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Background and goals

“If all you have is a hammer, everything looks like a nail."

Background: computer science/engineering, (nonlinear) systems and
control theory (applied to thermodynamical, biochemical systems)
Aims

to illustrate the notion and significance of dynamical systems
a (draft) overview of the approach of systems and control theory
a more detailed introduction to kinetic models
to summarize our contributions

Motivation
to know and describe new system classes
a deep understanding of certain interesting phenomena in
technological and living systems
to improve/develop methods in modeling, analysis and control
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Introductory remarks and notions

the construction and application of mathematical models is essential
during the design/operation of technological systems and the
analysis/control of complex processes in living systems
description of quantities changing in space/time: dynamical models
(in a system and control theoretic framework)
the handling of nonlinearities is often necessary ⇒ it is
advantageous to choose model classes with good descriptive power
but having relatively simple mathematical structure
nonnegative (positive) systems : physical, chemical, biological,
pharmacokinetical (compartmental), transportation or process models
wih nonnegative (positive) state variables (non-positive systems can
often be transformed to nonnegative form)
autonomous nonlinear model: ẋ = f (x), x ∈ Rn,
nonnegativity condition: for xi = 0, fi (x) ≥ 0 ∀ x ∈ [0,∞)n,
i = 1, . . . , n
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Ingredients and approach

(bio)chemical reaction networks (CRNs)

interesting/useful class of nonnegative systems

dynamical description of (bio)chemical processes in a laboratory or industrial
environment

interesting from the point of view of nonlinear systems theory : suitable to
describe complex dynamical behaviour

optimization

important decision support tool, fast HW/SW development

essential in the solution of many scientific/engineering problems

deciding solvability and searching for certain solutions is often possible, even if the
problem is hard (or impossible) to treat algebraically (e.g. LMIs, BMIs, SOS
problems, diagonal stabilizability etc.)

chosen approach

the dynamics is given, and we are searching for CRN structures that "realize" this
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Essentially nonnegative systems

the function f = [f1 . . . fn]T : [0,∞)n → Rn is essentially
nonnegative , if whenever xi = 0, fi (x) ≥ 0 ∀ x ∈ [0,∞)n for
i = 1, . . . , n
linear case: f (x) = Ax , A is a so-called Metzler-matrix (off-diagonal
elements are nonnegative)
Consider the following nonlinear autonomous system:

ẋ = f (x), x(0) = x0 (1)

where f : X → Rn is locally Lipschitz, X is an open subset of Rn, and
x0 ∈ X . Assume furthermore that [0,∞)n = R̄n

+ ⊂ X . Then the
nonnegative orthant is invariant for the dynamics (1) if and only if f
is essentially nonnegative.
Kinetic systems are (naturally) essentially nonnegative
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The notion of CRNs with mass action kinetics

Elementary reaction step (example)
2H2 + O2 −→ 2H2O

Definition of CRNs
species : S = {X1,X2, . . . ,Xn}
complexes : C = {C1,C2, . . . ,Cm}, where

Ci =
n∑

j=1

αijXj , i = 1, . . . ,m

and αij ≥ 0 are the stoichiometric coefficients

reactions : R = {(Ci ,Cj) | Ci → Cj}, weighted by kij reaction rate coefficients

the reaction rate corresponding to the Ci

kij

→ Cj elementary reaction step:

ρij(x) = kij

n∏
i=1

[Xi ]
αij = kij

n∏
i=1

x
αij

i
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Weighted directed graph of a reaction network

directed graph G consists of a finite nonempty set Vd of vertices and a
finite set Ed of ordered pairs of distinct vertices (directed edges), i.e.
G = (Vd ,Ed)

vertices correspond to complexes:
Vd = {C1,C2, . . .Cm}

directed edges represent reactions:
(Ci ,Cj) ∈ Ed if complex Ci is transformed to Cj

reaction rate coeffs. : kj ≥ 0, j = 1, . . . , r (weights of the corresponding
directed edges)

linkage class : connected component (complexes of the set are linked to
each other in the reaction graph but not to any other complex)

reversible reaction : both Ci → Cj and Cj → Ci are present

weakly reversible network : linkage classes are the strongly connected
components
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Dynamical description

stoichiometrix matrix (Y ) and reaction monomials :

