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Markov Random Fields in Image Segmentation

® Segmentation as pixel labeling
® Probabilistic approach
e Segmentation as MAP estimation
e Markov Random Field (MRF)
e Gibbs distribution & Energy function
® Classical energy minimization
e Simulated Annealing
e Markov Chain Monte Carlo (MCMC) sampling
® Example MRF model & Demo
® Parameter estimation (EM)

MREF slides adopted © Zoltan Kato, University of Szeged, http://www.inf.u-szeged.hu/~kato/
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Markov Random Fields in Image Segmentation
main principle

® Mapping the image to a graph

e nodes are assigned to the different pixels, and the coopoo o
edges connect pixels which are in interaction o o © ©
® Segmentation as pixel labeling: o000 oo o

e each pixel gets a class-label from a task-
dependent label set A

® Inverse problem formulation:

» |Instead of finding a direct algorithm to find the optimal labeling, we construct a (pseudo-)
probability function which assigns a likelihood value to each possible global segmentation,
then an optimization process attempts to find the labeling with the highest confidence

® What does the probability function depend on?
» |ocal feature vectors at each pixel (color, texture etc)
* classes in A are as stochastic processes, described by different feature distributions
» label consistency (soft) constraints between neighboring pixels

* e.g. for preferring smooth segmentation map we penalize if two neighboring nodes have
different labels
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Segmentation as a Pixel Labelling Task

® Extract features from the input image

e Each pixel s in the image has a feature vector f,
e For the whole image, we have:
f = {f;:S € S}
® Define the set of labels A
e Each pixel s is assigned a label ws; € A
e For the whole image, we have:
w = {w,:s € S}
o (): set of all possible w labelings (i.e. w € ()
® Foran N X M image, there are [Q| = |A|YM
possible global labelings.

e Which one is the right segmentation?

Source: Zoltan Kato, http://www.inf.u-szeged.hu/~kato/
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Probabilistic Approach, MAP

@ Define a probability measure on the set of all possible
labelings and select the most likely one.

® P(w|f) measures the probability of a labelling, given the
observed feature f

® Our goal is to find an optimal labeling @ which maximizes
P(wl|f)

@ This is called the Maximum a Posteriori (MAP) estimate:

@ = argmax P(w|f)
wE()

2022.11. 15. 5



Bayesian Framework

® By Bayes Theorem, we have

likelihood | | prior

|
Pwlf) = DII9P@) o) p()

P(f)
® P(f) is constant /

e it does not depend on the actual labeling!
® We need to define P(f|w) and P(w) in our model

We will use Markov Random Fields
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Why MRF Modelization?

@ In real images, regions are often homogenous; neighboring
pixels usually have similar properties (intensity, color, texture,

...) — prior neighborhood constraints vs. noisy pixel level
desciptors

® Markov Random Field (MRF) is a probabilistic model which
captures such contextual constraints
e Well studied, strong theoretical background

e Allows Monte-Carlo Markov Chain (MCMC) sampling of the (hidden)
underlying structure — Simulated Annealing

e Fast and exact solution for certain type of models — Graph cut
[Kolmogorov]
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What is MRF?

@ To give a formal definition for Markov Random Fields, we need

some basic building blocks
e Observation Field and (hidden) Labeling Field
e Pixels and their Neighbors
e Cliques and Clique Potentials
e Energy function

e Gibbs Distribution
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Markov Chains vs Markov Random Fields

® Recap: Discrete Markov Chains: discrete time, discrete state

stochastic processes
e Given: set of possible states S¢, S,,...Sy @
e q;:stateattimet, (t=1,..T) /:/ \:\
e Observed state sequence: q4, q>,...q7 @ . @
o Markov property: '_

P(CIt = 5j|CIt—1 = Si) = P(Clt = 5j|CIt—1 =5i,qt—2 = Sg, . Q1 = Sl)

+ Conditional probability of the current state only depends on the
previous state (i.e. only neighboring states interact — in time)

® Markov Random Fields: instead of temporal neighboring
states, we consider the spatially neighboring pixels

» Pixel labels are not independent, however, direct dependence is only
considered between the spatial neighbors
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Definition — Neighbors

® For each pixel, we can define some surrounding pixels as its
neighbors.
® Example: 15t order neighbors and Z”d order neighbors
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Definition — MRF

® The labeling field X can be modeled as a Markov Random
Field (MRF) if
1. Forallw € Q:P(X =w) >0
2. ForeveryseSandw € :

P(wi|w,,r #+5) = P(ws|w,, 1 € N;)

* N, denotes the neighbors of pixel s
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Definition — Clique

® The H-C theorem provides us an easy way of defining MRF models via
clique potentials.

® Asubset C € Sis called a clique if every pair of pixels in this subset are

neighbors.

