Analysis and control of positive systems using kinetic realizations: dynamics, structure, and optimization

Gábor Szederkényi ${ }^{1,2}$

${ }^{1}$ Péter Pázmány Catholic University, Faculty of Information Technology, Budapest, Hungary ${ }^{2}$ Process Control Research Group, Systems and Control Laboratory, MTA SZTAKI,

Hungarian Academy of Sciences, Budapest, Hungary

Mathematical Model Building Seminar Budapest University of Technology and Economics 30 September, 2014

Background and goals

"If all you have is a hammer, everything looks like a nail."
Background: computer science/engineering, (nonlinear) systems and control theory (applied to thermodynamical, biochemical systems) Aims

- to illustrate the notion and significance of dynamical systems
- a (draft) overview of the approach of systems and control theory
- a more detailed introduction to kinetic models
- to summarize our contributions

Motivation

- to know and describe new system classes
- a deep understanding of certain interesting phenomena in technological and living systems
- to improve/develop methods in modeling, analysis and control

Outline

(1) Motivation and introduction
(2) Basic notions: kinetic systems (CRNs) and optimization
(3) Properties and computation of CRN structures

- Computation of "dense" and "sparse" realizations
- Computation of weakly reversible realizations
- Computing linearly conjugate WR realizations with minimal deficiency
(4) Kinetic feedbacks for polynomial systems
(5) Conclusions

(1) Motivation and introduction

(2) Basic notions: kinetic systems (CRNs) and optimization
(3) Properties and computation of CRN structures

- Computation of "dense" and "sparse" realizations
- Computation of weakly reversible realizations
- Computing linearly conjugate WR realizations with minimal deficiency

4 Kinetic feedbacks for polynomial systems
(5) Conclusions

Introductory remarks and notions

- the construction and application of mathematical models is essential during the design/operation of technological systems and the analysis/control of complex processes in living systems
- description of quantities changing in space/time: dynamical models (in a system and control theoretic framework)
- the handling of nonlinearities is often necessary \Rightarrow it is advantageous to choose model classes with good descriptive power but having relatively simple mathematical structure
- nonnegative (positive) systems : physical, chemical, biological, pharmacokinetical (compartmental), transportation or process models wih nonnegative (positive) state variables (non-positive systems can often be transformed to nonnegative form)
autonomous nonlinear model: $\dot{x}=f(x), x \in \mathbb{R}^{n}$,
nonnegativity condition: for $x_{i}=0, f_{i}(x) \geq 0 \forall x \in[0, \infty)^{n}$, $i=1, \ldots, n$
(1) Motivation and introduction
(2) Basic notions: kinetic systems (CRNs) and optimization
(3) Properties and computation of CRN structures
- Computation of "dense" and "sparse" realizations
- Computation of weakly reversible realizations
- Computing linearly conjugate WR realizations with minimal deficiency
(4) Kinetic feedbacks for polynomial systems
(5) Conclusions

Ingredients and approach

(bio)chemical reaction networks (CRNs)

interesting/useful class of nonnegative systems

- dynamical description of (bio)chemical processes in a laboratory or industrial environment
- interesting from the point of view of nonlinear systems theory : suitable to describe complex dynamical behaviour

```
optimization
impor:ant decision support tool, fast HWW/SW development
    - essential in the solution of many scientific/engineering problems
    o deciding solvability and searching for certain solutions is often possible, even if the
        problem is hard (or impossible) to treat algebraically (e.g. LMIs, BMls, SOS
        problems, diagonal stabilizability etc.)
```


chosen approach

the dynamics is given, and we are searching for CRN structures that "realize" this

Ingredients and approach

(bio)chemical reaction networks (CRNs)

interesting/useful class of nonnegative systems

- dynamical description of (bio)chemical processes in a laboratory or industrial environment
- interesting from the point of view of nonlinear systems theory : suitable to describe complex dynamical behaviour

optimization

important decision support tool, fast HW/SW development

- essential in the solution of many scientific/engineering problems
- deciding solvability and searching for certain solutions is often possible, even if the problem is hard (or impossible) to treat algebraically (e.g. LMIs, BMIs, SOS problems, diagonal stabilizability etc.)

[^0]the dynamics is given, and we are searching for CRN structures that "realize" this

Ingredients and approach

(bio)chemical reaction networks (CRNs)

interesting/useful class of nonnegative systems

- dynamical description of (bio)chemical processes in a laboratory or industrial environment
- interesting from the point of view of nonlinear systems theory: suitable to describe complex dynamical behaviour

optimization

important decision support tool, fast HW/SW development

- essential in the solution of many scientific/engineering problems
- deciding solvability and searching for certain solutions is often possible, even if the problem is hard (or impossible) to treat algebraically (e.g. LMIs, BMIs, SOS problems, diagonal stabilizability etc.)

chosen approach

the dynamics is given, and we are searching for CRN structures that "realize" this

Essentially nonnegative systems

- the function $f=\left[\begin{array}{lll}f_{1} & \ldots & f_{n}\end{array}\right]^{T}:[0, \infty)^{n} \rightarrow \mathbb{R}^{n}$ is essentially nonnegative, if whenever $x_{i}=0, f_{i}(x) \geq 0 \forall x \in[0, \infty)^{n}$ for $i=1, \ldots, n$
- linear case: $f(x)=A x, A$ is a so-called Metzler-matrix (off-diagonal elements are nonnegative)
- Consider the following nonlinear autonomous system:

$$
\begin{equation*}
\dot{x}=f(x), x(0)=x_{0} \tag{1}
\end{equation*}
$$

where $f: \mathcal{X} \rightarrow \mathbb{R}^{n}$ is locally Lipschitz, \mathcal{X} is an open subset of \mathbb{R}^{n}, and $x_{0} \in \mathcal{X}$. Assume furthermore that $[0, \infty)^{n}=\overline{\mathbb{R}}_{+}^{n} \subset \mathcal{X}$. Then the nonnegative orthant is invariant for the dynamics (1) if and only if f is essentially nonnegative.