Yij = αij , ϕj(x) =
n∏

i=1

x
Yij

i , j = 1, ..,m; i = 1, ..., n

Kirchhoff-matrix of a CRN: Ak ∈ Rm×m

[Ak ]ij =

{
−
∑m

l=1,l 6=i kil if i = j

kji if i 6= j

(column conservation matrix with non/positive diagonal and non-negative
off-diagonal entries)

ODEs:
dx

dt
= Y · Ak︸ ︷︷ ︸

M

· ϕ(x) = M · ϕ(x) (2)

When is a set of polynomial ODEs "kinetic"? =⇒ simple necessary and sufficient
conditions with a constructive proof containing the algorithm to build the so-called
canonical CRN structure. (Hárs & Tóth, 1981)

G. Szederkényi (PPKE, MTA SZTAKI) computation of kinetic systems Math. Mod. seminar 11 / 68



Kinetic polynomial systems

An autonomous system of the form ẋ = f (x) is kinetic , if
f (x) = Y · Ak · ϕ(x), where (Y ,Ak) are such that they encode a CRN
(constraints!) =⇒ (Y ,Ak) is called the kinetic realization of the function f

Necessary and sufficient conditions for kinetic realizability:

fi (x) = −xigi (x) + hi (x), i = 1, . . . , n

where gi and hi are polinomials with nonnegative coefficients

There exists a systematic algorithm for determining one possible CRN
structure from kinetic polynomial equations (Hárs és Tóth, 1981)
But: in general, it inserts more complex/reactions into the graph than the
necessary minimum (but it is very important to determine an initial
realization)

What to do with nonnegative but not kinetic polynomial systems?
a) state dependent time-rescaling, b) embedding into (generalized)
Lotka-Volterra form =⇒ the set of polynomial systems that are kinetic or
are transformable to kinetic form is quite wide
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Realization of kinetic systems: algorithm
Form of coordinates functions:

fi (x) =

ri∑
j=1

mij

n∏
k=1

xbjk (3)

Realization algorithm (Tóth J. és Hárs V., 1981)
for each i = 1, . . . , n and for each j = 1, . . . , ri do:

1 Cj = Bj + sign(mij) · ei
2 Add the following reaction to the CRN graph:

n∑
k=1

bjkXk −→
n∑

k=1

cjkXk

where the reaction rate coefficient is |mij |, and
Cj = [cj1 . . . cjn].
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Example: "kinetic RLC circuit" – 1

Original system:
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Example: "kinetic RLC circuit" – 2

Physical model and state equations:
Voltage along a loop: −ube + uR + uL + uC = 0
Ohm’s law: UR = R · i
Dynamics of linear capacitor and inductor:

uL = L · di
dt

, i = C · dUC

dt

state equations

di

dt
= −R

L
· i − 1

L
uC +

1
L
ube

duC
dt

=
1
C
· i
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Example: "kinetic RLC circuit" – 3

Model equations (after coordinates shift (x∗1 , x∗2 ) and time-rescaling):
variables: i  x1, uC  x2, (ube = 0)

x ′1 = −k1x
2
1 x2 − k2x1x

2
2 + c1x1x2 (4)

x ′2 = k3x1x
2
2 − c2x1x2 (5)

where: k1 = R/L, k2 = 1/L, k3 = 1/C , c1 = (R/L)x∗1 + (1/L)x∗2 , c2 = (1/C )x∗2
Output of realization algorithm:
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Example: "kinetic RLC circuit" – 4

Operation of the realization algorithm
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Example: "kinetic RLC circuit" – 4