A clique containing n pixels is called nt" order clique, denoted by C,,

The set of cliques in an image is denoted by

(OO,

CzclLJCZUUCK

|

- o o—e

singleton doubleton
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Definition — Cligue Potential

® For each clique c in the image, we can assign a value V.(w)
which is called clique potential of c, where w is the
configuration of the labeling field

® The sum of potentials of all cliques gives us the energy U(w)
of the configuration w.

U(w) = ) Velw) =

ceC

= z Ve, (w;) +Z VCz(wi, a)j) + .-

1EC, (i,j)EC,
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Ising model: up/down energies, Gibbs distribution

AT \ ATA t i wr is up
0i(w) = { _: 1{‘:: 1-, rki)'rr?!a.
R

Ulw)=—J z 0;(w)d;(w) —mH Z 0i(w)

Plo) - exXp (—?U(w)) 7 — WZ exp (—%U(w))
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MRF segmentation model

@ Pixel labels (or classes) are represented by
Gaussian distributions

(fs — “ws)z

P(fslws) =

exp| —

V2mao,,

® Cligue potentials
e Singleton: proportional to the likelihood of features

i
given w : log P(f|w) Cliques

e Doubleton: favors similar labels at neighboring o 00— ?
pixels — smoothness prior

—IB if w; = (1)]

Ve, (0] = Bo(wu 1) =15 if o, % o

- as 3 increases, regions become more homogenous
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= min > Vi(ws, fs) + > Va(we)

seS ceC

with Vo (we) = second order clique-potentials, which
favour similar classes for neighboring pixels:

/6 |f Ws — Wr

VQ(MC) — V{S:T}(ws,w?‘) B { +05 if ws F= wr

and

— 2
Vl(wS:fS) = |Og(\/§gws) I (f*’ uws)

D52

Ws

Hypothesis:
* P(f|w) is Gaussian
e P(w)is Markovian
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Bayesian Probability

P(a)s) = exp <— Z ,86((‘)5»(‘)1‘))

(s,r)€EC,
. —f if w,=w

2
Pl = eXp(_(fé—mJ)
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Bayesian Probability max vs. Energy min

P(flo)P(®) _
P(F)

1 (fs_/’lws)z
“m%se’q’(‘ 207 )*exp(— 2. ﬁ“‘“s"“r))

Wg

P(wlf) =

P(w|f) x exp <(_ Ustus) ) + (_ Z(S,T)ECZ B (ws, wr») = eXp(_U((,U))

2
204,

2
U(w) = —In(P(w|f)) = —In | exp — < z Bo(ws, w,) + (US zaléwS) >>
(s,r)EC, Wg
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Hammersley-Clifford Theorem

® The Hammersley-Clifford Theorem states that a random field is a MRF if
and only if P(w) follows a Gibbs distribution.

1 1
P(w) = Zexp(—U(a))) = exp| — Z V. (w)

ceC

e whereZ =) cq exp(—U(a))) is a normalization constant

® Practical consequence:

e probability functions of MRFs have a special form: they can be factorized into
small terms called clique potentials, which can be locally calculated on the
graph

e this property makes possible to design the probability function in a modular
way, and enables using efficient iterative optimization techniques

e Technical note: instead of maximizing this probability function we usually
minimize the minus logarithm of it which is called energy function
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Local steps — global optimum

[T ]

Cliques:

9. B ®
Vi A&
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Segmentation of grayscale images:
A simple MRF model

® Construct a segmentation model where regions are formed by
spatial clusters of pixels with similar intensity:

Model MRF segmentation model
parameters

+
find MAP estimate @

}

Segmentation @

Input image

11/15/2022




Model parameters

classes:

® Doubleton potential B
e |less dependent on the input —
* can be fixed a priori
® Number of labels |A]
e Problem dependent —
* usually given by the user or

* inferred from some higher level knowledge
® Each label A € A is represented by a
Gaussian distribution N(uy, 03):
e estimated from the input image
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Gaussian/Normal distribution
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Model parameters

® The class statistics (mean and variance) classes:
can be estimated via the empirical mean
and variance:
— Ny
VAEA: My = Z
ST ’
SES)
o} —LZ(f — )
M1 ’

» where §;denotes the set of pixels in the
training set of class A

e atraining set consists in a representative
region selected by the user
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Energy calculus for the optimization of MRF

( P
55 (CO ): \’u,a)s éUS) I Z\/ (C()S,C()r )
20 \s.rieé, /

- [, I o, =w,

v(ws,wr>:{

+ 4, f o, # o,

T~

Deviation from the
neighbors

Deviation from the
measured
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Energy function

® Now we can define the energy function of our MRF model:

U(w) = z <log(\/_aw ) + (fs Mws ) Z,B(S(a)s W,)

S

® Recall: . )
P(w) = Eexp(—U(a))) =7 €Xp <— Z V. (w))
CeC

® Hence:

oMAP = argmax P(w|f) = argmin U(w)

wE) wWE)
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Optimization

® Problem reduced to the minimization of
a hon-convex energy function
« Many local minima !
@ Gradient descent?
e Works only if we have a good initial
segmentation /o
@ Simulated Annealing

|‘Ih_’_ \/f ||| I;ﬁ-- -
e Always works (at least in theory)

i
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ICM (lterated Conditional Mode)
~Gradient descent approach [Besag86]

1. Start at a ,good” initial configuration w® and set
k =0.

2. For each configuration which differs at most in
one element from the current configuration w
(they are denoted by V' k), compute the
energy U(n) (n € V' k).

