The mathematical background of atomic swaps among blockchains

János Tapolcai

Department of Telecommunications and Media Informatics
Faculty of Electrical Engineering and Informatics

Blockchain research at TMIT

- Dr. Tapolcai János
- BME-TMIT full professor
- MTA Lendület 2012-2017
- Applied mathematics in telecommunications
- Dr. Ladóczki Bence
- PhD in Distributed Computing in Kobe, Japan
- numerical methods on massively parallel architectures (quantum monte carlo simulations)
- Since PhD: atomic swaps, consensus mechanisms, signature schemes, finite field arithmetics

Outline

- Motivation behind cryptocurrencies
- The list of key ideas built cryptocurrencies on
- Transactions, blockchain, consensus algorithms
- Schnorr digital signatures
- A few word about the economics
- Application example: how to exchange cryptocurrencies with atomic swaps

Centralized vs distributed bank system

Centralized

- Trust a bank
- In fact you trust the laws
- Efficient
- It is expensive to change your bank
- Privacy issues
- The bank may knows a lot about their customers

Distributed

- Do not need to trust a single entity
- There are no laws
- Treat dishonesty as a part of the game
- Assume the majority is honest
- A honest node follows the rule
- Expensive
- because of the many dishonest nodes

Idea 1: Pay = show a solution of a puzzle

- Each crypto-coin is assigned with a puzzle
- It is computationally hard to solve the puzzle
- It is fast to verify a solution to the puzzle
- You own the crypto-coin if you know the solution to the puzzle
- The puzzle for each crypto-coin is stored in a ledger
- Payment
- Show the solution to the puzzle and provide a new puzzle
- You show only a "part" of the solution

■ the part depends on the new puzzle

Idea 2: Show the solution of a "part" of the puzzle defined by the new puzzle

> The part is defined by the new puzzle

The part is so small that basically you know nothing about the whole puzzle

Digital signatures

What is a puzzle?

- We have n items (typically $n \leq 2^{256}$)
- Finite field algebra
- One-way-function function $f(x)$
- Puzzle $f(x)$, the solution is x

Elliptic curve secp256k1

- Most common
- Bitcoin, Ethereum, Litecoin, Dogecoin
- Defined over the prime field \mathbb{Z}
- $p=2^{256}-2^{32}-2^{9}-2^{8}-2^{7}-2^{6}-2^{4}-1$
- The items are (x, y) pairs on an elliptic curve
- The curve is $y^{2}=x^{3}+a x+b$ over F_{p} - $\quad a=0, b=7$
- Any point on the curve can be reflected over the x axis and remain the same curve
- Any non-vertical line will intersect the curve in at most three places
- Single operator
- addition
- There is a point g
- compute $g, 2 g, 3 g, 4 g, \ldots . n g,(n+1) g=g$
- n is a prime

The one-way function in a finite field

- The one-way function
$f(x)=x g$
- Base point g
- The order of $\$ \mathrm{~g} \$$ is a bit smaller than p
- $\quad p=$ FFFFFFFFF FFFFFFFFF FFFFFFFFF FFFFFFFF FFFFFFFFF FFFFFFFF FFFFFFFFE FFFFFC2F
- $n=$ FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141

Why is it a one-way function?

- The one-way function
- $f(x)=x g$
- The algorithm to compute $f(x)$
- exponentiation by squaring
- compute $g, 2 g, 4 g, 8 g, 16 g, \ldots, 2^{256} g$
- take the binary representation of x and multiply the corresponding powers
- The inverse function
- discrete logarithm in this finite field is hard

Digital signature

- Given $\mathrm{f}(\mathrm{x})$, show that you know x without disclosing x
- Disclose some information which can be verified without knowing x
- However, you need to know x to generate it
- Furthermore it should also depend on the new puzzle
- Digital data + digital signature
- Digital signatures used in blockchains:
- ECDSA
- Don Johnson, Alfred Menezes "The Elliptic Curve Digital Signature Algorithm (ECDSA)", Technical report, University of Waterloo, 1999.
- Schnorr
- Claus Schnorr "Efficient Identification and Signatures for Smart Cards", in Proc. CRYPTO, 1989.

