EPIDEMIC PROPAGATION ON NETWORKS: A DIFFERENTIAL EQUATION APPROACH

Peter L. Simon

Department of Applied Analysis and Computational Mathematics, Institute of Mathematics, Eötvös Loránd University Budapest, and

Numerical Analysis and Large Networks Research Group, Hungarian Academy of Sciences

SIS EPIDEMIC ON A NETWORK

A graph with N nodes is given
The nodes can be susceptible (S) or infected (I)

SIS EPIDEMIC ON A NETWORK

A graph with N nodes is given
The nodes can be susceptible (S) or infected (I)
Transitions:

- $S \rightarrow I$, rate: $k \tau, k$ is the number of I neighbours.
- $I \rightarrow S$, rate: γ

SIS EPIDEMIC ON A NETWORK

A graph with N nodes is given
The nodes can be susceptible (S) or infected (I)
Transitions:

- $S \rightarrow I$, rate: $k \tau, k$ is the number of I neighbours.
- $I \rightarrow S$, rate: γ

SIS EPIDEMIC ON A NETWORK

A graph with N nodes is given
The nodes can be susceptible (S) or infected (I)
Transitions:

- $S \rightarrow I$, rate: $k \tau, k$ is the number of I neighbours.
- $I \rightarrow S$, rate: γ

AIM: Derive simple models describing the change of the expected number of infected nodes $[\Pi(t)$.

SIS EPIDEMIC ON A NETWORK

A graph with N nodes is given
The nodes can be susceptible (S) or infected (I)
Transitions:

- $S \rightarrow I$, rate: $k \tau, k$ is the number of I neighbours.
- $I \rightarrow S$, rate: γ

AIM: Derive simple models describing the change of the expected number of infected nodes $[\Pi(t)$.

Known models:

- Mean-field equation
- Pairwise model
- Compact pairwise model
- ...

SIR EPIDEMIC ON A NETWORK

A graph with N nodes is given
The nodes can be susceptible (S), infected (I) or removed (R)

SIR EPIDEMIC ON A NETWORK

A graph with N nodes is given
The nodes can be susceptible (S), infected (I) or removed (R)
(R has no effect on the propagation)

SIR EPIDEMIC ON A NETWORK

A graph with N nodes is given
The nodes can be susceptible (S), infected (I) or removed (R)
Transitions:

- $S \rightarrow I$, rate: $k \tau, k$ is the number of I neighbours.
- $I \rightarrow R$, rate: γ

SIR EPIDEMIC ON A NETWORK

A graph with N nodes is given
The nodes can be susceptible (S), infected (I) or removed (R)
Example: Influenza in Hungary in 2016.
Weekly number of new reported cases for 100,000 persons.

SIR EPIDEMIC ON A NETWORK

A graph with N nodes is given
The nodes can be susceptible (S), infected (I) or removed (R)
Further models: SEIR (E stands for exposed), SIRS, SEIRS, ...

SIR EPIDEMIC ON A NETWORK

A graph with N nodes is given
The nodes can be susceptible (S), infected (I) or removed (R)
Further models: SEIR (E stands for exposed), SIRS, SEIRS, ...
For simplicity, we present the theory for the SIS.

MAster equations for SIS EPIDEMIC

State space for a triangle graph

MAster equations for SIS EPIDEMIC

State space for a triangle graph

- Infection: SIS \rightarrow IIS
- Recovery: SIS \rightarrow SSS

MASTER EQUATIONS FOR SIS EPIDEMIC

State space for a triangle graph

- Infection: SIS \rightarrow IIS
- Recovery: SIS \rightarrow SSS

Master equations are formulated for the probabilities of states.

MAster equations for SIS EPIDEMIC

State space for a triangle graph

- Infection: SIS \rightarrow IIS
- Recovery: SIS \rightarrow SSS

Master equations are formulated for the probabilities of states.
$X_{S I S}(t)$ is the probability of state SIS at time t.

MASTER EQUATIONS

Master equations

$$
\begin{aligned}
\dot{X}_{S S S} & =\gamma\left(X_{S S I}+X_{S I S}+X_{I S S}\right), \\
\dot{X}_{S S I} & =\gamma\left(X_{S I I}+X_{I S I}\right)-(2 \tau+\gamma) X_{S S I}, \\
\dot{X}_{S I S} & =\gamma\left(X_{S I I}+X_{I I S}\right)-(2 \tau+\gamma) X_{S I S}, \\
\dot{X}_{I S S} & =\gamma\left(X_{I S I}+X_{I I S}\right)-(2 \tau+\gamma) X_{I S S}, \\
\dot{X}_{S I I} & =\gamma X_{I I I}+\tau\left(X_{S S I}+X_{S I S}\right)-2(\tau+\gamma) X_{S I I}, \\
\dot{X}_{I S I} & =\gamma X_{I I I}+\tau\left(X_{S S I}+X_{I S S}\right)-2(\tau+\gamma) X_{I S I}, \\
\dot{X}_{I I S} & =\gamma X_{I I I}+\tau\left(X_{S I S}+X_{I S S}\right)-2(\tau+\gamma) X_{I I S}, \\
\dot{X}_{I I I} & =-3 \gamma X_{I I I}+2 \tau\left(X_{S I I}+X_{I S I}+X_{I I S}\right),
\end{aligned}
$$

MASTER EQUATIONS

Master equations

$$
\begin{aligned}
\dot{X}_{S S S} & =\gamma\left(X_{S S I}+X_{S I S}+X_{I S S}\right) \\
\dot{X}_{S S I} & =\gamma\left(X_{S I I}+X_{I S I}\right)-(2 \tau+\gamma) X_{S S I} \\
\dot{X}_{S I S} & =\gamma\left(X_{S I I}+X_{I I S}\right)-(2 \tau+\gamma) X_{S I S} \\
\dot{X}_{I S S} & =\gamma\left(X_{I S I}+X_{I I S}\right)-(2 \tau+\gamma) X_{I S S} \\
\dot{X}_{S I I} & =\gamma X_{I I I}+\tau\left(X_{S S I}+X_{S I S}\right)-2(\tau+\gamma) X_{S I I} \\
\dot{X}_{I S I} & =\gamma X_{I I I}+\tau\left(X_{S S I}+X_{I S S}\right)-2(\tau+\gamma) X_{I S I}, \\
\dot{X}_{I I S} & =\gamma X_{I I I}+\tau\left(X_{S I S}+X_{I S S}\right)-2(\tau+\gamma) X_{I I S} \\
\dot{X}_{I I I} & =-3 \gamma X_{I I I}+2 \tau\left(X_{S I I}+X_{I S I}+X_{I I S}\right)
\end{aligned}
$$