Operation of the realization algorithm

The above CRN is the so-called canonical structure
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Summary of some non-negative system classes
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Mixed integer linear programming

mixed integer linear programming (MILP) problem with k variables
(y ∈ Rk) and p constraints:

min. cT y
subject to:
A1y = b1

A2y ≤ b2 (6)
li ≤ yi ≤ ui i = 1, . . . , k
yj is integer for j ∈ I , I ⊆ {1, . . . , k}

where c ∈ Rk , A1 ∈ Rp1×k , A2 ∈ Rp2×k , and p1 + p2 = p.
generally NP-hard (but there exist efficient solvers)
certain propositional logic problems can be (algorithmically)
rewritten into MILP problems
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MILP and propositional calculus

literal : a statement (such as x ≤ 0) that can have a truth value of
"T" (true) or "F" false
compound statement: literals combined into more complex expressions
using the following connectives: "∧" (and), "∨" (or), "∼" (not),
"→" (implies), "↔" (if and only if), "⊕" (exclusive or)
a propositional logic problem, where a statement S1 must be proved to
be true given a set of compound statements containing literals
S1, . . . ,Sn, can be solved by means of a linear integer program:

logical variables δi (δi ∈ {0, 1}) are associated with the literals Si
compound statements can be algorithmically translated to linear
inequalities involving the logical variables δi
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Compound statements and corresponding linear
(in)equalities

truth table of connectives:
S1 S2 ∼ S1 S1 ∨ S2 S1 ∧ S2 S1 → S2 S1 ↔ S2 S1 ⊕ S2
T T F T T T T F
T F F T F F F T
F T T T F T F T
F F T F F T T F

compound statements and linear (in)equalities:
compound statement equivalent linear equality/inequality
S1 ∨ S2 δ1 + δ2 ≥ 1
S1 ∧ S2 δ1 = 1, δ2 = 1
∼ S1 δ1 = 0
S1 → S2 δ1 − δ2 ≤ 0
S1 ↔ S2 δ1 − δ2 = 0
S1 ⊕ S2 δ1 + δ2 = 1
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Stoichiometric subspace and deficiency

reaction vectors : vij =

{
[Y ]·,j − [Y ]·,i for (Ci ,Cj) ∈ R
0 otherwise

stoichiometric space : S = span{vij | (Ci ,Cj) ∈ R}

the trajectories are restricted to the stoichiometric compatibility classes :
(x0 + S) ∩ Rn

>0

deficiency of a CRN : δ = m − `− s,
where m is the number of stoichiometrically distinct complexes, ` is the
number of linkage classes, and s is the dimension of the stoichiometric
subspace ( depends only on stoichiometry and network structure but not on
the parameters, realization property )

an equilibrium concentration x∗ ∈ Rn
>0 of a mass-action system is called a

complex balanced equilibrium concentration if Ak · ϕ(x∗) = 0.
( system property : there exists a complex balanced equlibrium ⇒ all
equilibrium concentrations are complex balanced)

G. Szederkényi (PPKE, MTA SZTAKI) computation of kinetic systems Math. Mod. seminar 26 / 68



Relations between network structure and
dynamics

complex balance ⇒ weak reversibility
complex balance ⇒ precisely one equilibrium point in each positive
stoichiometric compatibility class that is (at least) locally
asymptotically stable relative to its compatibility class with a known
logarithmic Lyapunov function
Deficiency Zero Theorem : a CRN with any positive parameters (rate
coefficients) is complex balanced ⇐⇒ the network is weakly reversible
and has a deficiency of zero ( robust stability property )
Deficiency One Theorem : ordered structure of equilibrium points
Global Attractor Conjecture : complex balance ⇒(?) global stability
Persistency Conjecture : weak reversibility ⇒(?) persistent dynamics
Boundedness Conjecture : weak reversibility ⇒(?) bounded
trajectories
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Dynamical equivalence (macro-equivalence)