- Kinetic systems are (naturally) essentially nonnegative

The notion of CRNs with mass action kinetics

Elementary reaction step (example)

species: $\mathcal{S}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$

- complexes: $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$, where

and $\alpha_{i j} \geq 0$ are the stoichiometric coefficients
a reactions $: \mathcal{R}=\left\{\left(C_{i}, C_{j}\right) \mid C_{i} \rightarrow C_{j}\right\}$, weighted by $k_{i j}$ reaction rate coefficients
the reaction rate corresponding to the $C_{i} \rightarrow C_{j}$ elementary reaction step:

The notion of CRNs with mass action kinetics

Elementary reaction step (example)

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

species: $\mathcal{S}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$

- complexes : $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$, where

and $\alpha_{i j} \geq 0$ are the stoichiometric coefficients
- reactions : $\mathcal{R}=\left\{\left(C_{i}, C_{j}\right) \mid C_{i} \rightarrow C_{j}\right\}$, weighted by $k_{i j}$ reaction rate coefficients
the reaction rate corresponding to the $C_{i} \rightarrow C_{j}$ elementary reaction step:

The notion of CRNs with mass action kinetics

Elementary reaction step (example)

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

Definition of CRNs

- species : $\mathcal{S}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$
- complexes : $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$, where

$$
C_{i}=\sum_{j=1}^{n} \alpha_{i j} X_{j}, \quad i=1, \ldots, m
$$

and $\alpha_{i j} \geq 0$ are the stoichiometric coefficients

- reactions: $\mathcal{R}=\left\{\left(C_{i}, C_{j}\right) \mid C_{i} \rightarrow C_{j}\right\}$, weighted by $k_{i j}$ reaction rate coefficients the reaction rate corresponding to the $C_{i} \rightarrow C_{j}$ elementary reaction step:

$$
\rho_{i j}(x)=k_{i j} \prod_{i=1}^{n}\left[X_{i}\right]^{\alpha_{i j}}=k_{i j} \prod_{i=1}^{n} x_{i}^{\alpha_{i j}}
$$

Weighted directed graph of a reaction network

- directed graph G consists of a finite nonempty set V_{d} of vertices and a finite set E_{d} of ordered pairs of distinct vertices (directed edges), i.e. $G=\left(V_{d}, E_{d}\right)$
- vertices correspond to complexes:

$$
V_{d}=\left\{C_{1}, C_{2}, \ldots C_{m}\right\}
$$

- directed edges represent reactions: $\left(C_{i}, C_{j}\right) \in E_{d}$ if complex C_{i} is transformed to C_{j}
- reaction rate coeffs. : $k_{j} \geq 0, j=1, \ldots, r$ (weights of the corresponding directed edges)
- linkage class : connected component (complexes of the set are linked to each other in the reaction graph but not to any other complex)
- reversible reaction: both $C_{i} \rightarrow C_{j}$ and $C_{j} \rightarrow C_{i}$ are present
- weakly reversible network: linkage classes are the strongly connected components

Dynamical description

- stoichiometrix matrix (Y) and reaction monomials:

$$
Y_{i j}=\alpha_{i j}, \quad \varphi_{j}(x)=\prod_{i=1}^{n} x_{i}^{Y_{i j}}, j=1, . ., m ; i=1, \ldots, n
$$

- Kirchhoff-matrix of a CRN: $A_{k} \in \mathbb{R}^{m \times m}$

$$
\left[A_{k}\right]_{i j}=\left\{\begin{array}{ccc}
-\sum_{l=1, l \neq i}^{m} k_{i l} & \text { if } & i=j \\
k_{j i} & \text { if } & i \neq j
\end{array}\right.
$$

(column conservation matrix with non/positive diagonal and non-negative off-diagonal entries)

- ODEs:

$$
\begin{equation*}
\frac{d x}{d t}=\underbrace{Y \cdot A_{k}}_{M} \cdot \varphi(x)=M \cdot \varphi(x) \tag{2}
\end{equation*}
$$

- When is a set of polynomial ODEs "kinetic"? \Longrightarrow simple necessary and sufficient conditions with a constructive proof containing the algorithm to build the so-called canonical CRN structure. (Hárs \& Tóth, 1981)

Kinetic polynomial systems

- An autonomous system of the form $\dot{x}=f(x)$ is kinetic, if $f(x)=Y \cdot A_{k} \cdot \varphi(x)$, where $\left(Y, A_{k}\right)$ are such that they encode a CRN (constraints!) $\Longrightarrow\left(Y, A_{k}\right)$ is called the kinetic realization of the function f
- Necessary and sufficient conditions for kinetic realizability:

$$
f_{i}(x)=-x_{i} g_{i}(x)+h_{i}(x), i=1, \ldots, n
$$

where g_{i} and h_{i} are polinomials with nonnegative coefficients

- There exists a systematic algorithm for determining one possible CRN structure from kinetic polynomial equations (Hárs és Tóth, 1981) But: in general, it inserts more complex/reactions into the graph than the necessary minimum (but it is very important to determine an initial realization)
- What to do with nonnegative but not kinetic polynomial systems? a) state dependent time-rescaling, b) embedding into (generalized) Lotka-Volterra form \Longrightarrow the set of polynomial systems that are kinetic or are transformable to kinetic form is quite wide

Realization of kinetic systems: algorithm

Form of coordinates functions:

$$
\begin{equation*}
f_{i}(x)=\sum_{j=1}^{r_{i}} m_{i j} \prod_{k=1}^{n} x^{b_{j k}} \tag{3}
\end{equation*}
$$

Realization algorithm (Tóth J. és Hárs V., 1981) for each $i=1, \ldots, n$ and for each $j=1, \ldots, r_{i}$ do:
(1) $C_{j}=B_{j}+\operatorname{sign}\left(m_{i j}\right) \cdot e_{i}$
(2) Add the following reaction to the CRN graph:

$$
\sum_{k=1}^{n} b_{j k} \mathbf{X}_{k} \longrightarrow \sum_{k=1}^{n} c_{j k} \mathbf{X}_{k}
$$

where the reaction rate coefficient is $\left|m_{i j}\right|$, and
$C_{j}=\left[\begin{array}{lll}c_{j 1} & \ldots & c_{j n}\end{array}\right]$.

Example: "kinetic RLC circuit" - 1

Original system:

Example: "kinetic RLC circuit" - 2

Physical model and state equations:
Voltage along a loop: $-u_{b e}+u_{R}+u_{L}+u_{C}=0$
Ohm's law: $U_{R}=R \cdot i$
Dynamics of linear capacitor and inductor:

$$
u_{L}=L \cdot \frac{d i}{d t}, \quad i=C \cdot \frac{d U_{C}}{d t}
$$

state equations

$$
\begin{aligned}
\frac{d i}{d t} & =-\frac{R}{L} \cdot i-\frac{1}{L} u_{C}+\frac{1}{L} u_{b e} \\
\frac{d u_{C}}{d t} & =\frac{1}{C} \cdot i
\end{aligned}
$$

