


 Segmentation as pixel labeling
 Probabilistic approach

• Segmentation as MAP estimation

• Markov Random Field (MRF)

• Gibbs distribution & Energy function

 Classical energy minimization
• Simulated Annealing

• Markov Chain Monte Carlo (MCMC) sampling

 Example MRF model & Demo
 Parameter estimation (EM)
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 Mapping the image to a graph
• nodes are assigned to the different pixels, and the 

edges connect pixels which are in interaction
 Segmentation as pixel labeling:  

• each pixel gets a class-label from a task-
dependent label set Λ
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 Inverse problem formulation:
• Instead of finding a direct algorithm to find the optimal labeling, we construct a (pseudo-) 

probability function which assigns a likelihood value to each possible global segmentation, 
then an optimization process attempts to find the labeling with the highest confidence

 What does the probability function depend on?
• local feature vectors at each pixel (color, texture etc) 

 classes in Λ are as stochastic processes, described by different feature distributions

• label consistency (soft) constraints between neighboring pixels

 e.g. for preferring smooth segmentation map we penalize if two neighboring nodes have 
different labels



 Extract features from the input image
• Each pixel 𝑠 in the image has a feature vector ҧ𝑓𝑠
• For the whole image, we have:

𝑓 = ҧ𝑓𝑠: 𝑠 ∈ 𝑆

 Define the set of labels Λ
• Each pixel 𝑠 is assigned a label ω𝑠 ∈ Λ

• For the whole image, we have:

ω = ω𝑠: 𝑠 ∈ 𝑆

• Ω: set of all possible ω labelings (i.e. ω ∈ Ω)

 For an 𝑁 ×𝑀 image, there are Ω = Λ 𝑁𝑀

possible global labelings.
• Which one is the right segmentation?
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𝑓

ω
Source: Zoltan Kato, http://www.inf.u-szeged.hu/~kato/



 Define a probability measure on the set of all possible 
labelings and select the most likely one.

 𝑃 𝜔|𝑓 measures the probability of a labelling, given the
observed feature 𝑓

 Our goal is to find an optimal labeling ෝ𝜔 which maximizes
𝑃 𝜔|𝑓

 This is called the Maximum a Posteriori (MAP) estimate:
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ෝ𝜔 = argmax
𝜔∈Ω

𝑃 𝜔|𝑓



 By Bayes Theorem, we have

 𝑃 𝑓 is constant 
• it does not depend on the actual labeling!

 We need to define 𝑃 𝑓|𝜔 and 𝑃 𝜔 in our model
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𝑃 𝜔|𝑓 =
𝑃 𝑓|𝜔 𝑃 𝜔

𝑃 𝑓

likelihood prior

∝ 𝑃 𝑓|𝜔 𝑃 𝜔

We will use Markov Random Fields



 In real images, regions are often homogenous; neighboring 
pixels usually have similar properties (intensity, color, texture, 
…) → prior neighborhood constraints vs. noisy pixel level
desciptors

 Markov Random Field (MRF) is a probabilistic model which 
captures such contextual constraints

• Well studied, strong theoretical background

• Allows Monte-Carlo Markov Chain (MCMC) sampling of the (hidden) 
underlying structure → Simulated Annealing

• Fast and exact solution for certain type of models → Graph cut
[Kolmogorov]
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 To give a formal definition for Markov Random Fields, we need 

some basic building blocks

• Observation Field and (hidden) Labeling Field

• Pixels and their Neighbors

• Cliques and Clique Potentials

• Energy function

• Gibbs Distribution

2022. 11. 15. 8



 Recap: Discrete Markov Chains: discrete time, discrete state 
stochastic processes

• Given: set of possible states 𝑆1, 𝑆2,…𝑆𝑁
• 𝑞𝑡: state at time 𝑡, (𝑡 = 1,…𝑇)

• Observed state sequence: 𝑞1, 𝑞2,…𝑞𝑇
• Markov property:

 Conditional probability of the current state only depends on the 
previous state (i.e. only neighboring states interact – in time)

 Markov Random Fields: instead of temporal neighboring 
states, we consider the spatially neighboring pixels

• Pixel labels are not independent, however, direct dependence is only 
considered between the spatial neighbors
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1S

2S 3S

𝑃 𝑞𝑡 = 𝑆𝑗|𝑞𝑡−1 = 𝑆𝑖 = 𝑃 𝑞𝑡 = 𝑆𝑗|𝑞𝑡−1 = 𝑆𝑖 , 𝑞𝑡−2 = 𝑆𝑘 , … 𝑞1 = 𝑆𝑙



 For each pixel, we can define some surrounding pixels as its
neighbors.