2^{N} equations for a graph with N nodes

MASTER EQUATIONS

Master equations

$$
\begin{aligned}
\dot{X}_{S S S} & =\gamma\left(X_{S S I}+X_{S I S}+X_{I S S}\right) \\
\dot{X}_{S S I} & =\gamma\left(X_{S I I}+X_{I S I}\right)-(2 \tau+\gamma) X_{S S I}, \\
\dot{X}_{S I S} & =\gamma\left(X_{S I I}+X_{I I S}\right)-(2 \tau+\gamma) X_{S I S}, \\
\dot{X}_{I S S} & =\gamma\left(X_{I S I}+X_{I I S}\right)-(2 \tau+\gamma) X_{I S S}, \\
\dot{X}_{S I I} & =\gamma X_{I I I}+\tau\left(X_{S S I}+X_{S I S}\right)-2(\tau+\gamma) X_{S I I} \\
\dot{X}_{I S I} & =\gamma X_{I I I}+\tau\left(X_{S S I}+X_{I S S}\right)-2(\tau+\gamma) X_{I S I}, \\
\dot{X}_{I I S} & =\gamma X_{I I I}+\tau\left(X_{S I S}+X_{I S S}\right)-2(\tau+\gamma) X_{I I S}, \\
\dot{X}_{I I I} & =-3 \gamma X_{I I I}+2 \tau\left(X_{S I I}+X_{I S I}+X_{I I S}\right),
\end{aligned}
$$

The size of the system can be reduced by using the automorphisms of the graph:

Simon, P.L., Taylor, M., Kiss., I.Z., Exact epidemic models on graphs using graph-automorphism driven lumping, J. Math. Biol., 62 (2011).

POPULATION LEVEL QUANTITIES

$[I](t)$ and $[S I](t)$: expected values of I nodes and $S I$ edges at time t

POPULATION LEVEL QUANTITIES

$[I(t)$ and $[S I](t)$: expected values of I nodes and $S I$ edges at time t $[\dot{I}]=\tau[S I]-\gamma[I]$ holds for any graph.

POPULATION LEVEL QUANTITIES

$[I(t)$ and $[S I](t)$: expected values of I nodes and $S I$ edges at time t $[\dot{I}]=\tau[S I]-\gamma[I]$ holds for any graph.

Approximation $[S I] \approx n \frac{[I}{N}[S]$, where the average degree is n

POPULATION LEVEL QUANTITIES

$[I(t)$ and $[S I](t)$: expected values of I nodes and $S I$ edges at time t
$[\dot{I}]=\tau[S I]-\gamma[I]$ holds for any graph.
Approximation $[S I] \approx n \frac{[I}{N}[S]$, where the average degree is n
Approximating differential equation for [$/$]

$$
\dot{\tilde{I}}=\tau \frac{n_{N}}{\tilde{N}}(N-\tilde{I})-\gamma \tilde{I} .
$$

POPULATION LEVEL QUANTITIES

$[I(t)$ and $[S I](t)$: expected values of I nodes and $S I$ edges at time t
$[!]=\tau[S I]-\gamma[I]$ holds for any graph.
Approximation $[S I] \approx n \frac{[I}{N}[S]$, where the average degree is n
Approximating differential equation for [/]

$$
\dot{\tilde{I}}=\tau \frac{n}{N} \tilde{I}(N-\tilde{I})-\gamma \tilde{I} .
$$

This is the well-known compartmental model, which does not give accurate result for networks.
Reason: the approximation assumes random distribution of infected nodes.

POPULATION LEVEL QUANTITIES

$[I(t)$ and $[S I](t)$: expected values of I nodes and $S I$ edges at time t
$[!]=\tau[S I]-\gamma[I]$ holds for any graph.
Approximation $[S I] \approx n \frac{[I]}{N}[S]$, where the average degree is n
Approximating differential equation for [$/$]

$$
\dot{\tilde{I}}=\tau \frac{n}{N} \tilde{I}(N-\tilde{I})-\gamma \tilde{I} .
$$

This is the well-known compartmental model, which does not give accurate result for networks.
Reason: the approximation assumes random distribution of infected nodes.

Better idea: derive a differential equation for [$S I$], this leaded to the pairwise model.
Keeling, M.J., The effects of local spatial structure on epidemiological invasions, Proc. R. Soc.
Lond. B 266 (1999), 859-867.

PAIRWISE APPROXIMATION

Keep the exact equation $\quad[\dot{I}]=\tau[S I]-\gamma[I]$ and derive a differential equation for [SI].

PAIRWISE APPROXIMATION

Keep the exact equation $[i]=\tau[S]-\gamma[]$ and derive a differential equation for [$S I$].

Exact differential equations:

$$
\begin{aligned}
{[\dot{I}] } & =\tau[S I]-\gamma[I] \\
{[\dot{S \prime}] } & =\gamma([I I]-[S I])+\tau([S S I]-[I S I]-[S I]) \\
{[I I] } & =-2 \gamma[I I]+2 \tau([I S I]+[S I]) \\
{[\dot{S S}] } & =2 \gamma[S I]-2 \tau[S S I] .
\end{aligned}
$$

PAIRWISE APPROXIMATION

Keep the exact equation $[\dot{]}]=\tau[S]-\gamma[]$
and derive a differential equation for [$S I$].
Exact differential equations:

$$
\begin{aligned}
{[\dot{I}] } & =\tau[S I]-\gamma[I], \\
{[\dot{S} \|] } & =\gamma([I I]-[S I])+\tau([S S I]-[I S I]-[S I]), \\
{[i /] } & =-2 \gamma[I I]+2 \tau([I S I]+[S I], \\
{[\dot{S}]] } & =2 \gamma[S I]-2 \tau[S S I] .
\end{aligned}
$$

Approximation:
$[A B C] \approx \frac{n-1}{n} \frac{[A B][B C]}{[B]}, n$ average degree

Keep the exact equation $[i]=\tau[S]-\gamma[]$ and derive a differential equation for $[S I]$.

Exact differential equations:

$$
\begin{aligned}
{[\dot{I}] } & =\tau[S I]-\gamma[I], \\
{[\dot{S} \|] } & =\gamma([I I]-[S I])+\tau([S S I]-[I S I]-[S I), \\
{[i /] } & =-2 \gamma[I /]+2 \tau([I S I]+[S I], \\
{[\dot{S}]] } & =2 \gamma[S I]-2 \tau[S S I] .
\end{aligned}
$$

Approximation:

$$
[A B C] \approx \frac{n-1}{n} \frac{[A B][B C]}{[B]}, \quad n \text { average degree }
$$

M. Taylor, P. L. Simon, D. M. Green, T. House, I. Z. Kiss, From Markovian to pairwise epidemic models and the performance of moment closure approximations, J. Math. Biol. 64 (2012), 1021-1042.