Example: "kinetic RLC circuit" - 3

Model equations (after coordinates shift (x_{1}^{*}, x_{2}^{*}) and time-rescaling): variables: $i \rightsquigarrow x_{1}, u_{C} \rightsquigarrow x_{2},\left(u_{b e}=0\right)$

$$
\begin{align*}
& x_{1}^{\prime}=-k_{1} x_{1}^{2} x_{2}-k_{2} x_{1} x_{2}^{2}+c_{1} x_{1} x_{2} \tag{4}\\
& x_{2}^{\prime}=k_{3} x_{1} x_{2}^{2}-c_{2} x_{1} x_{2} \tag{5}
\end{align*}
$$

where: $k_{1}=R / L, k_{2}=1 / L, k_{3}=1 / C, c_{1}=(R / L) x_{1}^{*}+(1 / L) x_{2}^{*}, c_{2}=(1 / C) x_{2}^{*}$
Output of realization algorithm:

$$
\mathrm{X}_{1}+2 \mathrm{X}_{2} \xrightarrow[k_{3}]{k_{2} \mathrm{~K}_{2}} \mathrm{X}_{1}+3 \mathrm{X}_{2} \xrightarrow[c_{2}]{\mathrm{X}_{1}+\mathrm{X}_{2}^{\stackrel{c_{1}}{k_{1}}} 2 \mathrm{X}_{1}+\mathrm{X}_{2} . \mathrm{X}_{1}}
$$

Example: "kinetic RLC circuit" - 4

Operation of the realization algorithm

$$
\begin{aligned}
& x_{1}^{\prime}=-k_{1} x_{1}^{2} x_{2}-k_{2} x_{1} x_{2}^{2}+c_{1} x_{1} x_{2} \\
& x_{2}^{\prime}=k_{3} x_{1} x_{2}^{2}-c_{2} x_{1} x_{2}
\end{aligned}
$$

$$
\mathrm{X}_{1}+\mathrm{X}_{2} \longleftarrow k_{1}-2 \mathrm{X}_{1}+\mathrm{X}_{2}
$$

Example: "kinetic RLC circuit" - 4

Operation of the realization algorithm

$$
\begin{aligned}
& x_{1}^{\prime}=-k_{1} x_{1}^{2} x_{2}-k_{2} x_{1} x_{2}^{2} \\
& x_{2}^{\prime}=k_{3} x_{1} x_{2}^{2}-c_{2} x_{1} x_{1} x_{2} \\
& X_{1}+2 X_{2}
\end{aligned}
$$

Example: "kinetic RLC circuit" - 4

Operation of the realization algorithm

$$
\begin{aligned}
& x_{1}^{\prime}=-k_{1} x_{1}^{2} x_{2}-k_{2} x_{1} x_{2}^{2}+c_{1} x_{1} x_{2} \\
& x_{2}^{\prime}=k_{3} x_{1} x_{2}^{2}-c_{2} x_{1} x_{2} \\
& X_{1}+2 X_{2}^{k_{2}}-2 X_{2} \\
& \mathrm{X}_{1}+\mathrm{X}_{2} \stackrel{c_{1}}{\mathrm{k}_{1}} 2 \mathrm{X}_{1}+\mathrm{X}_{2}
\end{aligned}
$$

Example: "kinetic RLC circuit" - 4

Operation of the realization algorithm

$$
\begin{aligned}
& x_{1}^{\prime}=-k_{1} x_{1}^{2} x_{2}-k_{2} x_{1} x_{2}^{2}+c_{1} x_{1} x_{2} \\
& x_{2}^{\prime}=k_{3} x_{1} x_{2}^{2}-c_{2} x_{1} x_{2} \\
& X_{1}+2 X_{2} \xrightarrow[k_{3}]{k_{2}} 2 \mathrm{X}_{2} \quad \mathrm{X}_{1}+\mathrm{X}_{2} \stackrel{c_{1}}{\rightleftarrows} 2 \mathrm{X}_{1}+\mathrm{X}_{2}
\end{aligned}
$$

Example: "kinetic RLC circuit" - 4

Operation of the realization algorithm

$$
\begin{aligned}
& x_{1}^{\prime}=-k_{1} x_{1}^{2} x_{2}-k_{2} x_{1} x_{2}^{2}+c_{1} x_{1} x_{2} \\
& x_{2}^{\prime}=k_{3} x_{1} x_{2}^{2}-c_{2} x_{1} x_{2} \\
& \mathrm{X}_{1}+2 \mathrm{X}_{2} \xrightarrow[k_{3}]{\stackrel{k_{2}}{2} 2 \mathrm{X}_{2}} \mathrm{X}_{1}+3 \mathrm{X}_{2} \xrightarrow[c_{2}]{\mathrm{X}_{1}+\mathrm{X}_{2} \stackrel{c_{1}}{k_{1}} 2 \mathrm{X}_{1}+\mathrm{X}_{2}}
\end{aligned}
$$

The above CRN is the so-called canonical structure

Summary of some non-negative system classes

Mixed integer linear programming

- mixed integer linear programming (MILP) problem with k variables $\left(y \in \mathbb{R}^{k}\right)$ and p constraints:

$$
\begin{align*}
& \min . c^{T} y \\
& \text { subject to: } \\
& A_{1} y=b_{1} \\
& A_{2} y \leq b_{2} \tag{6}\\
& I_{i} \leq y_{i} \leq u_{i} \quad i=1, \ldots, k \\
& y_{j} \text { is integer for } j \in I, I \subseteq\{1, \ldots, k\}
\end{align*}
$$

where $c \in \mathbb{R}^{k}, A_{1} \in \mathbb{R}^{p_{1} \times k}, A_{2} \in \mathbb{R}^{p_{2} \times k}$, and $p_{1}+p_{2}=p$.

- generally NP-hard (but there exist efficient solvers)
- certain propositional logic problems can be (algorithmically) rewritten into MILP problems

MILP and propositional calculus

- literal: a statement (such as $x \leq 0$) that can have a truth value of "T" (true) or "F" false
- compound statement: literals combined into more complex expressions using the following connectives: " \wedge " (and), " \vee " (or), " \sim " (not), " \rightarrow " (implies), " \leftrightarrow " (if and only if), " \oplus " (exclusive or)
- a propositional logic problem, where a statement S_{1} must be proved to be true given a set of compound statements containing literals S_{1}, \ldots, S_{n}, can be solved by means of a linear integer program:
- logical variables $\delta_{i}\left(\delta_{i} \in\{0,1\}\right)$ are associated with the literals S_{i}
- compound statements can be algorithmically translated to linear inequalities involving the logical variables δ_{i}

Compound statements and corresponding linear (in)equalities

truth table of connectives:

S_{1}	S_{2}	$\sim S_{1}$	$S_{1} \vee S_{2}$	$S_{1} \wedge S_{2}$	$S_{1} \rightarrow S_{2}$	$S_{1} \leftrightarrow S_{2}$	$S_{1} \oplus S_{2}$
T	T	F	T	T	T	T	F
T	F	F	T	F	F	F	T
F	T	T	T	F	T	F	T
F	F	T	F	F	T	T	F

compound statements and linear (in)equalities:

compound statement	equivalent linear equality/inequality
$S_{1} \vee S_{2}$	$\delta_{1}+\delta_{2} \geq 1$
$S_{1} \wedge S_{2}$	$\delta_{1}=1, \delta_{2}=1$
$\sim S_{1}$	$\delta_{1}=0$
$S_{1} \rightarrow S_{2}$	$\delta_{1}-\delta_{2} \leq 0$
$S_{1} \leftrightarrow S_{2}$	$\delta_{1}-\delta_{2}=0$
$S_{1} \oplus S_{2}$	$\delta_{1}+\delta_{2}=1$

