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Blockchain research at TMIT

● Dr. Tapolcai János
○ BME-TMIT full professor
○ MTA Lendület 2012-2017
○ Applied mathematics in telecommunications

● Dr. Ladóczki Bence
○ PhD in Distributed Computing in Kobe, Japan 

■ numerical methods on massively parallel architectures (quantum monte carlo 
simulations)

○ Since PhD: atomic swaps, consensus mechanisms, signature schemes, finite field 
arithmetics
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Outline

● Motivation behind cryptocurrencies
● The list of key ideas built cryptocurrencies on

○ Transactions, blockchain, consensus algorithms
● Schnorr digital signatures
● A few word about the economics
● Application example: how to exchange cryptocurrencies with atomic swaps
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Centralized vs distributed bank system

Centralized

● Trust a bank
○ In fact you trust the laws

● Efficient 
○ It is expensive to change your 

bank
● Privacy issues

○ The bank may knows a lot 
about their customers

Distributed

● Do not need to trust a single entity
● There are no laws

○ Treat dishonesty as a part of the game
● Assume the majority is honest

○ A honest node follows the rule
● Expensive

○ because of the many dishonest nodes
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Idea 1: Pay = show a solution of a puzzle

● Each crypto-coin is assigned with a puzzle
○ It is computationally hard to solve the puzzle
○ It is fast to verify a solution to the puzzle
○ You own the crypto-coin if you know the solution to the puzzle
○ The puzzle for each crypto–coin is stored in a ledger 

● Payment
○ Show the solution to the puzzle and provide a new puzzle
○ You show only a “part” of the solution

■ the part depends on the new puzzle
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Idea 2: Show the solution of a “part” of the puzzle defined 
by the new puzzle

The part is 
defined by the 

new puzzle

The part is so 
small that basically 
you know nothing 
about the whole 

puzzle

Digital signatures
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What is a puzzle?

● We have n items (typically n ≤ 2256)
○ Finite field algebra

● One-way-function function f(x)
● Puzzle f(x), the solution is x 

the domain is ideally all items the co-domain is ideally all items 7



Elliptic curve secp256k1

● Most common
○ Bitcoin, Ethereum, Litecoin, Dogecoin

● Defined over the prime field ℤp
○ p = 2256 - 232 - 29 - 28 - 27 - 26 - 24 - 1

● The items are (x,y) pairs on an elliptic curve
○ The curve is y2 = x3+ax+b over Fp

■ a = 0, b=7
○ Any point on the curve can be reflected over the x 

axis and remain the same curve
○ Any non-vertical line will intersect the curve in at 

most three places
● Single operator

○ addition
○ There is a point g
○ compute g,2g,3g,4g, ….,ng,(n+1)g=g
○ n is a prime
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The one-way function in a finite field

● The one-way function 
○ f(x)=xg

● Base point g 
● The order of $g$ is a bit smaller than p

○ p = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F
○ n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141
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Why is it a one-way function?

● The one-way function 
○ f(x)=xg

● The algorithm to compute f(x)
○ exponentiation by squaring
○ compute g,2g,4g,8g,16g, …, 2256g
○ take the binary representation of x and multiply the 

corresponding powers
● The inverse function

○ discrete logarithm in this finite field is hard
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Digital signature

● Given f(x), show that you know x without disclosing x
○ Disclose some information which can be verified without knowing x
○ However, you need to know x to generate it

● Furthermore it should also depend on the new puzzle
○ Digital data + digital signature 

● Digital signatures used in blockchains:
○ ECDSA

■ Don Johnson, Alfred Menezes "The Elliptic Curve Digital Signature Algorithm (ECDSA)", 
Technical report, University of Waterloo, 1999.