3. From the configurations V' «, select the one i
which has the minimal energy:

k

k

w**t1 = argmin U(n)

T]Eka »

4. Goto Step 2, with k = k 4 1until convergence
obtained (for example the energy change is less
than a certain threshold).
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ICM (lterated Conditional Mode)

ICM for mage segmentation models

1. Start at a,good” initial segmentation w® and set
k=0. Only depens on pixel s

and its four neighbors

o7 IV k), compute the

Un) — U(w®) (n €N k).

3. From the configurations V' «, select the one which W
has the minimal energy:

k+1 = argmin AU (1)

neN k >

w

4. Goto Step 2, with k = k 4+ 1until convergence
obtained (for example the energy change is less
than a certain threshold).
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ICM initialization

® Per-pixel Maximum a Posteriori (MAP) estimate:

0 . (fs — )’
ws = argmin log(\/ 2710;\) + 5
AEA 20-)\

Input image Initial label map
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ICM optimization steps
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ICM vs. Simulated Annealing

‘ ] O ] . ] O ICM Global min

: Can get stuck in local minimal!
: accept a move even if

energy increases (with certain probability) Slide adopted from C. Rother ICCV'09 tutorial:

http://research.microsoft.com/
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Simulated Annealing
Modified Metropolis Dynamics (MMD)

1. Set k = 0 and initialize w randomly. Choose a sufficiently high
initial temperature T =T,

2. Construct a trial perturbation n from the current configuration w
such that n differs only in one element from w.

3. (Metropolis criteria) Compute AU = U(n) — U(w) and accept n if
AU < 0 else accept with probability exp(—AU/T) (analogy with
thermodynamics):

n ifAU <0
w =1 ifAU > 0and¢ < exp(—AU/T)
w otherwise

where ¢ is a uniform random number in [0,1].
4. Decrease the temperature T = Ty .1 and goto step 2 with k =k +
1 until the system is frozen.
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Temperature Schedule

@ In theory: should be logarithmic — in practice: exponential
schedule is reasonable
@ Initial temperature: set it to a relatively low value (~4) —
faster execution
e must be high enough to allow random jumps at the beginning!
® Schedule: T, =c- Ty, k=0,1,2,.. (e.g.c = 0.95).
® Stopping criteria:
e Fixed number of iterations
e Energy change is less than a threshold
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MMD segmentation

® Starting MMD: random label map!
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ICM vs MMD

ICM result MMD result
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MRF Summary

® Design your model carefully

e Optimization is just a tool, do not expect a good segmentation from a
wrong model

® What about other than graylevel features?
e Extension to color is relatively straightforward
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What color features?
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Extract Color Feature

® We adopt the CIE-L*u*v* color space because it is
perceptually uniform.

e Recap from earlier slides: similarly to CIE-L*a*b*, color difference can
be measured here by Euclidean distance of two color vectors.

® We convert each pixel from RGB space to CIEL*u*v* space
e We have 3 color feature images
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Color MRF segmentation model

@ Pixel labels (or classes) are represented by
three-variate Gaussian distributions

1 | _
Pl = Zomenp - (F )2~ )

® Cligue potentials
e Singleton: proportional to the likelihood of features
given w : log P(f|w)
e Doubleton: favors similar labels at neighboring o O ?
pixels —smoothness prior

Cliques

—IB if w; = (1)]

Ve, j) = B(w;, w;) = {+ﬁ

if Wi = = (1)]'

- as 3 increases, regions become more homogenous
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Segmentation examples

color image segmentation
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Markovian/Marked Point Process (MPP)

Robust shape searching on probabilistic description

Point Process: any number of objects with featuring points ina

2-D (or 3-D) space — centrum of buildings, etc.

p= {plipz’---’pn(ﬁ)}

e Markers: description of shape geometry (e.g. rectangle
length and width, orientation)

M:}— } <L s L% s v

22

eMarked object = point+markers

u e KxM




MPP energy function

*Any configuration W = {ul,ul,...,un(w)}
*Space of config: Q= UQn Q, ={{u,u,,....,u}u e Kx M}

n=0
eEnergy function: data(d) and prior part(p)

D(w) =D, (@) +P (@)

*Optimal configuration: @, =argmin ®(w)
we)

eEfficient optimization: RIMCMC, MBD
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Detection of pedestrians and their height from multiview
data — fusion in 3D

Akos Utasi, Csaba Benedek: Multi-Camera People Localization and Height Estimation
using Multiple Birth-and-Death Dynamics. Workshop on Visual Surveillance, 2010
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