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The nodes can be susceptible (S) or infected (I)

Transitions:

S → I, rate: kτ , k is the number of I neighbours.

I → S, rate: γ

AIM: Derive simple models describing the change of the expected
number of infected nodes [I](t).

Known models:

Mean-field equation

Pairwise model

Compact pairwise model

...
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SIR EPIDEMIC ON A NETWORK
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SIR EPIDEMIC ON A NETWORK

A graph with N nodes is given

The nodes can be susceptible (S), infected (I) or removed (R)

Example: Influenza in Hungary in 2016.
Weekly number of new reported cases for 100,000 persons.
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SIR EPIDEMIC ON A NETWORK

A graph with N nodes is given

The nodes can be susceptible (S), infected (I) or removed (R)

Further models: SEIR (E stands for exposed), SIRS, SEIRS, ...

For simplicity, we present the theory for the SIS.
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MASTER EQUATIONS FOR SIS EPIDEMIC

State space for a triangle graph
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XSIS(t) is the probability of state SIS at time t.
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MASTER EQUATIONS

Master equations

ẊSSS = γ(XSSI + XSIS + XISS),

ẊSSI = γ(XSII + XISI)− (2τ + γ)XSSI ,

ẊSIS = γ(XSII + XIIS)− (2τ + γ)XSIS ,

ẊISS = γ(XISI + XIIS)− (2τ + γ)XISS ,

ẊSII = γXIII + τ(XSSI + XSIS)− 2(τ + γ)XSII ,

ẊISI = γXIII + τ(XSSI + XISS)− 2(τ + γ)XISI ,

ẊIIS = γXIII + τ(XSIS + XISS)− 2(τ + γ)XIIS ,

ẊIII = −3γXIII + 2τ(XSII + XISI + XIIS),
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ẊSII = γXIII + τ(XSSI + XSIS)− 2(τ + γ)XSII ,
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ẊSII = γXIII + τ(XSSI + XSIS)− 2(τ + γ)XSII ,

ẊISI = γXIII + τ(XSSI + XISS)− 2(τ + γ)XISI ,

ẊIIS = γXIII + τ(XSIS + XISS)− 2(τ + γ)XIIS ,

ẊIII = −3γXIII + 2τ(XSII + XISI + XIIS),

The size of the system can be reduced by using the automorphisms
of the graph:

Simon, P.L., Taylor, M., Kiss., I.Z., Exact epidemic models on graphs using graph-automorphism

driven lumping, J. Math. Biol., 62 (2011).
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˙[I] = τ [SI] − γ[I] holds for any graph.

Approximation [SI] ≈ n
[I]
N
[S], where the average degree is n

Approximating differential equation for [I]

˙̃
I = τ

n

N
Ĩ(N − Ĩ)− γ Ĩ.

This is the well-known compartmental model, which does not give
accurate result for networks.
Reason: the approximation assumes random distribution of infected
nodes.

Better idea: derive a differential equation for [SI], this leaded to the
pairwise model.
Keeling, M.J., The effects of local spatial structure on epidemiological invasions, Proc. R. Soc.

Lond. B 266 (1999), 859-867.

6 / 27



PAIRWISE APPROXIMATION

Keep the exact equation ˙[I] = τ [SI] − γ[I]

and derive a differential equation for [SI].
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˙[SI] = γ([II]− [SI]) + τ([SSI] − [ISI]− [SI]),

˙[II] = −2γ[II] + 2τ([ISI] + [SI]),

˙[SS] = 2γ[SI]− 2τ [SSI].

Approximation:

[ABC] ≈
n − 1

n

[AB][BC]

[B]
, n average degree

M. Taylor, P. L. Simon, D. M. Green, T. House, I. Z. Kiss, From Markovian to pairwise epidemic

models and the performance of moment closure approximations, J. Math. Biol. 64 (2012),

1021-1042.
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COMPARISON OF ODE MODELS TO SIMULATION

Regular random graph with N = 1000 nodes, average degree n = 20,
γ = 1, critical value of τ from compartmental model: τcr = γ/n
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τ = τcr ⇔ basic reproduction number R0 = 1.
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COMPARISON OF ODE MODELS TO SIMULATION

Bimodal random graph with N = 1000 nodes, average degree
n = 20, γ = 1, τ = 2τcr = 2γ/n

N/2 nodes have degree d1, N/2 nodes have degree d2.
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COMPARISON OF ODE MODELS TO SIMULATION

Bimodal random graph with N = 1000 nodes, average degree
n = 20, γ = 1, τ = 2τcr = 2γ/n

N/2 nodes have degree d1, N/2 nodes have degree d2.
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assumed that each node has the same degree n.
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WHAT CAN WE LEARN FROM THE ODE MODELS?

Mean-field model at the level of singles:

˙[I] = τ
n

N
[I](N − [I])− γ[I].
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[Sk I]: expected number of edges connecting an infected node to a
susceptible node of degree dk

Differential equations are needed for the new unknowns.

˙[Sk ] = γ[Ik ]− τ [Sk I], k = 1, 2, . . . ,K .

Closure: [Sk I] can be expressed in terms of singles, [Sk ],

or in terms of pairs, [SI], and singles.
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Triple closures:

[ASI] =

K∑

k=1

[ASk I], [ASk I] ≈
dk − 1

dk

[ASk ][Sk I]

[Sk ]

Compact pairwise model: K + 3 equations
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COMPARISON OF ODE MODELS TO SIMULATION

Bimodal random graph with N = 1000 nodes, average degree
n1 = 20, γ = 1, τ = 3γn1/n2, ni =

∑
d i

k pk

N/2 nodes have degree d1 = 5, N/2 nodes have degree d2 = 35.
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degree in different states
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Transitions:

infection, rate: kτ , k is the number of I neighbours.

recovery, rate: γ

SS link creation, rate α

SI link deletion, rate ω
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SIS EPIDEMIC ON AN ADAPTIVE NETWORK
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MATHEMATICAL MODEL

˙[I] = τ [SI]− γ[I],

˙[SI] = γ([II]− [SI]) + τ([SSI] − [ISI]− [SI])−ω[SI]

˙[II] = −2γ[II] + 2τ([ISI] + [SI]),

˙[SS] = 2γ[SI]− 2τ [SSI]+α([S]([S] − 1)− [SS])

[ABC] =
n − 1

n

[AB][BC]

[B]
, n = average degree
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N
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POSSIBLE MODEL OUTCOMES
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R∞: final epidemic size, i.e. proportion of the population having
immunity when the epidemic is over. (N = 10000, R0 ≈ 2.)
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The results for epidemic processes are summarized in our book:
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Thank you for your attention!
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