○ Schnorr
■ Claus Schnorr "Efficient Identification and Signatures for Smart Cards", in Proc. CRYPTO, 

1989.
■ U. S. Patent expired in 2008 

○ EdDSA
■ Edwards-curve Digital Signature Algorithm (EdDSA)

○ RSA
■ Rivest–Shamir–Adleman
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Prime fields
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Schnorr signatures

● secp256k1 elliptic curve
● We have

 gx+y = gx * gy

● In other words, it is linear:

       f(x+y)=f(x)⊕f(y)

here ⊕ denotes and algorithm

gx
gy

gx+y
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Multiply with a scalar

● Consequence of linearity:

f(cx)=c⨷f(x)

○ here ⨷ denotes an algorithm

f(cx)=f(x)+f(x)+...+f(x)

● take the binary representation of c and multiply the corresponding powers

c

14



The fundamental theorem of algebra:

● The following linear equations have single root:

s ≡ c*x+r (mod n)

○ If any 3 among s,c,x, r is given, there is only a single fourth, where x≠0, c≠0

● This also holds for 

f(s) = c ⨷ f(x) ⊕ f(r)

s,c,x,r
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The idea of Schnorr signature

Linear equality:                   s = c        x  +  r private keys

we also have:           f(s) = c ⨷ f(x) ⊕ f(r) public keys

The previous puzzle

Second half of the 
digital signature

First half of the digital 
signature

The puzzle 
(transaction) 
hashed
c : = Hash(msg)

A random “nonce”. 
It ensures that x 

cannot be decoded

Solution to the 
previous puzzle
(remains secret)
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Schnorr signature
  s =  c        x  +  r

f(s) = c ⨷ f(x) ⊕ f(r)

c = hash ( f(r),f(x), and the msg )
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Now we can define transaction
● A digital data which is 

○ A cryptographic evidence that the buyer knows x
○ without disclosing x
○ the new puzzle is included

● A transaction is an evidence that a buyer gave the 
crypto-coin to the seller

○ It is distributed in a peer-to-peer network through public channels
○ It is registered by the network nodes

● The key problem that it allows double spending
○ The same crypto-coin is given to two seller

● The high level idea is that if sufficient network node 
registers the transaction the seller can be sure that the 
crypto-token was given to him 

  s =  c        x  +  r

f(s) = c ⨷ f(x) ⊕ f(r)

c = hash ( f(r),f(x), and the msg )
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f(x) f(y)

● cryptocoin coin 
identifier

● f(r), s
● f(y)



How to avoid double spending

● The buyer gives the same crypto-coin to multiple sellers
● Which one is valid?

○ The first one, that is distributed in the network
● How to know which event was first among events in the past?

○ Proof of Work:
■ Nodes solve a giant puzzle, we measure the time as the size of the solved puzzle
■ The giant puzzle depends on the transaction
■ The puzzle is related to cryptographic hash function

● How to ensure that it is not possible to change the past?
○ Blockchain
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Idea 4: Blockchain

● In every time period publish a block
● You cannot change a transaction in the past keeping the same last hash 
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Idea 5: Consensus algorithm
● A single block chain is maintained.
● Proof of Work

○ In each iteration find a Nonce that provides hash <= difficulty
○ called mining
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Proof of Work

● The nodes compete with each other
● The first node receives reward that finds a nonce with hash <= difficulty

○ Income for the miners
● The reward is a transaction in the block
● The other nodes verify the transactions and start mining the next block
● To change the past you need to redo the computations
● Consensus algorithm:

○ The majority of computation power
● Different cryptographic hash functions

○ ASIC: Bitcoin 
○ ASIC-resistant (GPU-based): ETHash (Ethereum)
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Hashrate
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Idea 4: Turn it into a digital currency 

● Limit the amount of crypto-coins
○ Extensive marketing

● Similar to diamonds
○ Adam Smith’s diamond-water paradox
○ In 1870 they relatively cheap

■ miners discovered huge deposits of diamonds 
in South Africa

○ Extensive marketing in 1940-80 by De Beers 
Consolidated Mines

■ a metaphor for eternal love
■ a sound investment 

○ “A Diamond Is Forever”
■ sparkling pieces of carbon
■ incinerated to ash
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Idea 4: Turn it into a digital currency 

● Limit the amount of crypto-coins
○ Adam Smith’s diamond-water paradox

■ Compared the high value of a diamond, 
which is unessential to human life, to the 
low value of water, without which humans 
would die

