# A Dollar and Another 

# Thoughts about Mental Accounting 

Gábor Salamon

November 18, 2014

## A Dollar and Another



- Found on the street
- Earned as salary
- Gained as unrealized investment profit
- Lost on the street
- Paid as tax (deducted from salary / transferred from account)
- Lost as unrealized investment loss


## A Dollar and Another



- Found on the street
- Earned as salary
- Gained as unrealized investment profit
- Lost on the street
- Paid as tax (deducted from salary / transferred from account)
- Lost as unrealized investment loss


## Examples from Richard Thaler

- Mr and Mrs A went for a fishing trip. They sent home the salmons they caught by plane. Their package got lost, they were given a $\$ 300$ compensation. From this amount, they went for a dinner which cost them $\$ 225$. They never spent such an amount for a restaurant meal before.
- Breaches the substitution principle. $\$ 300$ was considered as unexpected gain and was already "mental-booked" to the "food account".


## Examples from Richard Thaler

- Mr and Mrs A went for a fishing trip. They sent home the salmons they caught by plane. Their package got lost, they were given a $\$ 300$ compensation. From this amount, they went for a dinner which cost them $\$ 225$. They never spent such an amount for a restaurant meal before.
- Breaches the substitution principle. $\$ 300$ was considered as unexpected gain and was already "mental-booked" to the "food account".


## Examples from Richard Thaler

- Mr B and MrC are playing poker. Mr B is currently in a profit of $\$ 50$, while Mr C is at even but he has just won a substantial amount on his IBM stocks. Mr B has a queen straight and raises by $\$ 10 . \mathrm{Mr} \mathrm{C}$ has a king straight and folds. He thinks: "If I had been in a profit of $\$ 50$, I would have raised, too".
- Mental accounts are separated, in terms of source funding, goal and timing of spending.


## Examples from Richard Thaler

- Mr B and MrC are playing poker. Mr B is currently in a profit of $\$ 50$, while Mr C is at even but he has just won a substantial amount on his IBM stocks. Mr B has a queen straight and raises by $\$ 10$. Mr C has a king straight and folds. He thinks: "If I had been in a profit of $\$ 50$, I would have raised, too".
- Mental accounts are separated, in terms of source funding, goal and timing of spending.


## Examples from Richard Thaler

- Mr and Mrs D have been saving $\$ 15000$ so far to buy a weekend cottage. They are planning to buy the house in 5 years. The yield on their money market found is $10 \%$. They have just bought a new car for $\$ 11000$ which they financed with a 3 -year 15\%-interest loan.
- Again, the substitution principle is breached. The couple does not trust in their own self-control, therefore they use the bank to "force" them keep the saving schedule.


## Examples from Richard Thaler

- Mr and Mrs D have been saving $\$ 15000$ so far to buy a weekend cottage. They are planning to buy the house in 5 years. The yield on their money market found is $10 \%$. They have just bought a new car for $\$ 11000$ which they financed with a 3-year 15\%-interest loan.
- Again, the substitution principle is breached. The couple does not trust in their own self-control, therefore they use the bank to "force" them keep the saving schedule.


## Examples from Richard Thaler

- Mrs E likes a sweater which she found in a shop for $\$ 125$. She did not buy it as she thought it was very expensive. A few weeks later his husband gives her the same sweater as a birthday gift which makes her very happy. All they bank accounts are shared.
- Gifts received are priced differently than when the same object is bought. Emotional utility is playing a role.


## Examples from Richard Thaler

- Mrs E likes a sweater which she found in a shop for $\$ 125$. She did not buy it as she thought it was very expensive. A few weeks later his husband gives her the same sweater as a birthday gift which makes her very happy. All they bank accounts are shared.
- Gifts received are priced differently than when the same object is bought. Emotional utility is playing a role.


## Examples from Richard Thaler

- Mr F decides in January to donate $\$ 2000$ to his preferred charity in December. Whenever a sudden misfortunate event happens to him during the year, he pays the cost from this sum. He donates in December whatever rests from that $\$ 2000$.