COMPARISON OF ODE MODELS TO SIMULATION

Regular random graph with $N=1000$ nodes, average degree $n=20$, $\gamma=1$, critical value of τ from compartmental model: $\tau_{c r}=\gamma / n$

COMPARISON OF ODE MODELS TO SIMULATION

Regular random graph with $N=1000$ nodes, average degree $n=20$, $\gamma=1$, critical value of τ from compartmental model: $\tau_{c r}=\gamma / n$

COMPARISON OF ODE MODELS TO SIMULATION

Regular random graph with $N=1000$ nodes, average degree $n=20$, $\gamma=1$, critical value of τ from compartmental model: $\tau_{c r}=\gamma / n$

Mean-field: dashed, Pairwise: continuous Simulation (average of 200 runs): grey thick curve

COMPARISON OF ODE MODELS TO SIMULATION

Regular random graph with $N=1000$ nodes, average degree $n=20$, $\gamma=1$, critical value of τ from compartmental model: $\tau_{c r}=\gamma / n$

$\tau=\tau_{c r} \Leftrightarrow$ basic reproduction number $R_{0}=1$.

COMPARISON OF ODE MODELS TO SIMULATION

Bimodal random graph with $N=1000$ nodes, average degree $n=20, \gamma=1, \tau=2 \tau_{c r}=2 \gamma / n$ $N / 2$ nodes have degree $d_{1}, N / 2$ nodes have degree d_{2}.

COMPARISON OF ODE MODELS TO SIMULATION

Bimodal random graph with $N=1000$ nodes, average degree $n=20, \gamma=1, \tau=2 \tau_{c r}=2 \gamma / n$ $N / 2$ nodes have degree $d_{1}, N / 2$ nodes have degree d_{2}.

COMPARISON OF ODE MODELS TO SIMULATION

Bimodal random graph with $N=1000$ nodes, average degree $n=20, \gamma=1, \tau=2 \tau_{c r}=2 \gamma / n$ $N / 2$ nodes have degree $d_{1}, N / 2$ nodes have degree d_{2}.

Mean-field: dashed, Pairwise: continuous Simulation (average of 200 runs): grey thick curve

COMPARISON OF ODE MODELS TO SIMULATION

Bimodal random graph with $N=1000$ nodes, average degree $n=20, \gamma=1, \tau=2 \tau_{c r}=2 \gamma / n$ $N / 2$ nodes have degree $d_{1}, N / 2$ nodes have degree d_{2}.

Reason of inaccuracy: in the closure $[A B C] \approx \frac{n-1}{n} \frac{[A B][B C]}{[B]}$ it is assumed that each node has the same degree n.

What can we learn from the Ode models?

Mean-field model at the level of singles:

$$
[\dot{I}]=\tau \frac{n}{N}[I](N-[I])-\gamma[I] .
$$

WHAT CAN WE LEARN FROM THE ODE MODELS?

Mean-field model at the level of singles:

$$
[\dot{l}]=\tau \frac{n}{N}[I](N-[I])-\gamma[I] .
$$

Two steady states: disease-free, $[/]=0$, endemic, $[I]=N-N \frac{\gamma}{\tau n}$.

What can we learn from the Ode models?

Mean-field model at the level of singles:

$$
[\dot{I}]=\tau \frac{n}{N}[I](N-[I])-\gamma[I] .
$$

Two steady states: disease-free, $[/]=0$, endemic, $[I]=N-N \frac{\gamma}{\tau n}$.
Transcritical bifurcation at $\tau n=\gamma$, i.e. when $\boldsymbol{R}_{0}=1$.

What can we learn from the ode models?

Mean-field model at the level of singles:

$$
[\dot{I}]=\tau \frac{n}{N}[I](N-[I])-\gamma[I] .
$$

Two steady states: disease-free, $[/]=0$, endemic, $[I]=N-N \frac{\gamma}{\tau n}$.
Transcritical bifurcation at $\tau n=\gamma$, i.e. when $\boldsymbol{R}_{0}=1$.
If $\tau n<\gamma$, then the disease-free steady state is globally stable.

WHAT CAN WE LEARN FROM THE ODE MODELS?

Mean-field model at the level of singles:

$$
[\dot{I}]=\tau \frac{n}{N}[I](N-[I])-\gamma[I] .
$$

Two steady states: disease-free, $[/]=0$, endemic, $[I]=N-N \frac{\gamma}{\tau n}$.
Transcritical bifurcation at $\tau n=\gamma$, i.e. when $\boldsymbol{R}_{0}=1$.
If $\tau n<\gamma$, then the disease-free steady state is globally stable.
If $\tau n>\gamma$, then the endemic steady state is globally stable.

WHAT CAN WE LEARN FROM THE ODE MODELS?

Pairwise model at the level of pairs:

$$
\begin{aligned}
{[\dot{I}] } & =\tau[S I]-\gamma[I] \\
{[\dot{S I}] } & =\gamma([I I]-[S I])+\tau([S S I]-[I S I]-[S I]) \\
{[I I] } & =-2 \gamma[I I]+2 \tau([I S I]+[S I]) \\
{[\dot{S S}] } & =2 \gamma[S I]-2 \tau[S S I]
\end{aligned}
$$

WHAT CAN WE LEARN FROM THE ODE MODELS?

Pairwise model at the level of pairs:

$$
\begin{aligned}
{[\dot{I}] } & =\tau[S I]-\gamma[I] \\
{[\dot{S I}] } & =\gamma([I I]-[S I])+\tau([S S I]-[I S I]-[S I]) \\
{[I I] } & =-2 \gamma[I I]+2 \tau([I S I]+[S I]) \\
{[\dot{S S}] } & =2 \gamma[S I]-2 \tau[S S I]
\end{aligned}
$$

Approximation:

$$
[A B C] \approx \frac{n-1}{n} \frac{[A B][B C]}{[B]}, \quad n \text { average degree }
$$

WHAT CAN WE LEARN FROM THE ODE MODELS?

Pairwise model at the level of pairs:

$$
\begin{aligned}
{[\dot{I}] } & =\tau[S I]-\gamma[I] \\
{[\dot{S I}] } & =\gamma([I I]-[S I])+\tau([S S I]-[I S I]-[S I]) \\
{[i I] } & =-2 \gamma[I I]+2 \tau([I S I]+[S I]) \\
{[\dot{S S}] } & =2 \gamma[S I]-2 \tau[S S I]
\end{aligned}
$$

Two steady states: disease-free $[/]=0$, endemic $[/]=N-N \frac{\gamma(n-1)}{\tau n(n-1)-\gamma}$.

WHAT CAN WE LEARN FROM THE ODE MODELS?

Pairwise model at the level of pairs:

$$
\begin{aligned}
{[\dot{I}] } & =\tau[S I]-\gamma[I] \\
{[\dot{S I}] } & =\gamma([I I]-[S I])+\tau([S S I]-[I S I]-[S I]) \\
{[i I] } & =-2 \gamma[I I]+2 \tau([I S I]+[S I]) \\
{[\dot{S S}] } & =2 \gamma[S I]-2 \tau[S S I]
\end{aligned}
$$

Two steady states: disease-free $[/]=0$,
endemic [$/]=N-N \frac{\gamma(n-1)}{\tau n(n-1)-\gamma}$.
Transcritical bifurcation at $\tau(n-1)=\gamma$.

WHAT CAN WE LEARN FROM THE ODE MODELS?