■ Diamonds are more expensive than water 
because they were more difficult to bring to 
market 

■ Subjective prices drive costs.
● Marketing + limited amount

25



Cryptocurrencies

● Based on multiple ideas:
○ Digital signatures
○ Blockchain
○ Consensus Algorithms

■ Proof-of-Work
■ Proof-of-Stake

○ Marketing
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Exchange crypto-coins among blockchains

● How to exchange ETH to BTC
● Two different blockchains

○ Same elliptic curve (secp256k1)
● The two parties (Alice, Bob) do not need to trust

○ An alternative to the centralized exchange point
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Atomic swap - Step 1

● Alice and Bob agree on the exchange rate
● Alice submits a transaction on chain 1 to transfer it’s crypto-coin to a special 

address f(a,b) 
○ A multisig address requires the knowledge of a and b
○ The two parties generate it through communication without disclosing a and b
○ There is a timeout, after which the coin is returned to f(a) 
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Atomic swap - Step 2

● Bob submits a transaction on chain 2 to transfer it’s crypto-coin to a special 
address f(a,b) 

○ There is a timeout, after which the coin is returned to f(b)
● At this point both coins are owned by Alice and Bob jointly

○ At least until the timeout
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Atomic swap - Step 3

● Alice and Bob exchange sufficient information off-chain so that Alice can issue a 
transaction f(a,b) → f(a) on Chain 2

● The signature will reveal sufficient information for Bob to issue a transaction f(a,b) → 
f(b) on Chain 1

○ Not trivial, because transactions are designed not to reveal any information on the secret key
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Atomic swap - Step 4

● Bob reads out the transaction f(a,b) → f(a) on Chain 2
● Bob issue the transaction f(a,b) → f(b) on Chain 1
● Atomic swap is completed

○ Otherwise the tokens return to their owner after the timeout
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Multisig Signature  

● Input: f(a) and f(b)
● Constraints: 

○ It is infeasible to compute the private keys a and b
○ There is  protocol that generates a valid f(a,b) signature with the two parties, 

Alice and Bob, such that only Alice knows a, and Bob knows b

f(a,b) = f(a) ⊕ f(b) 
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  s1 =  c        a  +  r1

f(s1) = c ⨷ f(a) ⊕ f(r1)
  s2 =  c        b  +  r2

f(s2) = c ⨷ f(b) ⊕ f(r2)

c = hash ( f(r1)⊕f(r2),f(a)⊕f(b), and 
the msg )

aláírás: s1+s2 , f(r1)⊕ f(r2)



Adaptor signature

● A signature that becomes valid once t is known
●  disclose f(t) so that it can be verified
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  s =  c        a  +  r         + t

f(s) = c ⨷ f(a) ⊕ f(r) ⊕ f(t)



Adaptor Signature with multisig
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  sa =  c        a  +  r1  + t

f(sa) = c ⨷ f(a) ⊕ f(r1) ⊕ f(t)

  sb =  c        b  +  r2

f(sb) = c ⨷ f(b) ⊕ f(r2)

Alice:

Bob:

sab=          sa+sb =  c        b  +  r1  + r2 + 
t

        f(sa) ⊕ f(sb) = c ⨷ f(b) ⊕ f(r1) ⊕ f(r2)

Alice, Bob:



Adaptor signature with multisig
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sa’b=          sa+sb =  c        b  +  r1  + r2 + 
t

        f(sa) ⊕ f(sb) = c ⨷ f(b) ⊕ f(r1) ⊕ f(r2)

Step 1 Alice, Bob:

f(a)

f(b)

f(b)

f(a)

Chain 1

Chain 2

f(a’,b)

f(a,b)

step 1

step 2 step 3

step 4

sab=          sa+sb =  c        b  +  r1  + r2

        f(sa) ⊕ f(sb) = c ⨷ f(b) ⊕ f(r1) ⊕ f(r2)
Step 3 Alice, Bob:

t=sa’b- sab
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