CRNs with different structure/parametrization but giving exactly the
same dynamics
example: dynamically equivalent networks (realizations)

Dynamics:

ẋ1 = 3k1x32 − k2x
3
1

ẋ2 = −3k1x32 + k2x
3
1

Dyn. eq. condition:

Y (1)A
(1)
k ϕ(1)(x) = Y (2)A

(2)
k ϕ(2)(x),

∀x ∈ Rn
+

it is of interest to search for such dyn. eq. structures (if they exist)
from which we obtain useful information about the system dynamics
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Linearly conjugate networks
Introduction of linear conjugacy : (Johnston and Siegel, J. Math. Chem. 2011)

known: the kinetic structure is preserved up to the positive rescaling and/or
reordering of the variables
generalization of linear equivalence
special case of kinetic lumpings
Two CRNs denoted by Σ and Σ′ are said to be linearly conjugate if there is a
positive diagonal linear mapping which takes the flow of one network to the other
(dynamical equivalence is a special case)
Consider two mass-action systems Σ = (S, C,R) and Σ′ = (S, C′,R′) and let Y
be the stoichiometric matrix corresponding to the complexes in either network.
Consider a kinetics matrix Ak corresponding to Σ and suppose that there is a
kinetics matrix Ab with the same structure as Σ′ and a vector c ∈ Rn

>0 such that

Y · Ak︸ ︷︷ ︸
M

= T · Y · Ab (7)

where T =diag{c}. Then Σ is linearly conjugate to Σ′ with kinetics matrix

A′k = Ab · diag {ϕ(c)} . (8)
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Dynamical equivalence and linear conjugacy –
literature

F. Horn and R. Jackson. General mass action kinetics. Arch. Rational
Mech. Anal., 47:81-116, 1972.
V. Hárs and J. Tóth. On the inverse problem of reaction kinetics,
Qualitative Theory of Differential Equations, 30:363-369, 1981.
G. Craciun and C. Pantea. Identifiability of chemical reaction
networks. Journal of Mathematical Chemistry, 44:244-259, 2008.
M. D. Johnston and D. Siegel. Linear conjugacy of chemical reaction
networks. Journal of Mathematical Chemistry, 49:1263-1282, 2011.
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Original problem statement and starting analogies

Problem statement of computing CRN topologies corresponding to a
set of kinetic differential equations with required properties appeared
about 30 years ago in: Hárs and Tóth, "On the inverse problem of
reaction kinetics", Qualitative Theory of Differential Equations,
30:363-369, 1981.
Similar (unsolved) problem in the theory of electrical circuits:
constructing a linear electrical network with a minimal number of R, L,
C elements corresponding to a given transfer function (R.E. Kalman,
probably substantially more complex than our problem)
The idea of terminology ’realization’ came from linear control theory,
where matrices (A,B,C ,D) are called a realization of a transfer
function H(s), if

H(s) = C (sI − A)−1B + D
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Dense and sparse realizations: goals

Given: (Y ,Ak) CRN or kinetic polynomial system
Aim: to compute the following linearly conjugate networks:

sparse realization (Y S ,As
k) (contains the minimal number of reactions)

dense realization (Y S ,As
k) (contains the maximal number of reactions)

Assumption: the set of usable complexes is given
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Dense and sparse realizations: computation

kinetic constraints:

M = Y · Ak

Y · Ab = T−1 ·M, T = diag(c1, . . . , cn),∑m
i=1[Ab]ij = 0, j = 1, . . . ,m

[Ab]ij ≥ 0, i , j = 1, . . . ,m, i 6= j
[Ab]ii ≤ 0, i = 1, . . . ,m

lower/upper bounds:
0 ≤ [Ab]ij ≤ lij , i , j = 1, . . . ,m, i 6= j
lii ≤ [Ab]ii ≤ 0, i = 1, . . . ,m
ε ≤ ci ≤ 1/ε, i = 1, . . . , n

density/sparsity:
δij = 1⇔ [Ab]ij > ε, i , j = 1, . . . ,m, i 6= j
Fobj(δ) =

∑m
i, j = 1
i 6= j

δij (obj. function)