■ U. S. Patent expired in 2008

- EdDSA
- Edwards-curve Digital Signature Algorithm (EdDSA)
- RSA
- Rivest-Shamir-Adleman

Prime fields

edward25519 as

$$
\begin{align*}
& q: \text { a prime number; } q=2^{255}-19 \\
& d: \text { an element of } \mathbb{F}_{q} ; d=-121665 / 121666 \\
& \mathcal{E}: \text { an elliptic curve equation; }-x^{2}+y^{2}=1+d x^{2} y^{2} \tag{1}\\
& G: \text { a base point; } G=(x,-4 / 5) \\
& l: \text { the base point order; } l=2^{252}+27742317777372353535851937790883648493
\end{align*}
$$

secp256k1 as
p : a prime number; $p=2^{256}-2^{32}-977$
$a:$ an element of $\mathbb{F}_{p} ; a=0$
$b:$ an element of $\mathbb{F}_{p} ; b=7$
\mathcal{E}^{\prime} : an elliptic curve equation; $y^{2}=x^{3}+a x+b$
H : a base point; $H=$
($0 x 79$ BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798,
0x483ADA7726A3C4655DA4FBFCOE1108A8FD17B448A68554199C47D08FFB10D4B8)
n : the base point order; $n=2^{256}-432420386565659656852420866394968145599$

Schnorr signatures

- secp256k1 elliptic curve
- We have

$$
g^{x+y}=g^{x} * g^{y}
$$

- In other words, it is linear:

$$
f(x+y)=f(x) \oplus f(y)
$$

here \oplus denotes and algorithm

Multiply with a scalar

- Consequence of linearity:

$$
f(c x)=c \otimes f(x)
$$

- here © denotes an algorithm

- take the binary representation of c and multiply the corresponding powers

The fundamental theorem of algebra:

- The following linear equations have single root:

$$
s \equiv c^{*} x+r(\bmod n)
$$

- If any 3 among s, c, x, r is given, there is only a single fourth, where $x \neq 0, c \neq 0$

- This also holds for

$$
f(s)=c ® f(x) \oplus f(r)
$$

The idea of Schnorr signature

Schnorr signature

$$
c=\text { hash }(f(r), f(x) \text {, and the } m s g)
$$

$$
\begin{gathered}
s=c \quad x+r \\
f(s)=c \otimes f(x) \oplus f(r)
\end{gathered}
$$

|Gen/EncGen
$x \leftarrow \& \mathbb{Z}_{q} ; X \leftarrow g^{x}$
$s k:=(x, X) ; p k:=X$
return $(s k, p k)$
$\operatorname{Sign}\left(s k_{S}, m\right)$
$\operatorname{Vrfy}\left(p k_{S}, m, \sigma\right)$
$(x, X):=s k_{S} ; \quad X:=p k_{S} ;(R, s):=\sigma$
$r \leftarrow \mathbb{Z}_{q} ; R \leftarrow g^{r}$
$c:=H(R\|X\| m)$
$c:=H(R\|X\| m) \quad$ return $R=g^{s} X^{-c}$
$s \leftarrow r+c x$
return $\sigma:=(R, s)$

Now we can define transaction

cryptocoin coin

- A digital data which is
- A cryptographic evidence that the buyer knows x
- without disclosing x
- the new puzzle is included
- A transaction is an evidence that a buyer gave the crypto-coin to the seller
- It is distributed in a peer-to-peer network through public channels
- It is registered by the network nodes
- The key problem that it allows double spending
- The same crypto-coin is given to two seller
- The high level idea is that if sufficient network node registers the transaction the seller can be sure that the crypto-token was given to him
$c=$ hash $(f(r), f(x)$, and the msg)

$$
f(s)=c ® f(x) \oplus f(r)
$$

How to avoid double spending

- The buyer gives the same crypto-coin to multiple sellers
- Which one is valid?
- The first one, that is distributed in the network
- How to know which event was first among events in the past?
- Proof of Work:

■ Nodes solve a giant puzzle, we measure the time as the size of the solved puzzle

- The giant puzzle depends on the transaction
- The puzzle is related to cryptographic hash function
- How to ensure that it is not possible to change the past?
- Blockchain

Idea 4: Blockchain

- In every time period publish a block
- You cannot change a transaction in the past keeping the same last hash

Idea 5: Consensus algorithm

- A single block chain is maintained.
- Proof of Work
- In each iteration find a Nonce that provides hash <= difficulty
- called mining

Proof of Work

- The nodes compete with each other
- The first node receives reward that finds a nonce with hash <= difficulty
- Income for the miners
- The reward is a transaction in the block
- The other nodes verify the transactions and start mining the next block
- To change the past you need to redo the computations
- Consensus algorithm:
- The majority of computation power
- Different cryptographic hash functions
- ASIC: Bitcoin
- ASIC-resistant (GPU-based): ETHash (Ethereum)

Hashrate

Idea 4: Turn it into a digital currency

- Limit the amount of crypto-coins
- Extensive marketing
- Similar to diamonds
- Adam Smith's diamond-water paradox
- In 1870 they relatively cheap
- miners discovered huge deposits of diamonds in South Africa
- Extensive marketing in 1940-80 by De Beers Consolidated Mines
- a metaphor for eternal love
- a sound investment
- "A Diamond Is Forever"
- sparkling pieces of carbon
- incinerated to ash

Total Circulating Bitcoin

The total number of mined bitcoin that are currently circulating on the network.