Pairwise model at the level of pairs:

$$
\begin{aligned}
{[\dot{I}] } & =\tau[S I]-\gamma[I] \\
{[\dot{S I}] } & =\gamma([I I]-[S I])+\tau([S S I]-[I S I]-[S I]) \\
{[I I] } & =-2 \gamma[I I]+2 \tau([I S I]+[S I]) \\
{[\dot{S S}] } & =2 \gamma[S I]-2 \tau[S S I]
\end{aligned}
$$

Two steady states: disease-free $[I]=0$,
endemic $[/]=N-N \frac{\gamma(n-1)}{\tau n(n-1)-\gamma}$.
Transcritical bifurcation at $\tau(n-1)=\gamma$.
If $\tau(n-1)<\gamma$, then the disease-free steady state is globally stable.

WHAT CAN WE LEARN FROM THE ODE MODELS?

Pairwise model at the level of pairs:

$$
\begin{aligned}
{[\dot{I}] } & =\tau[S I]-\gamma[I] \\
{[\dot{S \prime}] } & =\gamma([I I]-[S I])+\tau([S S I]-[I S I]-[S I]) \\
{[i I] } & =-2 \gamma[I I]+2 \tau([I S I]+[S I]) \\
{[\dot{S S}] } & =2 \gamma[S I]-2 \tau[S S I] .
\end{aligned}
$$

Two steady states: disease-free $[/]=0$,
endemic [$/]=N-N \frac{\gamma(n-1)}{\tau n(n-1)-\gamma}$.
Transcritical bifurcation at $\tau(n-1)=\gamma$.
If $\tau(n-1)<\gamma$, then the disease-free steady state is globally stable.
If $\tau(n-1)>\gamma$, then the endemic steady state is globally stable.

DEGREE-BASED MODELS

There are N_{k} nodes with degree d_{k} for $k=1,2, \ldots, K$.

DEGREE-BASED MODELS

There are N_{k} nodes with degree d_{k} for $k=1,2, \ldots, K$.
[S_{k}]: expected number of susceptible nodes of degree d_{k},
[$S_{k} I$]: expected number of edges connecting an infected node to a susceptible node of degree d_{k}

DEGREE-BASED MODELS

There are N_{k} nodes with degree d_{k} for $k=1,2, \ldots, K$.
[S_{k}]: expected number of susceptible nodes of degree d_{k},
[$S_{k} l$]: expected number of edges connecting an infected node to a susceptible node of degree d_{k}

Differential equations are needed for the new unknowns.

DEGREE-BASED MODELS

There are N_{k} nodes with degree d_{k} for $k=1,2, \ldots, K$.
[S_{k}]: expected number of susceptible nodes of degree d_{k},
[$S_{k} I$]: expected number of edges connecting an infected node to a susceptible node of degree d_{k}

Differential equations are needed for the new unknowns.
$\left[\dot{S}_{k}\right]=\gamma\left[I_{k}\right]-\tau\left[S_{k}\right], \quad k=1,2, \ldots, K$.

DEGREE-BASED MODELS

There are N_{k} nodes with degree d_{k} for $k=1,2, \ldots, K$.
[S_{k}]: expected number of susceptible nodes of degree d_{k},
[$S_{k} l$]: expected number of edges connecting an infected node to a susceptible node of degree d_{k}

Differential equations are needed for the new unknowns.
$\left.\left[\dot{S}_{k}\right]=\gamma\left[I_{k}\right]-\tau\left[S_{k}\right]\right], \quad k=1,2, \ldots, K$.
Closure: $\left[S_{k} \Pi\right.$] can be expressed in terms of singles, $\left[S_{k}\right]$,
or in terms of pairs, [SI], and singles.

DEGREE-BASED MODELS

$$
\left[\dot{S}_{k}\right]=\gamma\left[I_{k}\right]-\tau\left[S_{k} I\right], \quad k=1,2, \ldots, K, \text { where }\left[I_{k}\right]=N_{k}-\left[S_{k}\right]
$$

DEGREE-BASED MODELS

$\left[\dot{S}_{k}\right]=\gamma\left[I_{k}\right]-\tau\left[S_{k} \rrbracket, \quad k=1,2, \ldots, K\right.$, where $\left[K_{k}\right]=N_{k}-\left[S_{k}\right]$.
Closure at the level of singles:

$$
\left[S_{K} I\right] \approx\left[S_{k}\right] \frac{\sum_{l=1}^{K} d_{l}\left[l_{l}\right]}{\sum_{l=1}^{K} d_{l} N_{l}}
$$

DEGREE-BASED MODELS

$\left[\dot{S}_{k}\right]=\gamma\left[I_{k}\right]-\tau\left[S_{k} \rrbracket, \quad k=1,2, \ldots, K\right.$, where $\left[K_{k}\right]=N_{k}-\left[S_{k}\right]$.
Closure at the level of pairs:

$$
\left.\left[S_{k}\right]\right] \approx\left[S \| \frac{d_{k}\left[S_{k}\right]}{\sum_{l=1}^{K} d_{[}\left[S_{l}\right]}\right.
$$

DEGREE-BASED MODELS

$$
\left[\dot{S}_{k}\right]=\gamma\left[I_{k}\right]-\tau\left[S_{k} I\right], \quad k=1,2, \ldots, K \text {, where }\left[K_{k}\right]=N_{k}-\left[S_{k}\right] .
$$

Closure at the level of pairs:

$$
\left.\left[S_{k}\right]\right] \approx\left[S \| \frac{d_{k}\left[S_{k}\right]}{\sum_{l=1}^{K} d_{[}\left[S_{l}\right]}\right.
$$

Differential equations for the pairs are also needed:

$$
\begin{aligned}
{[\dot{S} I] } & =\gamma([I I]-[S I])+\tau([S S I]-[I S I]-[S I]) \\
{[\dot{I}] } & =-2 \gamma[I I]+2 \tau([I S I]+[S I]), \\
{[\dot{S S}] } & =2 \gamma[S I]-2 \tau[S S I] .
\end{aligned}
$$

DEGREE-BASED MODELS

$\left[\dot{S}_{k}\right]=\gamma\left[I_{k}\right]-\tau\left[S_{k} \rrbracket, \quad k=1,2, \ldots, K\right.$, where $\left[K_{k}\right]=N_{k}-\left[S_{k}\right]$.
Closure at the level of pairs:

$$
\left[S_{k}\right] \approx\left[S \| \frac{d_{k}\left[S_{k}\right]}{\sum_{l=1}^{K} d_{[}\left[S_{l}\right]}\right.
$$

Differential equations for the pairs are also needed:

$$
\begin{aligned}
{[\dot{S} I] } & =\gamma([I I]-[S I])+\tau([S S I]-[I S I]-[S I]), \\
{[i]] } & =-2 \gamma[I I]+2 \tau([I S I]+[S I], \\
{[\dot{S S}] } & =2 \gamma[S I]-2 \tau[S S I] .
\end{aligned}
$$

Triple closures:

$$
[A S I]=\sum_{k=1}^{K}\left[A S_{k} \Pi\right], \quad\left[A S_{k} I\right] \approx \frac{d_{k}-1}{d_{k}} \frac{\left[A S_{k}\right]\left[S_{k} I\right]}{\left[S_{k}\right]}
$$