Given: Y , Ak , constraints
To be computed: Ab, T =⇒ A′k
Problem: using MILP for computing CRN realizations can be problematic for
large networks (number of integer variables is too high)
(Computations can be parallelized (columnwise) in the case of dyn. eq.)
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Dense realization: a biological example

Biochemical switch in yeast cells (Conradi et al., PNAS, 2007)
Original system and dense realization:
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Different realizations: the Lorenz system

ẋ1 = σ(x2 − x1)

ẋ2 = ρx1 − x2 − x1x3

ẋ3 = x1x2 − βx3

not nonnegative : coordinates shift
+ 2 possible transformations
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Different realizations: the Lorenz system

Summary of results for the different kinetic realizations of the Lorenz
system

Feature SD-TS X-factorable

Rd 51 44
Rs 13 12
Rc 6 4
Cc 12 8

no. of complexes in the canonical realization 13 15
no. of valid sparse realizations 5376 48

no. of realizations containing only core complexes 504 0
minimal no. of linkage classes 1 1
maximal no. of linkage classes 3 3

no. of weakly reversible realizations 0 0
minimal deficiency 7 8
maximal deficiency 9 9
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Example: a simple DNA repairing mechanism

(Karschau et al., Biophysical Journal, 2011)
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Sparse realizations of the DNA repairing system

System model:

kinetic equations:

ẋ1 = k3x3 − k1x1

ẋ2 = k1x1 − k2x2x4

ẋ3 = k2x2x4 − k3x3

ẋ4 = k3x3 − k2x2x4,

variables: x1 - undamaged guanin bases,
x2 - damaged guanin bases, x3 - guanin
bases under repair, x4 - free repairing
enzymes
realizing complexes:

C1 = X3, C2 = X1 + X3, C3 = X1,

C4 = 0, C5 = X1 + X2, C6 = X2 + X4,

C7 = X4,C8 = X2 + X3 + X4,

C9 = X3 + X4, C10 = X2

computation results

Dynamically equivalent sparse
realizations:

assuming sparsity is not enough for
structural uniqueness in genereal
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Dense lin. conj. realizations: maximal
super-structure

For a given complex set, the structure of dense realizations is unique and it
contains all possible linearly conjugate CRN structures as subgraphs

Theorem (Johnston, Siegel, Szederkényi, 2012)

Consider a CRN given by the pair (Y ,Ak) and assume that A′k is such a Kirchhoff
matrix that contains the maximal number of nonzero off-diagonal elements for
which there exists a positive definite diagonal T matrix such that

Y · Ak = T · Y · A′k . (9)

Then the directed unweighted reaction graph corresponding to any Kirchhoff
matrix A′′k for which there exists a positive definite diagonal T ′′ such that
Y · Ak = T ′′ · Y · A′′k is the subgraph of the reaction graph defined by A′k .
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Proof

Proof.
(Indirect) Assume that A′′k is such that

Y · Ak = T ′′ · Y · A′′k , (10)

where T ′′ is a positive definite diagonal matrix, A′′k is Kirchhoff matrix, and
∃(i , j), i 6= j for which [A′′k ]ij > 0, but [A′k ]ij = 0. Then T ′′ = Q · T for a
positive diagonal Q matrix with Q = T ′′ ·T−1, and using (9) we can write:

T ′′ · Y · A′k = Q · T · Y · A′k = Q · Y · Ak . (11)

Now we proceed with the calculations as:

T ′′ · Y · A′k + T ′′ · Y · A′′k = T ′′ · Y · (A′k + A′′k) = T ′′ · Y · Āk , (12)

where Āk = A′k + A′′k is clearly a valid Kirchhoff matrix.
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Dense dyn. eq. realizations can be computed in
polynomial time
The problem can be solved using m(m − 1) parallel LP steps (plus one final one):