Stoichiometric subspace and deficiency

- reaction vectors : $v_{i j}= \begin{cases}{[Y]_{., j}-[Y]_{\cdot, i}} & \text { for }\left(C_{i}, C_{j}\right) \in \mathcal{R} \\ 0 & \text { otherwise }\end{cases}$
- stoichiometric space : $S=\operatorname{span}\left\{v_{i j} \mid\left(C_{i}, C_{j}\right) \in \mathcal{R}\right\}$
- the trajectories are restricted to the stoichiometric compatibility classes : $\left(\mathrm{x}_{0}+S\right) \cap \mathbb{R}_{>0}^{n}$
- deficiency of a CRN : $\delta=m-\ell-s$, where m is the number of stoichiometrically distinct complexes, ℓ is the number of linkage classes, and s is the dimension of the stoichiometric subspace (depends only on stoichiometry and network structure but not on the parameters, realization property)
- an equilibrium concentration $x^{*} \in \mathbb{R}_{>0}^{n}$ of a mass-action system is called a complex balanced equilibrium concentration if $A_{k} \cdot \varphi\left(\mathbf{x}^{*}\right)=\mathbf{0}$. (system property : there exists a complex balanced equlibrium \Rightarrow all equilibrium concentrations are complex balanced)

Relations between network structure and dynamics

- complex balance \Rightarrow weak reversibility
- complex balance \Rightarrow precisely one equilibrium point in each positive stoichiometric compatibility class that is (at least) locally asymptotically stable relative to its compatibility class with a known logarithmic Lyapunov function
- Deficiency Zero Theorem : a CRN with any positive parameters (rate coefficients) is complex balanced \Longleftrightarrow the network is weakly reversible and has a deficiency of zero (robust stability property)
- Deficiency One Theorem : ordered structure of equilibrium points
- Global Attractor Conjecture : complex balance $\Rightarrow($?) global stability
- Persistency Conjecture : weak reversibility $\Rightarrow($?) persistent dynamics
- Boundedness Conjecture : weak reversibility $\Rightarrow($?) bounded trajectories
(2) Basic notions: kinetic systems (CRNs) and optimization
(3) Properties and computation of CRN structures
- Computation of "dense" and "sparse" realizations
- Computation of weakly reversible realizations
- Computing linearly conjugate WR realizations with minimal deficiency

4 Kinetic feedbacks for polynomial systems
(5) Conclusions

Dynamical equivalence (macro-equivalence)

- CRNs with different structure/parametrization but giving exactly the same dynamics
- example: dynamically equivalent networks (realizations)

c)

b)

d)

$$
3 X_{2} \underset{k_{2} / 3}{k_{1}} 3 X_{1}
$$

e)

Dynamics:

$$
\begin{aligned}
& \dot{x}_{1}=3 k_{1} x_{2}^{3}-k_{2} x_{1}^{3} \\
& \dot{x}_{2}=-3 k_{1} x_{2}^{3}+k_{2} x_{1}^{3}
\end{aligned}
$$

Dyn. eq. condition:
$Y^{(1)} A_{k}^{(1)} \varphi^{(1)}(x)=Y^{(2)} A_{k}^{(2)} \varphi^{(2)}(x)$,

$$
\forall x \in \mathbb{R}_{+}^{n}
$$

- it is of interest to search for such dyn. eq. structures (if they exist) from which we obtain useful information about the system dynamics

Linearly conjugate networks

Introduction of linear conjugacy: (Johnston and Siegel, J. Math. Chem. 2011)

- known: the kinetic structure is preserved up to the positive rescaling and/or reordering of the variables
- generalization of linear equivalence
- special case of kinetic lumpings
- Two $C R N$ s denoted by Σ and Σ^{\prime} are said to be linearly conjugate if there is a positive diagonal linear mapping which takes the flow of one network to the other (dynamical equivalence is a special case)
- Consider two mass-action systems $\Sigma=(\mathcal{S}, \mathcal{C}, \mathcal{R})$ and $\Sigma^{\prime}=\left(\mathcal{S}, \mathcal{C}^{\prime}, \mathcal{R}^{\prime}\right)$ and let Y be the stoichiometric matrix corresponding to the complexes in either network. Consider a kinetics matrix A_{k} corresponding to Σ and suppose that there is a kinetics matrix A_{b} with the same structure as Σ^{\prime} and a vector $c \in \mathbb{R}_{>0}^{n}$ such that

$$
\begin{equation*}
\underbrace{Y \cdot A_{k}}_{M}=T \cdot Y \cdot A_{b} \tag{7}
\end{equation*}
$$

where $T=\operatorname{diag}\{c\}$. Then Σ is linearly conjugate to Σ^{\prime} with kinetics matrix

$$
\begin{equation*}
A_{k}^{\prime}=A_{b} \cdot \operatorname{diag}\{\varphi(c)\} \tag{8}
\end{equation*}
$$

Dynamical equivalence and linear conjugacy literature

- F. Horn and R. Jackson. General mass action kinetics. Arch. Rational Mech. Anal., 47:81-116, 1972.
- V. Hárs and J. Tóth. On the inverse problem of reaction kinetics, Qualitative Theory of Differential Equations, 30:363-369, 1981.
- G. Craciun and C. Pantea. Identifiability of chemical reaction networks. Journal of Mathematical Chemistry, 44:244-259, 2008.
- M. D. Johnston and D. Siegel. Linear conjugacy of chemical reaction networks. Journal of Mathematical Chemistry, 49:1263-1282, 2011.