Idea 4: Turn it into a digital currency

- Limit the amount of crypto-coins
- Adam Smith's diamond-water paradox
- Compared the high value of a diamond, which is unessential to human life, to the low value of water, without which humans would die
- Diamonds are more expensive than water because they were more difficult to bring to $\stackrel{U}{\infty}^{\circ}$ market
- Subjective prices drive costs.
- Marketing + limited amount

Total Circulating Bitcoin

The total number of mined bitcoin that are currently circulating on the network.

20 m

15 m

10 m 5m

Cryptocurrencies

- Based on multiple ideas:
- Digital signatures
- Blockchain
- Consensus Algorithms

■ Proof-of-Work
■ Proof-of-Stake

- Marketing

Exchange crypto-coins among blockchains

- How to exchange ETH to BTC
- Two different blockchains
- Same elliptic curve (secp256k1)
- The two parties (Alice, Bob) do not need to trust
- An alternative to the centralized exchange point

$$
f(a)
$$

$f(b) \quad$ Chain 1
$f(b)$
$f(a) \quad$ Chain 2

Atomic swap - Step 1

- Alice and Bob agree on the exchange rate
- Alice submits a transaction on chain 1 to transfer it's crypto-coin to a special address $f(a, b)$
- A multisig address requires the knowledge of a and b
- The two parties generate it through communication without disclosing a and b
- There is a timeout, after which the coin is returned to $f(a)$

$f(a)$

$f(b) \quad$ Chain 2

Atomic swap - Step 2

- Bob submits a transaction on chain 2 to transfer it's crypto-coin to a special address $f(a, b)$
- There is a timeout, after which the coin is returned to $f(b)$
- At this point both coins are owned by Alice and Bob jointly
- At least until the timeout

$f(a) \quad$ chain 2

Atomic swap - Step 3

- Alice and Bob exchange sufficient information off-chain so that Alice can issue a transaction $f(a, b) \rightarrow f(a)$ on Chain 2
- The signature will reveal sufficient information for Bob to issue a transaction $f(a, b) \rightarrow$ $f(b)$ on Chain 1
- Not trivial, because transactions are designed not to reveal any information on the secret key

Atomic swap - Step 4

- Bob reads out the transaction $f(a, b) \rightarrow f(a)$ on Chain 2
- Bob issue the transaction $f(a, b) \rightarrow f(b)$ on Chain 1
- Atomic swap is completed
- Otherwise the tokens return to their owner after the timeout

Multisig Signature

- Input: $f(a)$ and $f(b)$
- Constraints:
- It is infeasible to compute the private keys a and b
- There is protocol that generates a valid $f(a, b)$ signature with the two parties, Alice and Bob, such that only Alice knows a, and Bob knows b

$$
f(a, b)=f(a) \oplus f(b)
$$

aláríás: $s_{1}+s_{2}, f\left(r_{1}\right) \oplus f\left(r_{2}\right)$

$$
\begin{gathered}
s_{1}=c \quad a+r_{1} \\
f\left(s_{1}\right)=c \otimes f(a) \oplus f\left(r_{1}\right)
\end{gathered}
$$

Adaptor signature

- A signature that becomes valid once t is known
- disclose $f(t)$ so that it can be verified

$$
\begin{array}{lll}
s=c & a+r & +t \\
f(s)=c \otimes f(a) \oplus f(r) & \oplus f(t)
\end{array}
$$

Adaptor Signature with multisig

Alice: \quad| S_{a} | $=c \quad a+r_{1}+t$ | | |
| ---: | :--- | ---: | :--- |
| | $f\left(s_{a}\right)$ | $=c \otimes f(a) \oplus f\left(r_{1}\right)$ | $\oplus f(t)$ |

Bob: $\quad s_{b}=c \quad b+r_{2}$

$$
f\left(s_{b}\right)=c \otimes f(b) \oplus f\left(r_{2}\right)
$$

Alice, Bob: $\quad \stackrel{{ }_{\mathrm{t}}{ }_{\mathrm{ab}}=}{ }=$

$$
\begin{gathered}
s_{a}+s_{b}=c \quad b+r_{1}+r_{2}+ \\
f\left(s_{a}\right) \oplus f\left(s_{b}\right)=c \otimes f(b) \oplus f\left(r_{1}\right) \oplus f\left(r_{2}\right)
\end{gathered}
$$

Adaptor signature with multisig

Step 1 Alice, Bob: $\frac{\mathrm{S}_{\mathrm{a}^{\prime} b}}{\mathrm{t}}=$

$$
s_{a}+s_{b}=c
$$

$$
b+r_{1}+r_{2}+
$$

$$
f\left(s_{a}\right) \oplus f\left(s_{b}\right)=c \otimes f(b) \oplus f\left(r_{1}\right) \oplus f\left(r_{2}\right)
$$

$$
t=s_{a^{\prime} b}-s_{a b}
$$

Köszönöm a figyelmet!

tapolcai@tmit.bme.hu