Determining reactions in the dense realization

for each p, q = 1, . . . ,m, p 6= q do:

maximize fpq = [Ak ]p,q

subject to :

Y · Ak = M,
m∑
i=1

[Ak ]i,j = 0, j = 1, . . . ,m, (13)

0 ≤ [Ak ]i,j ≤ Uij , i , j = 1, . . . ,m, i 6= j ,

[Ak ]i,i ≤ 0, i = 1, . . . ,m,

decision variables: off-diagonal entries of Ak

role of Uij : to avoid unbounded feasible solutions
Cq → Cp is in the dense realization ⇐⇒ max fpq > 0
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Dense dyn. eq. realizations can be computed in
polynomial time

A lower bound for the elements of Ak

Constraints in the previous LP steps are convex (trivially) =⇒

εij =


1

m(m − 1)

m∑
p, q = 1
p 6= q

Āpq
k


i,j

, i 6= j. (14)

The last LP step

Y · Ak = M,

m∑
i=1

[Ak ]i,j = 0, j = 1, . . . ,m,

εij ≤ [Ak ]i,j ≤ Uij , i , j = 1, . . . ,m, i 6= j, (15)

[Ak ]i,i ≤ 0, i = 1, . . . ,m.
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The dense dyn. eq. WR realization can be found
in polynomial time

(G. Szederkényi, Zs. Tuza, K. M. Hangos. MATCH Comm. Math. Comp. Chem. 2012)

Aout
k =FindWeaklyReversibleRealization(Y (0),A(0)

k
)

1 Aout
k :=0 ∈ Rm×m; ExitCondition:=false;

2 Y := Y (0); Ak := A
(0)
k

; Fout :=true; K := {}; L := {};
3 while (ExitCondition=false) do
4 begin
5 if (K 6= {}) then Fout :=IsRemovable(Y ,Ak ,K);
6 if (Fout =true) then
7 begin
8 Ak :=FindConstrDenseRealization(Y ,Ak ,K) ;
9 L:=FindCrossComponentEdges(Ak );
10 if (L = {}) then ExitCondition:=true; Aout

k :=Ak ;
11 else K := K ∪ L;
12 end
13 else ExitCondition:=true;
14 end
15 return Aout

k ;
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Weak reversibility: example (1)

a) Original irreversible network (Johnston and Siegel, 2011)
b) published dyn. eq. WR realization
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Weak reversibility: example (2)

Structure of dense realization
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Weak reversibility: example (3)

Operation of the algorithm
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Weak reversibility: example (4)

Structure of the computed dyn. eq. dense WR realization
(not complex balanced with the obtained parameters)
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Linearly conjugate WR realizations

A simple example
Consider the kinetic system (Johnston, Siegel, Szederkényi, 2012)

ẋ1 = x1x
2
2 − 2x2

1 + x1x
2
3

ẋ2 = −x2
1 x

2
2 + x1x

2
3

ẋ3 = x2
1 − 3x1x

2
3 .

(16)

Realizing complex set:

C1 = X1 + 2X2,C2 = 2X1 + 2X2,C3 = 2X1 + X2,

C4 = 2X1,C5 = X1,C6 = 2X1 + X3,C7 = X1 + 2X3

C8 = 2X1 + 2X3,C9 = X1 + X2 + 2X3,C10 = X1 + X3.
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Linearly conjugate WR realizations

A simple example (continued)
optimization result: There is no dynamically equivalent WR realization
However, there exist several linearly conjugate WR realizations :