Original problem statement and starting analogies

- Problem statement of computing CRN topologies corresponding to a set of kinetic differential equations with required properties appeared about 30 years ago in: Hárs and Tóth, "On the inverse problem of reaction kinetics", Qualitative Theory of Differential Equations, 30:363-369, 1981.
- Similar (unsolved) problem in the theory of electrical circuits: constructing a linear electrical network with a minimal number of R, L, C elements corresponding to a given transfer function (R.E. Kalman, probably substantially more complex than our problem)
- The idea of terminology 'realization' came from linear control theory, where matrices (A, B, C, D) are called a realization of a transfer function $H(s)$, if

$$
H(s)=C(s l-A)^{-1} B+D
$$

Dense and sparse realizations: goals

- Given: $\left(Y, A_{k}\right) \mathrm{CRN}$ or kinetic polynomial system
- Aim: to compute the following linearly conjugate networks:
- sparse realization $\left(Y^{S}, A_{k}^{s}\right)$ (contains the minimal number of reactions)
- dense realization $\left(Y^{S}, A_{k}^{s}\right)$ (contains the maximal number of reactions)
- Assumption: the set of usable complexes is given

Dense and sparse realizations: computation

kinetic constraints:

$$
\begin{aligned}
& M=Y \cdot A_{k} \\
& Y \cdot A_{b}=T^{-1} \cdot M, \quad T=\operatorname{diag}\left(c_{1}, \ldots, c_{n}\right) \\
& \sum_{i=1}^{m}\left[A_{b}\right]_{i j}=0, \quad j=1, \ldots, m \\
& {\left[A_{b}\right]_{i j} \geq 0, \quad i, j=1, \ldots, m, \quad i \neq j} \\
& {\left[A_{b}\right]_{i i} \leq 0, \quad i=1, \ldots, m} \\
& 0 \leq\left[A_{b}\right]_{i j} \leq l_{i j}, \quad i, j=1, \ldots, m, \quad i \neq j \\
& l_{i i} \leq\left[A_{b}\right]_{i i} \leq 0, \quad i=1, \ldots, m \\
& \epsilon \leq c_{i} \leq 1 / \epsilon, \quad i=1, \ldots, n \\
& \delta_{i j}=1 \Leftrightarrow\left[A_{b}\right]_{i j}>\epsilon, \quad i, j=1, \ldots, m, \quad i \neq j \\
& F_{o b j}(\delta)=\sum_{\substack{m, j=1 \\
i \neq j}} \quad \delta_{i j} \quad \text { (obj. function) }
\end{aligned}
$$

density/sparsity:

Given: Y, A_{k}, constraints
To be computed: $A_{b}, T \Longrightarrow A_{k}^{\prime}$
Problem: using MILP for computing CRN realizations can be problematic for large networks (number of integer variables is too high)
(Computations can be parallelized (columnwise) in the case of dyn, eq.

Dense realization: a biological example

Biochemical switch in yeast cells (Conradi et al., PNAS, 2007) Original system and dense realization:

Different realizations: the Lorenz system

$$
\begin{aligned}
& \dot{x}_{1}=\sigma\left(x_{2}-x_{1}\right) \\
& \dot{x}_{2}=\rho x_{1}-x_{2}-x_{1} x_{3} \\
& \dot{x}_{3}=x_{1} x_{2}-\beta x_{3}
\end{aligned}
$$

not nonnegative : coordinates shift +2 possible transformations

Different realizations: the Lorenz system

Summary of results for the different kinetic realizations of the Lorenz system

Feature	SD-TS	X-factorable
R_{d}	51	44
R_{s}	13	12
R_{c}	6	4
C_{c}	12	8
no. of complexes in the canonical realization	13	15
no. of valid sparse realizations	5376	48
no. of realizations containing only core complexes	504	0
minimal no. of linkage classes	1	1
maximal no. of linkage classes	3	3
no. of weakly reversible realizations	0	0
minimal deficiency	7	8
maximal deficiency	9	9

Example: a simple DNA repairing mechanism

(Karschau et al., Biophysical Journal, 2011)

Sparse realizations of the DNA repairing system

System model:

kinetic equations:

$$
\begin{aligned}
& \dot{x}_{1}=k_{3} x_{3}-k_{1} x_{1} \\
& \dot{x}_{2}=k_{1} x_{1}-k_{2} x_{2} x_{4} \\
& \dot{x}_{3}=k_{2} x_{2} x_{4}-k_{3} x_{3} \\
& \dot{x}_{4}=k_{3} x_{3}-k_{2} x_{2} x_{4},
\end{aligned}
$$

variables: x_{1} - undamaged guanin bases, x_{2} - damaged guanin bases, x_{3} - guanin bases under repair, x_{4} - free repairing enzymes realizing complexes:

$$
\begin{array}{r}
C_{1}=X_{3}, \quad C_{2}=X_{1}+X_{3}, \quad C_{3}=X_{1}, \\
C_{4}=0, C_{5}=X_{1}+X_{2}, \quad C_{6}=X_{2}+X_{4} \\
C_{7}=X_{4}, C_{8}=X_{2}+X_{3}+X_{4} \\
C_{9}=X_{3}+X_{4}, \quad C_{10}=X_{2}
\end{array}
$$

computation results

Dynamically equivalent sparse

 realizations:
assuming sparsity is not enough for
structural uniqueness in genereal

Sparse realizations of the DNA repairing system

System model:

kinetic equations:

$$
\begin{aligned}
& \dot{x}_{1}=k_{3} x_{3}-k_{1} x_{1} \\
& \dot{x}_{2}=k_{1} x_{1}-k_{2} x_{2} x_{4} \\
& \dot{x}_{3}=k_{2} x_{2} x_{4}-k_{3} x_{3} \\
& \dot{x}_{4}=k_{3} x_{3}-k_{2} x_{2} x_{4},
\end{aligned}
$$

variables: x_{1} - undamaged guanin bases, x_{2} - damaged guanin bases, x_{3} - guanin bases under repair, x_{4} - free repairing enzymes realizing complexes:

$$
\begin{array}{r}
C_{1}=X_{3}, \quad C_{2}=X_{1}+X_{3}, \quad C_{3}=X_{1}, \\
C_{4}=0, \quad C_{5}=X_{1}+X_{2}, \quad C_{6}=X_{2}+X_{4} \\
C_{7}=X_{4}, C_{8}=X_{2}+X_{3}+X_{4}, \\
C_{9}=X_{3}+X_{4}, \quad C_{10}=X_{2}
\end{array}
$$

computation results

Dynamically equivalent sparse realizations:

assuming sparsity is not enough for structural uniqueness in genereal

Dense lin. conj. realizations: maximal super-structure

For a given complex set, the structure of dense realizations is unique and it contains all possible linearly conjugate CRN structures as subgraphs

Theorem (Johnston, Siegel, Szederkényi, 2012)

Consider a CRN given by the pair $\left(Y, A_{k}\right)$ and assume that A_{k}^{\prime} is such a Kirchhoff matrix that contains the maximal number of nonzero off-diagonal elements for which there exists a positive definite diagonal T matrix such that

$$
\begin{equation*}
Y \cdot A_{k}=T \cdot Y \cdot A_{k}^{\prime} . \tag{9}
\end{equation*}
$$

Then the directed unweighted reaction graph corresponding to any Kirchhoff matrix $A_{k}^{\prime \prime}$ for which there exists a positive definite diagonal $T^{\prime \prime}$ such that $Y \cdot A_{k}=T^{\prime \prime} \cdot Y \cdot A_{k}^{\prime \prime}$ is the subgraph of the reaction graph defined by A_{k}^{\prime}.

Proof

Proof.

