueing models (matrix geometric methods)
e performance, performability models

e stochastic model description languages (Petri net, process alge-
bra)
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Markov arrival process

A point process characterized by a modulating CTMC.

e Dy: state (phase) transition rate without arrival
e D;: state (phase) transition rate with arrival

e Dg;;: arrival rate when the CTMC is in state «.

D = Dy + D; generator of the modulating CTMC.
DI =0.
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Properties of Markov arrival process

MARP: correlated arrivals

the phase distribution after an arrival depends on the previous inter-
arrival time

{N(t),J(t)} is a Markov chain, where
e N(t): number of arrivals

e J(t): phase of the CTMC

: D1; 2 D1; o D1;
ij
)

\

() D1ji

D1;; \ D1;; ~ D1;;

T~
D1

N\
0‘ i b 0‘ i by
]) ])
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Markov arrival process

Structure of the generator matrix:

Dy | Dy

On the block level it is similar to the structure of a Poisson process.

—— ‘“‘quasi’ birth process.
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Properties of Markov arrival process

e the phase distribution at arrival instances form a DTMC with
P = (—Dy) 'D;
— correlated initial phase distributions,

e inter-arrival time is PH distributed with representation (aq,Dy),
(al,Do), (OQ,DQ),
— correlated inter-arrival times,

e phase process (J(t)) is a CTMC with generator
D = Do+ D1
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Properties of Markov arrival process

e (embedded) stationary phase distribution after an arrival = is the
solution of 7P = n,nl1 = 1.

e stationary inter arrival time is PH(x, Dy).

1
W(—Do)_l]I.

e the stationary arrival intensity is A =

26



Properties of Markov arrival process

The joint pdf of Xp and X is
fxo.x.(x,y) = meP"DP*1ePvDy 1.

Due to the Markovian behaviour of MAPs Xg and X, depend only via
their initial states !l

Lag k joint moment (— correlation):

E(XoX}) = / / t 7 weP'DPF¥ 1P DT dr dt
t=0 J =0

= 7'('/ t ePot dtDlPk’_lf 7 eP7 drD.1
Jt=0

J/ S 7=0 J/

(—Dy)-2 (—Dy)-2

= 7w(—Dg) 'P*(—Do)'1
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Properties of Markov arrival process

Generally for ag=0< a1 < a2 < ... < ag
the joint density is:

Xy XX, (X0, X150y Tp) =

— ﬂ.eD()LUoDlP(ll—ao—leDomlD]_P(lQ—al—l .

and the joint moment is:
E(ng,ng,...,XiO) =

Qg

e Wiol(_DO)—ioPal—aoil | (_DO)—ilpaz—al

. eDOm’“Dl]I ,

. ik!(—Do)_i’“]I .
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Batch Markov arrival process

MAP with batch arrivals
e Dy — phase transitions without arrival
e Dy, — phase transitions with k arrivals

— {N(t),J(t)} is still a Markov chain.
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Batch Markov arrival process

Structure of the generator matrix:

Do

D4

Do

Properties of matrices Dy:

o Do: DOij >0 fOr’I:#j, and DOii <0

[ fOI’kZl: DkaO
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Examples of (batch) Markov arrival processes

e bath PH renewal process:
D() = A, Dk — Praclx.

e MMPP (Markov modulated Poisson process):
Do =Q —diag<A>, Dy =diag<A>.

e IPP (Interrupted Poisson process):

—a—\| «
DO_ 0 _ﬁ 3 Dl_

Ol »
oo

e batch MMPP
Do = Q — diag<A>, Dy = p, diag< A >.