X1+2X2 2X1+2X2

2X1X1+2X3

4

400
25

40

125

X1+2X2 2X1+2X2

2X1X1+2X3 2X1+X2

0.367

13.9 0.926 13.1
1.35

0.816

13.3 1.35

0.926

0.926

(a) (b)

sparse (c1 = 20, c2 = 2, c3 = 5) dense (c1 = 20/3, c2 = 20/33,
c3 = 5/3)
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Further solved problems

Solved for both the dynamically equivalent and the linearly conjugate cases:

Minimizing/maximizing the number of complexes from a given set (it
can be decided whether a reacting complex can be added to the
system or not)
Computing fully reversible realizations
Computing complex balanced realizations
Computing detailed balanced realizations
Computing core reactions and core complexes
Handling monomial coefficient intervals
Computing all sparse realizations (efficiently)
Computing WR realizations with the minimal deficiency
Computing kinetic feedbacks for polynomial systems
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1 Motivation and introduction

2 Basic notions: kinetic systems (CRNs) and optimization

3 Properties and computation of CRN structures
Computation of "dense" and "sparse" realizations
Computation of weakly reversible realizations
Computing linearly conjugate WR realizations with minimal deficiency

4 Kinetic feedbacks for polynomial systems

5 Conclusions
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Min. def. realizations: basis of the solution

to be minimized: δ = m − l − s

the set of complexes is given
we allow isolated (non-reacting) complexes: they increase both m and
l and do not change the deficiency
weakly reversible networks: the dimension of the largest invariant
linear space of the dynamics is equal to the dimension of the
stoichiometric subspace s (known from literature)
linear conjugacy (trivially) preserves the dimension of invariant linear
spaces of mass-action systems

⇓

the dimension of s is the same for all linearly conjugate weakly
reversible realizations

⇓
it is enough to maximize the number of linkage classes (l)
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Example: min. def. realizations

consider the kinetic system:
dx1
dt

= 1− x21 − x1 + x2x3

dx2
dt

= 2x1 − 2x2x3 − 2x22 + 2x23
dx3
dt

= x1 − x2x3 + x22 − x23 .

(17)

canonical realization:

X1

2X1

X1+X2

X1+X3

2X2
2X2+X3

X2

X1+X2+X3
X2+X3

X3

2X3 X2+2X3

1

1
1

1

2
1

1

1

2

1

2

2

0
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Example: min. def. realizations

def. zero and def. two linearly conjugate WR realizations:

X2+X3X1

2X1

2X2 2X3

1/2

1/2

1

2

2

1/2

(a) (b)
0

X2+X3X1

1

2

2X1

0 2X2

2X3

1
1

111

1

1

4
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Nonlinear input-affine systems

System representation (special): input-affine form
set of nonlinear ODEs parameterized by inputs

ẋ = f (x) +

p∑
i=1

gi (x)ui = f (x) + g(x)u

y = h(x)

x(t) ∈ Rn, u(t) ∈ Rp, y(t) ∈ Rr , ∀t ≥ 0
f , gi ∈ Rn → Rn, h ∈ Rn → Rr
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The concept of control and feedback

Control: sensing + feedback computation + actuation

may fundamentally change the behaviour (dynamical properties) of the
original system
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Feedback equivalence of input-affine systems

Ingredients:
1 System model :

ẋ = f (x) + g(x)u

2 Feedback :

u = α(x) + β(x)ũ

3 Coordinates transformation (local or global diffeomorphism):

x̃ = φ(x)

Goal: the controlled system (in the new coordinates) has some preferred
property (e.g. stability, linearity, passivity, Hamiltonian structure etc.)
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Feedback equivalence of input-affine systems

Controlled system model (input-affine):

˙̃x = f̃ (φ(x)) + g̃(φ(x))ũ

f̃ (φ(x)) =
∂φ

∂x
(x)(f (x) + g(x)α(x))

g̃(φ(x)) =
∂φ

∂x
(x)(g(x)β(x))

Our goal: to obtain a weakly reversible kinetic system (with minimal
deficiency)
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Kinetic feedback

goal: to transform a polynomial control system to (advantageous)
kinetic form using feedback (i.e. feedback equivalence problem to a
kinetic system )
open loop model form:

ẋ = M · ψ1(x) + Bu, (18)

where x ∈ Rn, is the state vector, u ∈ Rp is the input,
ψ1 ∈ Rn → Rm1 contains the monomials of the open-loop system,
B ∈ Rn×pand M ∈ Rn×m1 .
feedback form:

u = K · ψ(x), (19)

where ψ(x) = [ψT
1 (x) ψT

2 (x)]T with ψ2 ∈ Rn → Rm2 containing
possible additional monomials for the feedback, B ∈ Rn×m, and
K = [K1 K2] ∈ Rp×(m1+m2).
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Kinetic feedback

closed loop dynamics

ẋ =
[
M + BK1 BK2

]︸ ︷︷ ︸
M

[
ψ1(x)
ψ2(x)

]
= M · ψ(x). (20)

aim: to factorize M as M = Y · Ak where Y ∈ Zn×(m1+m2)
≥0 , and

Ak ∈ R(m1+m2)×(m1+m2) is a valid Kirchhoff matrix
(can be written as a linear programming problem , while other
structural conditions might require MILP)
It is straightforward to use a dynamic extension to increase the
degrees of freedom
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Dynamic kinetic feedback
Open loop system form:

ẋ (1) = M11ψ1(x (1)) + Bu, (21)

where x (1) ∈ Rn, M11∈Rn×m1 , ψ1 : Rn → Rm1 , B ∈ Rn×p, and u ∈ Rp.
Equations of the dynamic extension:

ẋ (2) = M21ψ1(x (1)) + M22ψ2(x), (22)

where x (2) ∈ Rk , M21 ∈ Rk×m1 , M22 ∈ Rk×m2 . Moreover,

x =

[
x (1)

x (2)

]
∈ Rn+k , ψ(x) =

[
ψ1(x (1))
ψ2(x)

]
, (23)

where ψ2 : Rn+k → Rm2 .
Monomial feedback:

u = Kψ(x) = K1ψ1 + K2ψ2, (24)

where K1 ∈ Rp×m1 , K2 ∈ Rp×m2 , and K = [K1 K2].
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Dynamic kinetic feedback

Controlled (closed loop) system:

ẋ =

[
M11 + BK1 BK2
M21 M22

]
︸ ︷︷ ︸

M

·ψ(x) = M · ψ(x) (25)

such that

M = Y · Ak (26)

where Y is the new complex composition matrix and Ak is the Kirchhoff
matrix of a weakly reversible CRN
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Kinetic feedback: example

Consider the polynomial system:

ẋ1 = 1 + x1x2 + u (27)
ẋ2 = 1− 5x1x2 (28)

ẋ3 = 4x1x2 − 3x23 (29)

The feedback u = −6x21 + 4x4, and the dynamic extension: ẋ4 = 3x21 − 3x4
results in a weakly reversible closed loop system:
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Kinetic feedback: simulation results

Open loop and closed loop system
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Summary

a wide class of dynamical systems /phenomena can be described in the
kinetic framework (strong results on the relation between stoichiometric
composition, graph structure and dynamics)

representation /coordinates system is important to solve certain system
analysis/synthesis tasks stoichiometric composition, graph structure and
dynamics)

numerous important qualitative properties of CRN dynamics are not directly
visible from the kinetic ODEs

the directed graph structure corresponding to a given kinetic dynamics is
non-unique (dynamical equivalence, linear conjugacy)

preferred reaction graph structures can be found using appropriate
factorization and optimization (LP, MILP), often large networks can also be
handled

dense linearly conjugate realizations form a maximal super-structure with a
fixed complex set (can be found in polynomial time)

first steps towards ’kinetic’ feedbacks for polynomial systems to achieve
robust stability

joint work between mathematicians, engineers (computer, electrical,
chemical) and physicists
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