DEGREE-BASED MODELS

$$
\left[\dot{S}_{k}\right]=\gamma\left[I_{k}\right]-\tau\left[S_{k}\right], \quad k=1,2, \ldots, K, \text { where }\left[K_{k}\right]=N_{k}-\left[S_{k}\right] .
$$

Closure at the level of pairs:

$$
\left[S_{k}\right] \approx\left[S \| \frac{d_{k}\left[S_{k}\right]}{\sum_{l=1}^{K} d_{l}\left[S_{l}\right]}\right.
$$

Differential equations for the pairs are also needed:

$$
\begin{aligned}
{\left[\begin{array}{l}
S
\end{array}\right] } & =\gamma([I I]-[S I])+\tau([S S I]-[I S I]-[S I]) \\
{[i] } & =-2 \gamma[I I]+2 \tau([I S I]+[S I], \\
{[\dot{S S}] } & =2 \gamma[S I]-2 \tau[S S I] .
\end{aligned}
$$

Triple closures:

$$
[A S I]=\sum_{k=1}^{K}\left[A S_{k} I\right], \quad\left[A S_{k} I\right] \approx \frac{d_{k}-1}{d_{k}} \frac{\left[A S_{k}\right]\left[S_{k} /\right]}{\left[S_{k}\right]}
$$

Compact pairwise model: $K+3$ equations

COMPARISON OF ODE MODELS TO SIMULATION

Bimodal random graph with $N=1000$ nodes, average degree $n_{1}=20, \gamma=1, \tau=3 \gamma n_{1} / n_{2}, \quad n_{i}=\sum d_{k}^{i} p_{k}$ $N / 2$ nodes have degree $d_{1}=5, N / 2$ nodes have degree $d_{2}=35$.

COMPARISON OF ODE MODELS TO SIMULATION

Bimodal random graph with $N=1000$ nodes, average degree $n_{1}=20, \gamma=1, \tau=3 \gamma n_{1} / n_{2}, \quad n_{i}=\sum d_{k}^{i} p_{k}$ $N / 2$ nodes have degree $d_{1}=5, N / 2$ nodes have degree $d_{2}=35$.

COMPARISON OF ODE MODELS TO SIMULATION

Bimodal random graph with $N=1000$ nodes, average degree $n_{1}=20, \gamma=1, \tau=3 \gamma n_{1} / n_{2}, \quad n_{i}=\sum d_{k}^{i} p_{k}$ $N / 2$ nodes have degree $d_{1}=5, N / 2$ nodes have degree $d_{2}=35$.

Pairwise: dashed, Compact pairwise: continuous red, Simulation (average of 200 runs): grey thick curve

SIS EPIDEMIC ON A STATIC NETWORK

A graph with N nodes is given
The nodes can be susceptible (S) or infected (I)

SIS EPIDEMIC ON A STATIC NETWORK

A graph with N nodes is given
The nodes can be susceptible (S) or infected (I)
Transitions:

- $S \rightarrow I$, rate: $k \tau, k$ is the number of I neighbours.
- $I \rightarrow S$, rate: γ

SIS EPIDEMIC ON A STATIC NETWORK

A graph with N nodes is given
The nodes can be susceptible (S) or infected (I)
Transitions:

- $S \rightarrow I$, rate: $k \tau, k$ is the number of I neighbours.
- $I \rightarrow S$, rate: γ

AIM: Derive a simple system of differential equations for the expected number of infected nodes $[I(t)$.

SIS EPIDEMIC ON A STATIC NETWORK

A graph with N nodes is given
The nodes can be susceptible (S) or infected (I)
Transitions:

- $S \rightarrow I$, rate: $k \tau, k$ is the number of I neighbours.
- $I \rightarrow S$, rate: γ

Models:

- Mean-field: no network structure
- Pairwise: regular random graph
- Compact pairwise: configuration model with given degree distribution
- I do not follow this direction now (e.g. clustering)

SIS EPIDEMIC ON A STATIC NETWORK

A graph with N nodes is given
The nodes can be susceptible (S) or infected (I)
Transitions:

- $S \rightarrow I$, rate: $k \tau, k$ is the number of I neighbours.
- $I \rightarrow S$, rate: γ

Models:

- Mean-field: no network structure
- Pairwise: regular random graph
- Compact pairwise: configuration model with given degree distribution
- I do not follow this direction now (e.g. clustering)

Analysis of the ODE models

ANALYSIS OF THE ODE MODELS

Degree-based mean-field model at the level of singles:
$\left[\dot{S}_{k}\right]=\gamma\left[I_{k}\right]-\tau\left[S_{k} /\right], \quad k=1,2, \ldots, K$, where $\left[I_{k}\right]=N_{k}-\left[S_{k}\right]$.

ANALYSIS OF THE ODE MODELS

Degree-based mean-field model at the level of singles:
$\left[\dot{S}_{k}\right]=\gamma\left[I_{k}\right]-\tau\left[S_{k} /\right], \quad k=1,2, \ldots, K$, where $\left[I_{k}\right]=N_{k}-\left[S_{k}\right]$.
Closure:

$$
\left[S_{k} I\right] \approx\left[S_{k}\right] \frac{\sum_{l=1}^{K} d_{l}\left[I_{l}\right]}{\sum_{l=1}^{K} d_{l} N_{l}}
$$

ANALYSIS OF THE ODE MODELS

Degree-based mean-field model at the level of singles:

$$
\left[\dot{S_{k}}\right]=\gamma\left[I_{k}\right]-\tau\left[S_{k} /\right], \quad k=1,2, \ldots, K, \text { where }\left[I_{k}\right]=N_{k}-\left[S_{k}\right] .
$$

Closure:

$$
\left[S_{k} \Pi\right] \approx\left[S_{k}\right] \frac{\sum_{l=1}^{K} d_{l}\left[I_{l}\right]}{\sum_{l=1}^{K} d_{l} N_{l}}
$$

Two steady states: disease-free and endemic.

ANALYSIS OF THE ODE MODELS

Degree-based mean-field model at the level of singles:
$\left[\dot{S}_{k}\right]=\gamma\left[I_{k}\right]-\tau\left[S_{k} I\right], \quad k=1,2, \ldots, K$, where $\left[I_{k}\right]=N_{k}-\left[S_{k}\right]$.
Closure:

$$
\left[S_{k} I\right] \approx\left[S_{k}\right] \frac{\sum_{l=1}^{K} d_{l}\left[I_{l}\right]}{\sum_{l=1}^{K} d_{l} N_{l}}
$$

Two steady states: disease-free and endemic.
Transcritical bifurcation at $\tau\left\langle d^{2}\right\rangle=\gamma\langle d\rangle$, where
$\langle d\rangle=\frac{1}{N} \sum_{k=1}^{K} d_{k} N_{k}$ and $\left\langle d^{2}\right\rangle=\frac{1}{N} \sum_{k=1}^{K} d_{k}^{2} N_{k}$.