Examples of (batch) Markov arrival processes

e filtered MAP (arrivals discarded with probability p):
Dy = Do + pD1, D1 = (1 — p)D;s.

e cyclicly filtered MAP (every second arrivals are discarded with
probability p):

pD1 | Do (1-p)D1 | O
e superposition of BMAPs:
Dy = Dy Dy,
A1B ... A.,B
Kronecker product: AQRB =| : :
AqB ... A,.B

Kronecker sum: A@GB=AQKRIz+I.QXB
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Examples of (batch) Markov arrival processes

e Departure process of an M/M/1/2 queue:

Do =

Do =

e Correlated inter-arrivals (A1 #& A\2):

—A A
—)\—pL A D1 = KU
—p p
e Overflow process of an M/M/1/2 queue:
—A A
L =A—p| A D, =
U —A— LU A
—A1| O D, — pA1 (1-p)A
0 | —)\2 1 (1 —p)X PA2

Dy =

p ~ 1 — positive correlated consecutive inter-arrivals
p ~ 0 — negative correlated consecutive inter-arrivals




Rational arrival process

A point process with inter-arrival time Xo, X1,... is a Rational arrival
process if its joint density for ap = 0 < a1 < as> < ... < a; has the form:

XX x, (TO, T1, .-y k) =

= mePoto D Pu—to—leDotiy paa—ai—1l = oDomiD T
The matrix pair Dg,D; (without any structural description) define a
Rational arrival process if

X XX, (0, 1, -y T8) 2 0

ag

for Vk,ap < a1 <ax < ...<ag, xo,T1,...,Tk.
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Queues with PH, MAP arrival/departure

Example: PH/M/1 queue
e arrival process: PH(7r,T) renewal process (t = —T1)

e service time: exponentially distributed with parameter pu.

— {N(t),J(t)} is a Markov chain with generator
35



Queues with PH, MAP arrival/departure

Example: MAP/PH/1 queue

e arrival process: MAP(Dgy, D),

e service time: PH(r,T), (t = —-T1).

L' | F
B | L

Q=
B

where

F=D:®IL L=Di@T, B=1Rtr,

FF=D;®r, L'=D, B=IRT.
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Quasi birth-death process

e N(t) is the “level” process (e.g., number of customers in a queue),
e J(t) is the “phase” process (e.g., state of the environment).

The CTMC {N(t),J(t)} is a Quasi birth-death process if transitions
are restricted to one level up or down or inside the same level.

B | B B

i < Bkk ] oKk ()< | Pk -

U—7Fi - U7 Fi . v0~ e
Ij

Level O is irregular (e.g., no departure).
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Quasi birth-death process

Structure of the transition probability matrix:

L' |F
B |L|F
Q= B|L|F

On the block level it has a birth-death structure

— ‘‘quasi” birth-death process.
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Matrix geometric distribution

Stationary solution: wQ =0, w1 = 1.
Partitioning w: @ = {mo, ™1, 72,...}
Decomposed stationary equations:
ol +mB =0
1 F+m,L+m4+1B=0 Vn2>1

i m,I=1
n=0

Conjecture: w, = ®,—1R — , = ToR" and
7ToL/ —|— ﬂ'oRB =0
woR" 'F 4+ noR"L+noR"™'B =0 Vvn>1

Z woR"T = wo(I — R)_l]I =1

n=0
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Matrix geometric distribution

The solution is defined by vector mo and matrix R:

Matrix R is the solution of the matrix equation:

F+RL+R°B=0

Vector mg is the solution of linear system:
wo(L’+RB) =0
mo(I-R)11=1

40



Minimal solution of the quadratic equation

From
F+RL4+R°B=0

we have
R=F(-L-RB)!

A simple numerical algorithm to calculate R:

R :=0:;
REPEAT
Roqs =R,

R:=F(-L—-RB)!:
UNTIL||R — Ro|| < e

41



Performance measures

The typical performance measures can be computed in an efficient way
based on the stationary distribution.

For example, the mean number of customers in the queue is

Y imI=m» iR'TI=mRI-R) I
i=0 i=0
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Queues with ME, RAP arrival/departure

Example: RAP/ME/1 queue
e arrival process: RAP(Dg,Dy),

e service time: ME(+,T), (t = —T1).

L’ | F
B Ll F where
Q= F=D:;QRRIL, L=D@PT, B=1Itr,
B L F/:D1®T,L/:D0,B/:I®T.

The same analysis applies as for the Markovian models!!!
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Open problems

e Markovian models

canonical representation of the PH class
structural restrictions of MAPs

efficient PH fitting (whole PH class)
efficient MAP fitting

e non-Markovian models

efficient check if (o, A) defines an ME distribution.
efficient check if (Dg,D1) defines a RAP.
structural restrictions of RAPSs

ME fitting

RAP fitting
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