 Example: 1st order neighbors and 2nd order neighbors
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 The labeling field 𝑋 can be modeled as a Markov Random 
Field (MRF) if

1. For all ω ∈ Ω: P 𝑋 = ω > 0

2. For every 𝑠 ∈ 𝑆 and ω ∈ Ω ∶

 𝑁𝑠 denotes the neighbors of pixel s
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P ω𝑠|ω𝑟 , 𝑟 ≠ 𝑠 = P ω𝑠|ω𝑟 , 𝑟 ∈ 𝑁𝑠



 The H-C theorem provides us an easy way of defining MRF models via 
clique potentials.

 A subset C ⊆ 𝑆is called a clique if every pair of pixels in this subset are 
neighbors.

 A clique containing n pixels is called nth order clique, denoted by Cn
 The set of cliques in an image is denoted by
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C = 𝐶1 ∪ 𝐶2 ∪ ... ∪ 𝐶𝐾

singleton doubleton



 For each clique c in the image, we can assign a value 𝑉𝑐 𝜔
which is called clique potential of c, where 𝜔 is the 
configuration of the labeling field

 The sum of potentials of all cliques gives us the energy 𝑈 𝜔
of the configuration 𝜔.
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𝑈 𝜔 =෍

𝑐∈𝐶

𝑉𝑐 𝜔 =

= ෍

𝑖∈𝐶1

𝑉𝐶1 𝜔𝑖 +෍

(𝑖,𝑗)∈𝐶2

𝑉𝐶2 𝜔𝑖 , 𝜔𝑗 +⋯
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 Pixel labels (or classes) are represented by 
Gaussian distributions

 Clique potentials
• Singleton: proportional to the likelihood of features 

given 𝜔 ∶ log𝑃 𝑓|𝜔

• Doubleton: favors similar labels at neighboring 
pixels – smoothness prior

 as 𝛽 increases, regions become more homogenous
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𝑃 𝑓𝑠|𝜔𝑠 =
1

2𝜋𝜎𝜔𝑠

exp −
𝑓𝑠 − 𝜇𝜔𝑠

2

2𝜎𝜔𝑠
2

𝑉𝐶2 𝑖, 𝑗 = 𝛽𝛿 𝜔𝑖 , 𝜔𝑗 = ൝
−𝛽 if 𝜔𝑖 = 𝜔𝑗
+𝛽 if 𝜔𝑖 ≠ 𝜔𝑗

Cliques
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Hypothesis:
• 𝑷 𝒇|𝝎 is Gaussian
• 𝑷 𝝎 𝒊𝒔 𝑴𝒂𝒓𝒌𝒐𝒗𝒊𝒂𝒏
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𝑃 𝑓𝑠|𝜔𝑠 =
1

2𝜋𝜎𝜔𝑠

exp −
𝑓𝑠 − 𝜇𝜔𝑠

2

2𝜎𝜔𝑠
2

𝑉𝐶2 𝑖, 𝑗 = 𝛽𝛿 𝜔𝑠, 𝜔𝑟 = ቊ
−𝛽 if 𝜔𝑟 = 𝜔𝑠

+𝛽 if 𝜔𝑟 ≠ 𝜔𝑠

𝑃 𝜔|𝑓 =
𝑃 𝑓|𝜔 𝑃 𝜔

𝑃 𝑓
∝ 𝑃 𝑓|𝜔 𝑃 𝜔

𝑃 𝜔𝑠 = exp − ෍

(𝑠,𝑟)∈𝐶2

𝛽𝛿 𝜔𝑠, 𝜔𝑟
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𝑃 𝜔|𝑓 ∝ exp −
𝑓𝑠−𝜇𝜔𝑠

2

2𝜎𝜔𝑠
2 + −σ(𝑠,𝑟)∈𝐶2

𝛽𝛿 𝜔𝑠, 𝜔𝑟 = exp −𝑈 𝜔

𝑃 𝜔|𝑓 =
𝑃 𝑓|𝜔 𝑃 𝜔

𝑃 𝑓
∝

∝
1

2𝜋𝜎𝜔𝑠

exp −
𝑓𝑠 − 𝜇𝜔𝑠

2

2𝜎𝜔𝑠

2
∗ exp − ෍

(𝑠,𝑟)∈𝐶2

𝛽𝛿 𝜔𝑠 , 𝜔𝑟

𝑈 𝜔 = −𝑙𝑛 𝑃 𝜔|𝑓 = −𝑙𝑛 exp − ෍

𝑠,𝑟 ∈𝐶2

𝛽𝛿 𝜔𝑠, 𝜔𝑟 +
𝑓𝑠 − 𝜇𝜔𝑠

2

2𝜎𝜔𝑠
2



 The Hammersley-Clifford Theorem states that a random field is a MRF if 
and only if 𝑃 𝜔 follows a Gibbs distribution.