ANALYSIS OF THE ODE MODELS

Degree-based mean-field model at the level of singles:

$$
\left[\dot{S_{k}}\right]=\gamma\left[I_{k}\right]-\tau\left[S_{k} /\right], \quad k=1,2, \ldots, K, \text { where }\left[I_{k}\right]=N_{k}-\left[S_{k}\right] .
$$

Closure:

$$
\left[S_{k} \Pi\right] \approx\left[S_{k}\right] \frac{\sum_{l=1}^{K} d_{l}\left[I_{l}\right]}{\sum_{l=1}^{K} d_{l} N_{l}}
$$

Two steady states: disease-free and endemic.
Transcritical bifurcation at $\tau\left\langle d^{2}\right\rangle=\gamma\langle d\rangle$, where
$\langle d\rangle=\frac{1}{N} \sum_{k=1}^{K} d_{k} N_{k}$ and $\left\langle d^{2}\right\rangle=\frac{1}{N} \sum_{k=1}^{K} d_{k}^{2} N_{k}$.
If $\tau\left\langle d^{2}\right\rangle\langle\gamma\langle d\rangle$, then the disease-free steady state is globally stable.

ANALYSIS OF THE ODE MODELS

Degree-based mean-field model at the level of singles:

$$
\left[\dot{S_{k}}\right]=\gamma\left[I_{k}\right]-\tau\left[S_{k} /\right], \quad k=1,2, \ldots, K, \text { where }\left[I_{k}\right]=N_{k}-\left[S_{k}\right] .
$$

Closure:

$$
\left[S_{k} I\right] \approx\left[S_{k}\right] \frac{\sum_{l=1}^{K} d_{l}\left[I_{l}\right]}{\sum_{l=1}^{K} d_{l} N_{l}}
$$

Two steady states: disease-free and endemic.
Transcritical bifurcation at $\tau\left\langle d^{2}\right\rangle=\gamma\langle d\rangle$, where
$\langle d\rangle=\frac{1}{N} \sum_{k=1}^{K} d_{k} N_{k}$ and $\left\langle d^{2}\right\rangle=\frac{1}{N} \sum_{k=1}^{K} d_{k}^{2} N_{k}$.
If $\tau\left\langle d^{2}\right\rangle\langle\gamma\langle d\rangle$, then the disease-free steady state is globally stable.
If $\tau\left\langle d^{2}\right\rangle>\gamma\langle d\rangle$, then the endemic steady state is globally stable.

ANALYSIS OF THE ODE MODELS

Compact pairwise model:

$$
\begin{aligned}
{\left[\dot{S}_{k}\right] } & =\gamma\left[I_{k}\right]-\tau\left[S_{k} I\right] \\
{[\dot{S} I] } & =\gamma([I I]-[S I])+\tau([S S I]-[I S I]-[S I]) \\
{[I I] } & =-2 \gamma[I I]+2 \tau([I S I]+[S I]) \\
{[\dot{S S}] } & =2 \gamma[S I]-2 \tau[S S I]
\end{aligned}
$$

ANALYSIS OF THE ODE MODELS

Compact pairwise model:

$$
\begin{aligned}
{\left[\dot{S_{k}}\right] } & =\gamma\left[I_{k}\right]-\tau\left[S_{k} I\right] \\
{[\dot{S I}] } & =\gamma([I I]-[S I])+\tau([S S I]-[I S I]-[S I]) \\
{[I I] } & =-2 \gamma[I I]+2 \tau([I S I]+[S I]) \\
{[\dot{S S}] } & =2 \gamma[S I]-2 \tau[S S I]
\end{aligned}
$$

Pair closure:

$$
\left[S_{k} I\right] \approx[S I] \frac{d_{k}\left[S_{k}\right]}{\sum_{l=1}^{K} d_{l}\left[S_{l}\right]}
$$

Triple closures:

$$
[A S I]=\sum_{k=1}^{K}\left[A S_{k} \Pi\right], \quad\left[A S_{k} I\right] \approx \frac{d_{k}-1}{d_{k}} \frac{\left[A S_{k}\right]\left[S_{k} I\right]}{\left[S_{k}\right]}
$$

ANALYSIS OF THE ODE MODELS

Compact pairwise model:

$$
\begin{aligned}
{\left[\dot{S}_{k}\right] } & =\gamma\left[I_{k}\right]-\tau\left[S_{k} I\right] \\
{[\dot{S I}] } & =\gamma([I I]-[S I])+\tau([S S I]-[I S I]-[S I]) \\
{[\dot{I I}] } & =-2 \gamma[I I]+2 \tau([I S I]+[S I]) \\
{[\dot{S S}] } & =2 \gamma[S I]-2 \tau[S S I]
\end{aligned}
$$

Two steady states: disease-free and endemic.

ANALYSIS OF THE ODE MODELS

Compact pairwise model:

$$
\begin{aligned}
{\left[\dot{S_{k}}\right] } & =\gamma\left[I_{k}\right]-\tau\left[S_{k} I\right] \\
{[\dot{S I}] } & =\gamma([I I]-[S I])+\tau([S S I]-[I S I]-[S I]) \\
{[I I] } & =-2 \gamma[I I]+2 \tau([I S I]+[S I]) \\
{[\dot{S S}] } & =2 \gamma[S I]-2 \tau[S S I]
\end{aligned}
$$

Two steady states: disease-free and endemic.
Transcritical bifurcation at $\tau\left(\left\langle d^{2}\right\rangle-\langle d\rangle\right)=\gamma\langle d\rangle$, where
$\langle d\rangle=\frac{1}{N} \sum_{k=1}^{K} d_{k} N_{k}$ and $\left\langle d^{2}\right\rangle=\frac{1}{N} \sum_{k=1}^{K} d_{k}^{2} N_{k}$.

ANALYSIS OF THE ODE MODELS

Compact pairwise model:

$$
\begin{aligned}
{\left[\dot{S}_{k}\right] } & =\gamma\left[I_{k}\right]-\tau\left[S_{k} I\right] \\
{[\dot{S I}] } & =\gamma([I I]-[S I])+\tau([S S I]-[I S I]-[S I]) \\
{[\dot{I I}] } & =-2 \gamma[I I]+2 \tau([I S I]+[S I]) \\
{[\dot{S S}] } & =2 \gamma[S I]-2 \tau[S S I] .
\end{aligned}
$$

Two steady states: disease-free and endemic.
Transcritical bifurcation at $\tau\left(\left\langle d^{2}\right\rangle-\langle d\rangle\right)=\gamma\langle d\rangle$, where
$\langle d\rangle=\frac{1}{N} \sum_{k=1}^{K} d_{k} N_{k}$ and $\left\langle d^{2}\right\rangle=\frac{1}{N} \sum_{k=1}^{K} d_{k}^{2} N_{k}$.
If $\tau\left(\left\langle d^{2}\right\rangle-\langle d\rangle\right)<\gamma\langle d\rangle$, then the disease-free steady state is stable.