(Indirect) Assume that $A_{k}^{\prime \prime}$ is such that

$$
\begin{equation*}
Y \cdot A_{k}=T^{\prime \prime} \cdot Y \cdot A_{k}^{\prime \prime} \tag{10}
\end{equation*}
$$

where $T^{\prime \prime}$ is a positive definite diagonal matrix, $A_{k}^{\prime \prime}$ is Kirchhoff matrix, and $\exists(i, j), i \neq j$ for which $\left[A_{k}^{\prime \prime}\right]_{i j}>0$, but $\left[A_{k}^{\prime}\right]_{i j}=0$. Then $T^{\prime \prime}=Q \cdot T$ for a positive diagonal Q matrix with $Q=T^{\prime \prime} \cdot T^{-1}$, and using (9) we can write:

$$
\begin{equation*}
T^{\prime \prime} \cdot Y \cdot A_{k}^{\prime}=Q \cdot T \cdot Y \cdot A_{k}^{\prime}=Q \cdot Y \cdot A_{k} . \tag{11}
\end{equation*}
$$

Now we proceed with the calculations as:

$$
\begin{equation*}
T^{\prime \prime} \cdot Y \cdot A_{k}^{\prime}+T^{\prime \prime} \cdot Y \cdot A_{k}^{\prime \prime}=T^{\prime \prime} \cdot Y \cdot\left(A_{k}^{\prime}+A_{k}^{\prime \prime}\right)=T^{\prime \prime} \cdot Y \cdot \bar{A}_{k}, \tag{12}
\end{equation*}
$$

where $\bar{A}_{k}=A_{k}^{\prime}+A_{k}^{\prime \prime}$ is clearly a valid Kirchhoff matrix.

Dense dyn. eq. realizations can be computed in polynomial time

The problem can be solved using $m(m-1)$ parallel LP steps (plus one final one):
Determining reactions in the dense realization

$$
\begin{align*}
& \text { for each } p, q=1, \ldots, m, \quad p \neq q \text { do: } \\
& \text { maximize } f_{p q}=\left[A_{k}\right]_{p, q} \\
& \text { subject to: } \\
& \quad Y \cdot A_{k}=M \\
& \quad \sum_{i=1}^{m}\left[A_{k}\right]_{i, j}=0, \quad j=1, \ldots, m \tag{13}\\
& 0 \leq\left[A_{k}\right]_{i, j} \leq U_{i j}, \quad i, j=1, \ldots, m, \quad i \neq j \\
& \quad\left[A_{k}\right]_{i, i} \leq 0, \quad i=1, \ldots, m
\end{align*}
$$

decision variables: off-diagonal entries of A_{k} role of $U_{i j}$: to avoid unbounded feasible solutions

$$
C_{q} \rightarrow C_{p} \text { is in the dense realization } \Longleftrightarrow \max f_{p q}>0
$$

Dense dyn. eq. realizations can be computed in polynomial time

A lower bound for the elements of A_{k}
Constraints in the previous LP steps are convex (trivially) \Longrightarrow

$$
\begin{equation*}
\epsilon_{i j}=\left[\frac{1}{m(m-1)} \sum_{\substack{p, q=1 \\ p \neq q}}^{m} \bar{A}_{k}^{p q}\right]_{i, j} \quad, i \neq j \tag{14}
\end{equation*}
$$

The last LP step

$$
\begin{align*}
& Y \cdot A_{k}=M, \\
& \sum_{i=\mathbf{1}}^{m}\left[A_{k}\right]_{i, j}=0, \quad j=1, \ldots, m, \\
& \epsilon_{i j} \leq\left[A_{k}\right]_{i, j} \leq U_{i j}, \quad i, j=1, \ldots, m, \quad i \neq j, \tag{15}\\
& {\left[A_{k}\right]_{i, i} \leq 0, \quad i=1, \ldots, m}
\end{align*}
$$

The dense dyn. eq. WR realization can be found in polynomial time

(G. Szederkényi, Zs. Tuza, K. M. Hangos. MATCH Comm. Math. Comp. Chem. 2012)

```
A
1 }\quad\mp@subsup{A}{k}{\mathrm{ out }}:=0\in\mp@subsup{\mathbb{R}}{}{m\timesm}; ExitCondition:=false
2 Y:= Y}\mp@subsup{}{(0)}{\mathbf{0}};\mp@subsup{A}{k}{}:=\mp@subsup{A}{k}{(\mathbf{0})};\mp@subsup{F}{\mathrm{ out }}{}:=\mathrm{ true; }\mathcal{K}:={};L:={}
while (ExitCondition=false) do
4 begin
5 if (\mathcal{K}\not={}) then Fout:=IsRemovable( }Y,\mp@subsup{A}{k}{},\mathcal{K})\mathrm{ ;
6 if ( }F\mathrm{ out =true) then
7 begin
8 A
            L:=FindCrossComponentEdges ( }\mp@subsup{A}{k}{})\mathrm{ ;
                if ( }L={})\mathrm{ then ExitCondition:=true; A}\mp@subsup{A}{k}{\mathrm{ out }}:=\mp@subsup{A}{k}{}
                else \mathcal{K}:=\mathcal{K}\cupL;
        end
        else ExitCondition:=true;
    end
    return A}\mp@subsup{A}{k}{\mathrm{ out ;}
```


Weak reversibility: example (1)

a) Original irreversible network (Johnston and Siegel, 2011)
b) published dyn. eq. WR realization

$$
\begin{aligned}
& \mathrm{X}_{1}+2 \mathrm{X}_{2} \xrightarrow{\epsilon} \mathrm{X}_{1} \\
& 2 \mathrm{X}_{1}+\mathrm{X}_{2} \xrightarrow{1} 3 \mathrm{X}_{2} \\
& \mathrm{X}_{1}+3 \mathrm{X}_{2} \xrightarrow{1} \mathrm{X}_{1}+\mathrm{X}_{2} \xrightarrow{1} 3 \mathrm{X}_{1}+\mathrm{X}_{2}
\end{aligned}
$$

Weak reversibility: example (2)

Structure of dense realization

Weak reversibility: example (3)

Operation of the algorithm

Weak reversibility: example (4)

Structure of the computed dyn. eq. dense WR realization (not complex balanced with the obtained parameters)

Linearly conjugate WR realizations

A simple example

Consider the kinetic system (Johnston, Siegel, Szederkényi, 2012)

$$
\begin{align*}
& \dot{x}_{1}=x_{1} x_{2}^{2}-2 x_{1}^{2}+x_{1} x_{3}^{2} \\
& \dot{x}_{2}=-x_{1}^{2} x_{2}^{2}+x_{1} x_{3}^{2} \tag{16}\\
& \dot{x}_{3}=x_{1}^{2}-3 x_{1} x_{3}^{2} .
\end{align*}
$$