• where Z = σω∈Ω exp −𝑈 𝜔 is a normalization constant

 Practical consequence:

• probability functions of MRFs have a special form: they can be factorized into
small terms called clique potentials, which can be locally calculated on the
graph

• this property makes possible to design the probability function in a modular
way, and enables using efficient iterative optimization techniques

• Technical note: instead of maximizing this probability function we usually
minimize the minus logarithm of it which is called energy function
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𝑃 𝜔 =
1

𝑍
exp −𝑈 𝜔 =

1

𝑍
exp −෍

𝑐∈𝐶

𝑉𝑐 𝜔
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Local steps – global optimum



 Construct a segmentation model where regions are formed by 
spatial clusters of pixels with similar intensity:
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Input image

Segmentation ෝ𝜔

Model 
parameters

MRF segmentation model
+

find MAP estimate ෝ𝜔



 Doubleton potential β
• less dependent on the input →

 can be fixed a priori

 Number of labels Λ
• Problem dependent →

 usually given by the user or

 inferred from some higher level knowledge

 Each label λ ∈ Λ is represented by a 
Gaussian distribution N 𝜇λ, 𝜎λ : 

• estimated from the input image
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 The class statistics (mean and variance)
can be estimated via the empirical mean
and variance:

• where 𝑆𝜆denotes the set of pixels in the
training set of class λ

• a training set consists in a representative
region selected by the user
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𝜇𝜆 =
1

𝑆𝜆
෍

𝑠∈𝑆𝜆

𝑓𝑠

𝜎𝜆
2 =

1

𝑆𝜆
෍

𝑠∈𝑆𝜆

𝑓𝑠 − 𝜇𝜆
2

∀λ ∈ Λ:
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Energy calculus for the optimization of MRF 
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 Now we can define the energy function of our MRF model:

 Recall:

 Hence:
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𝑈 𝜔 =෍

𝑠

log 2𝜋𝜎𝜔𝑠
+

𝑓𝑠 − 𝜇𝜔𝑠

2

2𝜎𝜔𝑠
2 +෍

𝑠,𝑟

𝛽𝛿 𝜔𝑠, 𝜔𝑟

𝑃 𝜔 =
1

𝑍
exp −𝑈 𝜔 =

1

𝑍
exp −෍

𝑐∈𝐶

𝑉𝑐 𝜔

ෝ𝜔𝑀𝐴𝑃 = argmax
𝜔∈Ω

𝑃 𝜔|𝑓 = argmin
𝜔∈Ω

𝑈 𝜔



 Problem reduced to the minimization of 
a non-convex energy function

• Many local minima

 Gradient descent?
• Works only if we have a good  initial 

segmentation

 Simulated Annealing
• Always works (at least in theory)
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1. Start at a „good” initial configuration 𝜔0 and set 
𝑘 = 0.

2. For each configuration which differs at most in 
one element from the current configuration 𝜔𝑘

(they are denoted by 𝒩𝜔𝑘), compute the 

energy 𝑈 𝜂 (𝜂 ∈ 𝒩𝜔𝑘).

3. From the configurations 𝒩𝜔𝑘, select the one 

which has the minimal energy:

4. Goto Step 2, with k = k + 1until convergence 
obtained (for example the energy change is less 
than a certain threshold).
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𝜔𝑘+1 = argmin
𝜂∈𝒩

𝜔𝑘

𝑈 𝜂



1. Start at a „good” initial segmentation 𝜔0 and set 
𝑘 = 0.

2. For each segmentation which differs at most in one 
pixel’s label (pixel s) from the current segmentation
𝜔𝑘 (they are denoted by 𝒩𝜔𝑘), compute the 

energy ∆𝑈 𝜂 = 𝑈 𝜂 − 𝑈 𝜔𝑘 (𝜂 ∈ 𝒩𝜔𝑘).