ANALYSIS OF THE ODE MODELS

Compact pairwise model:

$$
\begin{aligned}
{\left[\dot{S}_{k}\right] } & =\gamma\left[I_{k}\right]-\tau\left[S_{k} I\right] \\
{[\dot{S I}] } & =\gamma([I I]-[S I])+\tau([S S I]-[I S I]-[S I]) \\
{[\dot{I I}] } & =-2 \gamma[I I]+2 \tau([I S I]+[S I]) \\
{[\dot{S S}] } & =2 \gamma[S I]-2 \tau[S S I]
\end{aligned}
$$

Two steady states: disease-free and endemic.
Transcritical bifurcation at $\tau\left(\left\langle d^{2}\right\rangle-\langle d\rangle\right)=\gamma\langle d\rangle$, where
$\langle d\rangle=\frac{1}{N} \sum_{k=1}^{K} d_{k} N_{k}$ and $\left\langle d^{2}\right\rangle=\frac{1}{N} \sum_{k=1}^{K} d_{k}^{2} N_{k}$.
If $\tau\left(\left\langle d^{2}\right\rangle-\langle d\rangle\right)<\gamma\langle d\rangle$, then the disease-free steady state is stable.
If $\tau\left(\left\langle d^{2}\right\rangle-\langle d\rangle\right)>\gamma\langle d\rangle$, then the endemic steady state is stable.

SUMMARY: THRESHOLDS FOR DIFFERENT MODELS

Models:

- Mean-field: number of nodes in different states
- Pairwise: number of nodes and edges in different states
- Degree-based mean-field: number of nodes with given degree in different states
- Compact pairwise: number of edges and nodes with given degree in different states

SUMMARY: THRESHOLDS FOR DIFFERENT MODELS

Models:

- Mean-field: number of nodes in different states
- Pairwise: number of nodes and edges in different states
- Degree-based mean-field: number of nodes with given degree in different states
- Compact pairwise: number of edges and nodes with given degree in different states

Thresholds: $n=\langle d\rangle$ average degree, τ infection rate, γ recovery rate

- Mean-field: $\tau n=\gamma$
- Pairwise: $\tau(n-1)=\gamma$
- Degree-based mean-field: $\tau\left\langle d^{2}\right\rangle=\gamma\langle d\rangle$
- Compact pairwise: $\tau\left(\left\langle d^{2}\right\rangle-\langle d\rangle\right)=\gamma\langle d\rangle$

Models:

- Mean-field: number of nodes in different states
- Pairwise: number of nodes and edges in different states
- Degree-based mean-field: number of nodes with given degree in different states
- Compact pairwise: number of edges and nodes with given degree in different states

Thresholds: $n=\left\langle d^{\prime}\right\rangle$ average degree, τ infection rate, γ recovery rate

- Mean-field: $\tau n=\sim$
- Pairwise: $\tau(n-1)=\gamma$
- Degree-based mean-field: $\tau\left\langle d^{2}\right\rangle=\gamma\langle d\rangle$
- Compact pairwise: $\tau\left(\left\langle d^{2}\right\rangle-\langle d\rangle\right)=\gamma\langle d\rangle$

For regular graphs:
$\left(d^{2}\right)=n^{2}$

Models:

- Mean-field: number of nodes in different states
- Pairwise: number of nodes and edges in different states
- Degree-based mean-field: number of nodes with given degree in different states
- Compact pairwise: number of edges and nodes with given degree in different states

For regular graphs:

Models:

- Mean-field: number of nodes in different states
- Pairwise: number of nodes and edges in different states
- Degree-based mean-field: number of nodes with given degree in different states
- Compact pairwise: number of edges and nodes with given degree in different states

Thresholds: $n=\langle d\rangle$ average degree, τ infection rate, γ recovery rate

- Mean-field: $\tau n=\gamma$
- Pairwise: $\tau(n-1)=$
- Degree-based mean-field: $\tau\left\langle d^{2}\right\rangle=\gamma\langle d\rangle$

For regular graphs:
$\left\langle d^{2}\right\rangle=n^{2}$

Models:

- Mean-field: number of nodes in different states
- Pairwise: number of nodes and edges in different states
- Degree-based mean-field: number of nodes with given degree in different states
- Compact pairwise: number of edges and nodes with given degree in different states

Thresholds: $n=\langle d\rangle$ average degree, τ infection rate, γ recovery rate

- Mean-field: $\tau n=\gamma$
- Pairwise: $\tau(n-1)=\gamma$

For regular graphs:

Models:

- Mean-field: number of nodes in different states
- Pairwise: number of nodes and edges in different states
- Degree-based mean-field: number of nodes with given degree in different states
- Compact pairwise: number of edges and nodes with given degree in different states

Thresholds: $n=\langle d\rangle$ average degree, τ infection rate, γ recovery rate

- Mean-field: $\tau n=\gamma$
- Pairwise: $\tau(n-1)=\gamma$
- Degree-based mean-field: $\tau\left\langle d^{2}\right\rangle=\gamma\langle d\rangle$
- Compact pairwise:

For regular graphs:

Models:

- Mean-field: number of nodes in different states
- Pairwise: number of nodes and edges in different states
- Degree-based mean-field: number of nodes with given degree in different states
- Compact pairwise: number of edges and nodes with given degree in different states

Thresholds: $n=\langle d\rangle$ average degree, τ infection rate, γ recovery rate

- Mean-field: $\tau n=\gamma$
- Pairwise: $\tau(n-1)=\gamma$
- Degree-based mean-field: $\tau\left\langle d^{2}\right\rangle=\gamma\langle d\rangle$
- Compact pairwise: $\tau\left(\left\langle d^{2}\right\rangle-\langle d\rangle\right)=\gamma\langle d\rangle$

For regular graphs:

Models:

- Mean-field: number of nodes in different states
- Pairwise: number of nodes and edges in different states
- Degree-based mean-field: number of nodes with given degree in different states
- Compact pairwise: number of edges and nodes with given degree in different states

Thresholds: $n=\langle d\rangle$ average degree, τ infection rate, γ recovery rate

- Mean-field: $\tau n=\gamma$
- Pairwise: $\tau(n-1)=\gamma$
- Degree-based mean-field: $\tau\left\langle d^{2}\right\rangle=\gamma\langle d\rangle$
- Compact pairwise: $\tau\left(\left\langle d^{2}\right\rangle-\langle d\rangle\right)=\gamma\langle d\rangle$

For regular graphs: $\left\langle d^{2}\right\rangle=n^{2}$.

SUMMARY OF RESULTS FOR STATIC GRAPHS

A network and dynamics on nodes and edges are given.

SUMMARY OF RESULTS FOR STATIC GRAPHS

A network and dynamics on nodes and edges are given.
Mathematical model: $\dot{x}=A x$ master equation for the probabilities of the states (m^{N} equations).

SUMMARY OF RESULTS FOR STATIC GRAPHS

A network and dynamics on nodes and edges are given.
Mathematical model: $\dot{x}=A x$ master equation for the probabilities of the states (m^{N} equations).