Realizing complex set:

$$
\begin{aligned}
& C_{1}=X_{1}+2 X_{2}, C_{2}=2 X_{1}+2 X_{2}, C_{3}=2 X_{1}+X_{2}, \\
& C_{4}=2 X_{1}, C_{5}=X_{1}, C_{6}=2 X_{1}+X_{3}, C_{7}=X_{1}+2 X_{3} \\
& C_{8}=2 X_{1}+2 X_{3}, C_{9}=X_{1}+X_{2}+2 X_{3}, C_{10}=X_{1}+X_{3} .
\end{aligned}
$$

Linearly conjugate WR realizations

A simple example (continued)

optimization result: There is no dynamically equivalent WR realization However, there exist several linearly conjugate WR realizations :
(b) $\mathrm{X}_{1}+2 \mathrm{X}_{2} \xrightarrow{0.367} 2 \mathrm{X}_{1}+2 \mathrm{X}_{2}$

sparse $\left(c_{1}=20, c_{2}=2, c_{3}=5\right)$

$$
\text { dense }\left(c_{1}=20 / 3, c_{2}=20 / 33\right.
$$

$$
\left.c_{3}=5 / 3\right)
$$

Further solved problems

Solved for both the dynamically equivalent and the linearly conjugate cases:

- Minimizing/maximizing the number of complexes from a given set (it can be decided whether a reacting complex can be added to the system or not)
- Computing fully reversible realizations
- Computing complex balanced realizations
- Computing detailed balanced realizations
- Computing core reactions and core complexes
- Handling monomial coefficient intervals
- Computing all sparse realizations (efficiently)
- Computing WR realizations with the minimal deficiency
- Computing kinetic feedbacks for polynomial systems
(2) Basic notions: kinetic systems (CRNs) and optimization
(3) Properties and computation of CRN structures
- Computation of "dense" and "sparse" realizations
- Computation of weakly reversible realizations
- Computing linearly conjugate WR realizations with minimal deficiency

4 Kinetic feedbacks for polynomial systems
(5) Conclusions

Min. def. realizations: basis of the solution

to be minimized: $\delta=m-I-s$

- the set of complexes is given
- we allow isolated (non-reacting) complexes: they increase both m and I and do not change the deficiency
- weakly reversible networks: the dimension of the largest invariant linear space of the dynamics is equal to the dimension of the stoichiometric subspace s (known from literature)
- linear conjugacy (trivially) preserves the dimension of invariant linear spaces of mass-action systems
\Downarrow
- the dimension of s is the same for all linearly conjugate weakly reversible realizations
\Downarrow
- it is enough to maximize the number of linkage classes $(/)$

Example: min. def. realizations

consider the kinetic system:

$$
\begin{align*}
& \frac{d x_{1}}{d t}=1-x_{1}^{2}-x_{1}+x_{2} x_{3} \\
& \frac{d x_{2}}{d t}=2 x_{1}-2 x_{2} x_{3}-2 x_{2}^{2}+2 x_{3}^{2} \tag{17}\\
& \frac{d x_{3}}{d t}=x_{1}-x_{2} x_{3}+x_{2}^{2}-x_{3}^{2}
\end{align*}
$$

canonical realization:

Example: min. def. realizations

def. zero and def. two linearly conjugate WR realizations:
(a)

$$
\begin{aligned}
& \emptyset \stackrel{1 / 2}{\stackrel{1 / 2}{\rightleftarrows}} 2 X_{1} \\
& X_{1} \stackrel{1 / 2}{\rightleftarrows} X_{2}+X_{3} \\
& 2 X_{2} \stackrel{\rightleftarrows}{\rightleftarrows} 2 X_{1 / 2}
\end{aligned}
$$

(b)

Nonlinear input-affine systems

System representation (special): input-affine form set of nonlinear ODEs parameterized by inputs

$$
\begin{aligned}
& \dot{x}=f(x)+\sum_{i=1}^{p} g_{i}(x) u_{i}=f(x)+g(x) u \\
& y=h(x)
\end{aligned}
$$

$x(t) \in \mathbb{R}^{n}, u(t) \in \mathbb{R}^{p}, y(t) \in \mathbb{R}^{r}, \forall t \geq 0$
$f, g_{i} \in \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, h \in \mathbb{R}^{n} \rightarrow \mathbb{R}^{r}$

The concept of control and feedback

Control: sensing + feedback computation + actuation

may fundamentally change the behaviour (dynamical properties) of the original system

Feedback equivalence of input-affine systems

Ingredients:

(1) System model:

$$
\dot{x}=f(x)+g(x) u
$$

(2) Feedback:

$$
u=\alpha(x)+\beta(x) \tilde{u}
$$

(3) Coordinates transformation (local or global diffeomorphism):

$$
\tilde{x}=\phi(x)
$$

Goal: the controlled system (in the new coordinates) has some preferred property (e.g. stability, linearity, passivity, Hamiltonian structure etc.)

Feedback equivalence of input-affine systems

Controlled system model (input-affine):

$$
\begin{aligned}
\dot{\tilde{x}} & =\tilde{f}(\phi(x))+\tilde{g}(\phi(x)) \tilde{u} \\
\tilde{f}(\phi(x)) & =\frac{\partial \phi}{\partial x}(x)(f(x)+g(x) \alpha(x)) \\
\tilde{g}(\phi(x)) & =\frac{\partial \phi}{\partial x}(x)(g(x) \beta(x))
\end{aligned}
$$

Our goal: to obtain a weakly reversible kinetic system (with minimal deficiency)

Kinetic feedback

- goal: to transform a polynomial control system to (advantageous) kinetic form using feedback (i.e. feedback equivalence problem to a kinetic system)
- open loop model form:

$$
\begin{equation*}
\dot{x}=M \cdot \psi_{1}(x)+B u, \tag{18}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}$, is the state vector, $u \in \mathbb{R}^{p}$ is the input, $\psi_{1} \in \mathbb{R}^{n} \rightarrow \mathbb{R}^{m_{1}}$ contains the monomials of the open-loop system, $B \in \mathbb{R}^{n \times p}$ and $M \in \mathbb{R}^{n \times m_{1}}$.

- feedback form:

$$
\begin{equation*}
u=K \cdot \bar{\psi}(x) \tag{19}
\end{equation*}
$$

where $\bar{\psi}(x)=\left[\psi_{1}^{T}(x) \psi_{2}^{T}(x)\right]^{T}$ with $\psi_{2} \in \mathbb{R}^{n} \rightarrow \mathbb{R}^{m_{2}}$ containing possible additional monomials for the feedback, $B \in \mathbb{R}^{n \times m}$, and $K=\left[\begin{array}{ll}K_{1} & K_{2}\end{array}\right] \in \mathbb{R}^{p \times\left(m_{1}+m_{2}\right)}$.