3. From the configurations 𝒩𝜔𝑘, select the one which 

has the minimal energy:

4. Goto Step 2, with k = k + 1until convergence 
obtained (for example the energy change is less 
than a certain threshold).
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𝜔𝑘+1 = argmin
𝜂∈𝒩

𝜔𝑘

∆𝑈(𝜂)

Only depens on pixel s 
and its four neighbors



 Per-pixel Maximum a Posteriori (MAP) estimate:
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𝜔𝑠
0=argmin

λ∈Λ
log 2𝜋𝜎λ +

𝑓𝑠 − 𝜇λ
2

2𝜎λ
2

Input image Initial label map
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Simulated Annealing: accept a move even if
energy increases (with certain probability)

Can get stuck in local minima!

Slide adopted from C. Rother ICCV’09 tutorial:
http://research.microsoft.com/
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1. Set 𝑘 = 0 and initialize 𝜔 randomly. Choose a sufficiently high 
initial temperature 𝑇 = 𝑇0.

2. Construct a trial perturbation 𝜂 from the current configuration 𝜔
such that 𝜂 differs only in one element from 𝜔.

3. (Metropolis criteria) Compute ∆𝑈 = 𝑈 𝜂 − 𝑈 𝜔 and accept 𝜂 if 
∆𝑈 < 0 else accept with probability exp −∆𝑈/𝑇 (analogy with 
thermodynamics):

where 𝜉 is a uniform random number in 0,1 .

4. Decrease the temperature 𝑇 = 𝑇𝑘+1 and goto step 2 with  k = k +
1 until the system is frozen.

𝜔 = ቐ
𝜂 if ∆𝑈 ≤ 0

𝜂 if ∆𝑈 > 0 and 𝜉 < exp −∆𝑈/𝑇
𝜔 otherwise



 In theory: should be logarithmic – in practice: exponential 
schedule is reasonable

 Initial temperature: set it to a relatively low value (~4) → 

faster execution
• must be high enough to allow random jumps at the beginning!

 Schedule: 𝑇𝑘+1 = 𝑐 ∙ 𝑇𝑘, 𝑘 = 0,1,2,… (e.g. 𝑐 = 0.95).
 Stopping criteria:

• Fixed number of iterations

• Energy change is less than a threshold
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 Starting MMD: random label map!
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4 color MRF optimization
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MMD resultICM result



 Design your model carefully
• Optimization is just a tool, do not expect a good segmentation from a 

wrong model

 What about other than graylevel features?
• Extension to color is relatively straightforward
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 We adopt the CIE-L*u*v* color space because it is 
perceptually uniform.

• Recap from earlier slides: similarly to CIE-L*a*b*, color difference can 
be measured here by Euclidean distance of two color vectors.

 We convert each pixel from RGB space to CIEL*u*v* space
• We have 3 color feature images
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L* u* v*



 Pixel labels (or classes) are represented by 
three-variate Gaussian distributions

 Clique potentials
• Singleton: proportional to the likelihood of features 

given 𝜔 ∶ log𝑃 𝑓|𝜔

• Doubleton: favors similar labels at neighboring 
pixels – smoothness prior

 as 𝛽 increases, regions become more homogenous
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𝑃 𝑓𝑠|𝜔𝑠 =
1

2𝜋 Σ𝜔𝑠

exp −
1

2
ҧ𝑓𝑠 − ҧ𝜇𝜔𝑠

Σ𝜔𝑠
−1 ҧ𝑓𝑠 − ҧ𝜇𝜔𝑠

𝑇

𝑉𝐶2 𝑖, 𝑗 = 𝛽𝛿 𝜔𝑖 , 𝜔𝑗 = ൝
−𝛽 if 𝜔𝑖 = 𝜔𝑗
+𝛽 if 𝜔𝑖 ≠ 𝜔𝑗

Cliques
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color image segmentation

gray level based segmentation
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Markovian/Marked Point Process (MPP)

Robust shape searching on probabilistic description

Point Process: any number of objects with featuring points  ina

2-D (or 3-D) space – centrum of buildings, etc.

•Markers: description of shape geometry (e.g. rectangle 
length and width, orientation)

•Marked object = point+markers

 )p(n21 p,,p,pp 

   maxminmaxmin l,lL,L
2

,
2

M 






 


MKui 
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MPP energy function

•Any configuration

•Space of config:

•Energy function:  data(d) and prior part(p) 

•Optimal configuration:

•Efficient optimization: RJMCMC, MBD

( ) ( ) ( )d p    

 1 1 ( ), , , nu u u  

0

n

n





    1 2{ , , , } |n n iu u u u K M   

arg min ( )opt


 


 
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Detection of pedestrians and their height from multiview
data – fusion in 3D

Ákos Utasi, Csaba Benedek: Multi-Camera People Localization and Height Estimation 
using Multiple Birth-and-Death Dynamics. Workshop on Visual Surveillance, 2010