Research directions:

A network and dynamics on nodes and edges are given.
Mathematical model: $\dot{x}=A x$ master equation for the probabilities of the states (m^{N} equations).

Research directions:
Deriving approximating non-linear differential equations.

A network and dynamics on nodes and edges are given.
Mathematical model: $\dot{x}=A x$ master equation for the probabilities of the states (m^{N} equations).

Research directions:
Deriving approximating non-linear differential equations.
Estimating the accuracy of the approximation.

A network and dynamics on nodes and edges are given.
Mathematical model: $\dot{x}=A x$ master equation for the probabilities of the states (m^{N} equations).

Research directions:
Deriving approximating non-linear differential equations.
Estimating the accuracy of the approximation.
Epidemic threshold for different ODE approximations.

A network and dynamics on nodes and edges are given.
Mathematical model: $\dot{x}=A x$ master equation for the probabilities of the states (m^{N} equations).

Research directions:
Deriving approximating non-linear differential equations.
Estimating the accuracy of the approximation.
Epidemic threshold for different ODE approximations.
How the graph properties appear in threshold formulas.

Extension TO TIME VARYING GRAPHS

Adaptive network: cutting SI links, creating SS links

Extension TO TIME VARYING GRAPHS

Adaptive network: cutting SI links, creating SS links
A graph with N nodes is given
The nodes can be susceptible (S) or infected (I)

EXTENSION TO TIME VARYING GRAPHS

Adaptive network: cutting SI links, creating SS links
A graph with N nodes is given
The nodes can be susceptible (S) or infected (I)
Transitions:

- infection, rate: $k \tau, k$ is the number of $/$ neighbours.
- recovery, rate: γ
- SS link creation, rate α
- SI link deletion, rate ω

SIS EPIDEMIC ON AN ADAPTIVE NETWORK

MATHEMATICAL MODEL

$$
\begin{aligned}
{[\dot{I}] } & =\tau[S I]-\gamma[I] \\
{[\dot{S} I] } & =\gamma([I I]-[S I])+\tau([S S I]-[I S I]-[S I]) \\
{[\dot{I}] } & =-2 \gamma[I I]+2 \tau([I S I]+[S I]) \\
{[S S] } & =2 \gamma[S I]-2 \tau[S S I]
\end{aligned}
$$

$$
[A B C]=\frac{n-1}{n} \frac{[A B][B C]}{[B]}, \quad n=\text { average degree }
$$

$$
\begin{aligned}
{[\dot{[}] } & =\tau[S I]-\gamma[I], \\
{[\dot{S}]] } & =\gamma([I I]-[S I)+\tau([S S I]-[I S I]-[S I])-\omega[S I], \\
{[i /] } & =-2 \gamma[I I]+2 \tau([I S]+[S I], \\
{[\dot{S} S] } & =2 \gamma[S I]-2 \tau[S S I]+\alpha([S]([S]-1)-[S S]) . \\
{[A B C] } & =\frac{n-1}{n} \frac{[A B][B C]}{[B]}, \quad n=\frac{2[S I]+[I I]+[S S]}{N}
\end{aligned}
$$

POSSIBLE MODEL OUTCOMES

POSSIBLE MODEL OUTCOMES

$$
\tau=0.1, \gamma=1, N=1000
$$

Possibilities For modeling a Real EPIDEMIC

Network of a model city: weighted graph with four layers.

Possibilities For modeling a real Epidemic

Network of a model city: weighted graph with four layers.
Total population $N=10000$, is divided into households of different sizes.

Possibilities For modeling a Real EPIDEMIC

Network of a model city: weighted graph with four layers.
Total population $N=10000$, is divided into households of different sizes.

Household structure: number of children, adults and elderly people.

Possibilities For modeling a Real Epidemic

Network of a model city: weighted graph with four layers.
Total population $N=10000$, is divided into households of different sizes.

Household structure: number of children, adults and elderly people.
Geometry: adjacency matrix of the households.

Network of a model city: weighted graph with four layers.
Total population $N=10000$, is divided into households of different sizes.

Household structure: number of children, adults and elderly people.
Geometry: adjacency matrix of the households.
Work places and schools: complete graphs with given sizes and randomly chosen members.

Network of a model city: weighted graph with four layers.
Total population $N=10000$, is divided into households of different sizes.

Household structure: number of children, adults and elderly people.
Geometry: adjacency matrix of the households.
Work places and schools: complete graphs with given sizes and randomly chosen members.

Stores and medical centers: star graphs with given sizes and geometrically chosen members.

Network of a model city: weighted graph with four layers.
Total population $N=10000$, is divided into households of different sizes.

Household structure: number of children, adults and elderly people.
Geometry: adjacency matrix of the households.
Work places and schools: complete graphs with given sizes and randomly chosen members.

Stores and medical centers: star graphs with given sizes and geometrically chosen members.

The infection rate is different in each layer: $\tau_{\text {home }}=1, \tau_{w p}=1 / 2$, $\tau_{\text {sch }}=1 / 2, \tau_{\text {geom }}=1 / 10, \tau_{\text {store }}=1 / 20$.

Network of a model city: weighted graph with four layers.
Total population $N=10000$, is divided into households of different sizes.

Household structure: number of children, adults and elderly people.
Geometry: adjacency matrix of the households.
Work places and schools: complete graphs with given sizes and randomly chosen members.

Stores and medical centers: star graphs with given sizes and geometrically chosen members.

The infection rate is different in each layer: $\tau_{\text {home }}=1, \tau_{w p}=1 / 2$, $\tau_{\text {sch }}=1 / 2, \tau_{\text {geom }}=1 / 10, \tau_{\text {store }}=1 / 20$.

The network is not a random graph, hence ODE approximations are more difficult to derive.

Network of a model city: weighted graph with four layers.
Total population $N=10000$, is divided into households of different sizes.

Household structure: number of children, adults and elderly people.
Geometry: adjacency matrix of the households.
Work places and schools: complete graphs with given sizes and randomly chosen members.

Stores and medical centers: star graphs with given sizes and geometrically chosen members.

The infection rate is different in each layer: $\tau_{\text {home }}=1, \tau_{w p}=1 / 2$, $\tau_{\text {sch }}=1 / 2, \tau_{\text {geom }}=1 / 10, \tau_{\text {store }}=1 / 20$.

This is a joint work with Ágnes Backhausz and Bence Bolgár.

Possibilities For modeling a Real Epidemic

Results of a Gillespie simulation on the above network with open (red) and closed (black) schools.

Possibilities For modeling a real Epidemic

Results of a Gillespie simulation on the above network with open (red) and closed (black) schools.

Possibilities For modeling a Real EPIDEMIC

Results of a Gillespie simulation on the above network with open (red) and closed (black) schools.

R_{∞} : final epidemic size, i.e. proportion of the population having immunity when the epidemic is over. ($N=10000, R_{0} \approx 2$.)

The results for epidemic processes are summarized in our book:

The results for epidemic processes are summarized in our book:

Thank you for your attention!