## Overview

- Thoughts about utility
- von Neumann-Morgenstern utility
- Prospect Theory's value function
- A mental accounting model
- Transactional utility
- From an investor's perspective
- Xmas boxing


## A Classic Model: Maximizing Utility

- $n$ products
- prices: $c_{i}$
- amount consumed: $z_{i}$
- income: I
- utility: $U(z)$

$$
\max _{z} U(z): \sum_{i} c_{i} z_{i} \leq 1
$$

## Types of Utility

- Financial (money)
- Hedonic (emotions, self-image)
- Expressional (social image)


## Types of Utility

- Financial (money)
- Hedonic (emotions, self-image)
- Expressional (social image)


## Types of Utility

- Financial (money)
- Hedonic (emotions, self-image)
- Expressional (social image)


## Bernoulli game

## Example

How much would you pay for this game?

- Nicolas Bernoulli 1713
- Saint Petersburg paradox
- expected value: infinite ( $n$ after $n$ step)
- solution?
- there is a utility function ensuring a finite utility even for an infinite payout
- small probability events are simply ignored
- finite version: with Bill Gates - about \$22.


## Bernoulli game

## Example

How much would you pay for this game?

- Nicolas Bernoulli 1713
- Saint Petersburg paradox
- expected value: infinite ( $n$ after $n$ step)
- solution?
- there is a utility function ensuring a finite utility even for an infinite payout
- small probability events are simply ignored
- finite version: with Bill Gates - about \$22.


## Bernoulli game

## Example

How much would you pay for this game?

- Nicolas Bernoulli 1713
- Saint Petersburg paradox
- expected value: infinite ( $n$ after $n$ step)
- solution?
- there is a utility function ensuring a finite utility even for an infinite payout
- small probability events are simply ignored
- finite version: with Bill Gates - about \$22.


## Bernoulli game

## Example

How much would you pay for this game?

- Nicolas Bernoulli 1713
- Saint Petersburg paradox
- expected value: infinite ( $n$ after $n$ step)
- solution?
- there is a utility function ensuring a finite utility even for an infinite payout
- small probability events are simply ignored
- finite version: with Bill Gates - about \$22.


## Expected Utility Theory

- Daniel Bernoulli 1738
- Payout
- Utility of payout (subjective EU: not necessarily financial)
- Probability of payout
- von Neumann, Morgenstern: necessary and sufficient conditions under which it holds
- risk aversion implies a concave utility function


## Utility and Risk attitude

Risk Neutral
$U(0.5)=\frac{1}{2} \cdot U(0)+\frac{1}{2} \cdot U(1)$

## Risk Averse

$U(0.5)>\frac{1}{2} \cdot U(0)+\frac{1}{2} \cdot U(1)$

## Risk Seeking

$U(0.5)<\frac{1}{2} \cdot U(0)+\frac{1}{2} \cdot U(1)$

## Utility and Risk attitude

Risk Neutral
$U(0.5)=\frac{1}{2} \cdot U(0)+\frac{1}{2} \cdot U(1)$
Risk Averse
$U(0.5)>\frac{1}{2} \cdot U(0)+\frac{1}{2} \cdot U(1)$

## Risk Seeking

$U(0.5)<\frac{1}{2} \cdot U(0)+\frac{1}{2} \cdot U(1)$

## Utility and Risk attitude

## Risk Neutral

$U(0.5)=\frac{1}{2} \cdot U(0)+\frac{1}{2} \cdot U(1)$
Risk Averse
$U(0.5)>\frac{1}{2} \cdot U(0)+\frac{1}{2} \cdot U(1)$

Risk Seeking
$U(0.5)<\frac{1}{2} \cdot U(0)+\frac{1}{2} \cdot U(1)$

## von Neumann-Morgenstern Utility Theorem

## Definition

A lottery $L$ is composed of pairs, each with a payout $c_{i}$ and a probability $p_{i}$ Axioms:

- completeness

- transitivity
- independence

- continuity


## von Neumann-Morgenstern Utility Theorem

## Definition

A lottery $L$ is composed of pairs, each with a payout $c_{i}$ and a probability $p_{i}$ Axioms:

- completeness

$$
\forall L, M: L \geq M \text { or } M \geq L
$$

- transitivity
- independence
- continuity


## von Neumann-Morgenstern Utility Theorem

## Definition

A lottery $L$ is composed of pairs, each with a payout $c_{i}$ and a probability $p_{i}$ Axioms:

- completeness

$$
\forall L, M: L \geq M \text { or } M \geq L
$$

- transitivity

$$
\forall L, M, N: L \geq M, M \geq N \rightarrow L \geq N
$$

- independence

- continuity


## von Neumann-Morgenstern Utility Theorem

## Definition

A lottery $L$ is composed of pairs, each with a payout $c_{i}$ and a probability $p_{i}$ Axioms:

- completeness

$$
\forall L, M: L \geq M \text { or } M \geq L
$$

- transitivity

$$
\forall L, M, N: L \geq M, M \geq N \rightarrow L \geq N
$$

- independence

$$
\forall L, M, N, t \in[0,1]: L \geq M \rightarrow t L+(1-t) N \geq t M+(1-t) N
$$

- continuity


## von Neumann-Morgenstern Utility Theorem

## Definition

A lottery $L$ is composed of pairs, each with a payout $c_{i}$ and a probability $p_{i}$ Axioms:

- completeness

$$
\forall L, M: L \geq M \text { or } M \geq L
$$

- transitivity

$$
\forall L, M, N: L \geq M, M \geq N \rightarrow L \geq N
$$

- independence

$$
\forall L, M, N, t \in[0,1]: L \geq M \rightarrow t L+(1-t) N \geq t M+(1-t) N
$$

- continuity

$$
\forall L, M, N: L \geq M \geq N \rightarrow \exists p \in[0,1]: M=p L+(1-p) N
$$

## von Neumann-Morgenstern Utility Theorem

## Theorem

If all of these hold, the individual is considered rational and a utility function $U$ can be constructed such that choosing the highest expected utility lottery is equivalent to choosing the lottery which maximizes $\geq$, that is

$$
L \geq M \leftrightarrow E(U(L)) \geq E(U(M)) .
$$

## von Neumann-Morgenstern Utility Theorem

Criticism

- cannot explain loss aversion
- same wealth does not imply same happiness
- how happy would you or Bill Gates be with a total wealth of $\$ 10$ million?
- conservatism in updating beliefs (hard to deal with probabilities)
- framing dependent utility
- Allais paradox (independence breached)
- Ellsberg paradox (nested gambling: risk perception about risk itself)


## Allais paradox

## Example

## Lotteries

A \$1M
B \$1M with 89\% probability \$5M with $10 \%$ probability $\$ 0$ with $1 \%$ probability

C \$1M with $11 \%$ probability $\$ 0$ with $89 \%$ probability
D \$5M with 10\% probability $\$ 0$ with $90 \%$ probability

## We only substracted (\$1M,89\%)

Experimental results: $A \geq B$ and $D \geq C$
Breaches the independence axiom of von Neumann-Morgenstern utility.

## Allais paradox

## Example

## Lotteries

A \$1M
B \$1M with 89\% probability $\$ 5 \mathrm{M}$ with $10 \%$ probability $\$ 0$ with $1 \%$ probability

C \$1M with $11 \%$ probability $\$ 0$ with $89 \%$ probability
D $\$ 5 \mathrm{M}$ with $10 \%$ probability $\$ 0$ with $90 \%$ probability

We only substracted (\$1M,89\%)
Experimental results: $A \geq B$ and $D \geq C$
Breaches the independence axiom of von Neumann-Morgenstern utility.

## Allais paradox

## Example

## Lotteries

A \$1M
B \$1M with 89\% probability \$5M with $10 \%$ probability $\$ 0$ with 1\% probability

C \$1M with 11\% probability $\$ 0$ with $89 \%$ probability
D \$5M with $10 \%$ probability $\$ 0$ with $90 \%$ probability

## We only substracted (\$1M,89\%)

Experimental results: $A \geq B$ and $D \geq C$
Breaches the independence axiom of von Neumann-Morgenstern utility.

## Allais paradox

## Example

## Lotteries

A \$1M
B \$1M with 89\% probability $\$ 5 \mathrm{M}$ with $10 \%$ probability $\$ 0$ with 1\% probability

C \$1M with 11\% probability $\$ 0$ with $89 \%$ probability
D \$5M with $10 \%$ probability $\$ 0$ with $90 \%$ probability

We only substracted (\$1M,89\%)
Experimental results: $A \geq B$ and $D \geq C$
Breaches the independence axiom of von Neumann-Morgenstern utility.