Kinetic feedback

- closed loop dynamics

$$
\dot{x}=\underbrace{\left[\begin{array}{cc}
M+B K_{1} & B K_{2}
\end{array}\right]}_{\bar{M}}\left[\begin{array}{l}
\psi_{1}(x) \tag{20}\\
\psi_{2}(x)
\end{array}\right]=\bar{M} \cdot \bar{\psi}(x)
$$

- aim: to factorize \bar{M} as $\bar{M}=\bar{Y} \cdot \bar{A}_{k}$ where $\bar{Y} \in \mathbb{Z}_{\geq 0}^{n \times\left(m_{1}+m_{2}\right)}$, and $\bar{A}_{k} \in \mathbb{R}^{\left(m_{1}+m_{2}\right) \times\left(m_{1}+m_{2}\right)}$ is a valid Kirchhoff matrix (can be written as a linear programming problem, while other structural conditions might require MILP)
- It is straightforward to use a dynamic extension to increase the degrees of freedom

Dynamic kinetic feedback

Open loop system form:

$$
\begin{equation*}
\dot{x}^{(1)}=M_{11} \psi_{1}\left(x^{(1)}\right)+B u, \tag{21}
\end{equation*}
$$

where $x^{(1)} \in \mathbb{R}^{n}, M_{11 \in \mathbb{R}^{n \times m_{1}}}, \psi_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m_{1}}, B \in \mathbb{R}^{n \times p}$, and $u \in \mathbb{R}^{p}$. Equations of the dynamic extension:

$$
\begin{equation*}
\dot{x}^{(2)}=M_{21} \psi_{1}\left(x^{(1)}\right)+M_{22} \psi_{2}(x), \tag{22}
\end{equation*}
$$

where $x^{(2)} \in \mathbb{R}^{k}, M_{21} \in \mathbb{R}^{k \times m_{1}}, M_{22} \in \mathbb{R}^{k \times m_{2}}$. Moreover,

$$
x=\left[\begin{array}{l}
x^{(1)} \tag{23}\\
x^{(2)}
\end{array}\right] \in \mathbb{R}^{n+k}, \bar{\psi}(x)=\left[\begin{array}{c}
\psi_{1}\left(x^{(1)}\right) \\
\psi_{2}(x)
\end{array}\right],
$$

where $\psi_{2}: \mathbb{R}^{n+k} \rightarrow \mathbb{R}^{m_{2}}$.
Monomial feedback:

$$
\begin{equation*}
u=K \bar{\psi}(x)=K_{1} \psi_{1}+K_{2} \psi_{2}, \tag{24}
\end{equation*}
$$

where $K_{1} \in \mathbb{R}^{p \times m_{1}}, K_{2} \in \mathbb{R}^{p \times m_{2}}$, and $K=\left[\begin{array}{ll}K_{1} & K_{2}\end{array}\right]$.

Dynamic kinetic feedback

Controlled (closed loop) system:

$$
\dot{x}=\underbrace{\left[\begin{array}{ll}
M_{11}+B K_{1} & B K_{2} \tag{25}\\
M_{21} & M_{22}
\end{array}\right]}_{\bar{M}} \cdot \bar{\psi}(x)=\bar{M} \cdot \bar{\psi}(x)
$$

such that

$$
\begin{equation*}
\bar{M}=\bar{Y} \cdot \bar{A}_{k} \tag{26}
\end{equation*}
$$

where \bar{Y} is the new complex composition matrix and \bar{A}_{k} is the Kirchhoff matrix of a weakly reversible CRN

Kinetic feedback: example

Consider the polynomial system:

$$
\begin{align*}
& \dot{x}_{1}=1+x_{1} x_{2}+u \tag{27}\\
& \dot{x}_{2}=1-5 x_{1} x_{2} \tag{28}\\
& \dot{x}_{3}=4 x_{1} x_{2}-3 x_{3}^{2} \tag{29}
\end{align*}
$$

The feedback $u=-6 x_{1}^{2}+4 x_{4}$, and the dynamic extension: $\dot{x}_{4}=3 x_{1}^{2}-3 x_{4}$ results in a weakly reversible closed loop system:

Kinetic feedback: simulation results

Open loop and closed loop system

Summary

- a wide class of dynamical systems /phenomena can be described in the kinetic framework (strong results on the relation between stoichiometric composition, graph structure and dynamics)
- representation /coordinates system is important to solve certain system analysis/synthesis tasks stoichiometric composition, graph structure and dynamics)
- numerous important qualitative properties of CRN dynamics are not directly visible from the kinetic ODEs
- the directed graph structure corresponding to a given kinetic dynamics is non-unique (dynamical equivalence, linear conjugacy)
- preferred reaction graph structures can be found using appropriate factorization and optimization (LP, MILP), often large networks can also be handled
- dense linearly conjugate realizations form a maximal super-structure with a fixed complex set (can be found in polynomial time)
- first steps towards 'kinetic' feedbacks for polynomial systems to achieve robust stability

Acknowledgements

- Co-authors: Prof. Katalin M. Hangos, Dr. Tamás Péni, Zoltán Tuza, Attila Gábor, Dr. János Rudan, György Lipták, Bernadett Ács, Prof. Zsolt Tuza, Dr. Dávid Csercsik, Dr. Irene Otero Muras, Prof. Antonio A. Alonso, Prof. Julio R. Banga, Dr. Matthew D. Johnston, Prof. David Siegel
- Encouragement and helpful comments: Prof. Tamás Roska, Dr. János Tóth
- Grants and financial support:
- (Bio)Process Engineering Group, CSIC Marine Research Institute, Vigo, Spain
- Hungarian Scientific Research Fund (grant no. NF104706)
- PPKE KAP projects

Selected recent publications

G. Szederkényi, K. M. Hangos and Z. Tuza.

Finding weakly reversible realizations of chemical reaction networks using optimization.
MATCH Commun. Math. Comput. Chem., 67:193-212, 2012.
M. D. Johnston, D. Siegel and G. Szederkényi.

Computing weakly reversible linearly conjugate chemical reaction networks with minimal deficiency.
Mathematical Biosciences, 241:88-98, 2013.
Z. A. Tuza, G. Szederkényi, K. M. Hangos, A. A. Alonso and J. R. Banga.

Computing all sparse kinetic structures for a Lorenz system using optimization.
International Journal of Bifurcation and Chaos, 23:1350141, 2013.
J. Rudan, G. Szederkényi, K. M. Hangos and T. Péni.

Polynomial time algorithms to determine weakly reversible realizations of chemical reaction networks.
Journal of Mathematical Chemistry, 52:1386-1404, 2014.
G. Lipták, G. Szederkényi and K. M. Hangos.

Kinetic feedback computation for polynomial systems to achieve weak reversibility and minimal deficiency.
Proc. of 13th European Control Conference, ECC 2014, 06. 24 - 06. 27, 2014, Strasbourg, France, 2691-2696, 2013.

[^0]: chosen approach