## Ellsberg paradox

## Example

1 urn, 30 red balls, 60 other balls: either yellow or black (any mix possible) Lotteries
A $\$ 100$ if drawing a red, 0 otherwise
B $\$ 100$ if drawing a black, 0 otherwise

C $\$ 100$ if drawing a red or yellow, 0 otherwise
D $\$ 100$ if drawing a black or yellow, 0 otherwise
Experimental results: $A \geq B$ and $C \leq D$
Explanation: ambiguity aversion (where probabilities are unknown: Knightian uncertainity)
See also: risk versus uncertainity

## Ellsberg paradox

## Example

1 urn, 30 red balls, 60 other balls: either yellow or black (any mix possible) Lotteries
A $\$ 100$ if drawing a red, 0 otherwise
B $\$ 100$ if drawing a black, 0 otherwise

C $\$ 100$ if drawing a red or yellow, 0 otherwise
D $\$ 100$ if drawing a black or yellow, 0 otherwise
Experimental results: $A \geq B$ and $C \leq D$
Explanation: ambiguity aversion (where probabilities are unknown: Knightian
uncertainity)
See also: risk versus uncertainity

## Ellsberg paradox

## Example

1 urn, 30 red balls, 60 other balls: either yellow or black (any mix possible) Lotteries
A $\$ 100$ if drawing a red, 0 otherwise
B $\$ 100$ if drawing a black, 0 otherwise

C $\$ 100$ if drawing a red or yellow, 0 otherwise
D $\$ 100$ if drawing a black or yellow, 0 otherwise
Experimental results: $A \geq B$ and $C \leq D$
Explanation: ambiguity aversion (where probabilities are unknown: Knightian
uncertainity)
See also: risk versus uncertainity

## Ellsberg paradox

## Example

1 urn, 30 red balls, 60 other balls: either yellow or black (any mix possible) Lotteries
A $\$ 100$ if drawing a red, 0 otherwise
B $\$ 100$ if drawing a black, 0 otherwise

C $\$ 100$ if drawing a red or yellow, 0 otherwise
D $\$ 100$ if drawing a black or yellow, 0 otherwise
Experimental results: $A \geq B$ and $C \leq D$
Explanation: ambiguity aversion (where probabilities are unknown: Knightian uncertainity)
See also: risk versus uncertainity

## Prospect Theory's Value Function



- Reference point, losses and gains, no absolute utility
- Convex for losses and concave for gains
- Steeper for losses than for gains


## Coupling and Separation Gains and Losses

Two transactions: $x>0$ and $y>0$ (a loss: $-x$ and $-y$ )
Prospect theory's value function $v$
(1) Multiple gains: $v(x)+v(y)>v(x+y)$.

## Separate

(2) Multiple losses: $v(-x-y)>v(-x)+v(-y)$.
(1) Mixed gain $x$ and loss $-y$ : suppose $x>y$, then $v(x)+v(-y)<v(x-y)$. Couple
(9) Mixed loss $-y$ and gain $x$ : suppose $y>x$, then both coupling and separation can be favorable, depending on $x$ and $y$.

## Coupling and Separation Gains and Losses

Two transactions: $x>0$ and $y>0$ (a loss: $-x$ and $-y$ )
Prospect theory's value function $v$
(1) Multiple gains: $v(x)+v(y)>v(x+y)$.

Separate
(2) Multiple losses: $v(-x-y)>v(-x)+v(-y)$.

Couple
(0) Mixed gain $x$ and loss $-y$ : suppose $x>y$, then $v(x)+v(-y)<v(x-y)$. Couple

- Mixed loss $-y$ and gain $x$ : suppose $y>x$, then both coupling and separation can be favorable, depending on $x$ and $y$. If $x \ll y$, Separate (consolation)


## Coupling and Separation Gains and Losses

Two transactions: $x>0$ and $y>0$ (a loss: $-x$ and $-y$ )
Prospect theory's value function $v$
(1) Multiple gains: $v(x)+v(y)>v(x+y)$.

Separate
(2) Multiple losses: $v(-x-y)>v(-x)+v(-y)$.

Couple
(3) Mixed gain $x$ and loss $-y$ : suppose $x>y$, then $v(x)+v(-y)<v(x-y)$. Couple
(9) Mixed loss $-y$ and gain $x$ : suppose $y>x$, then both coupling and separation can be favorable, depending on $x$ and $y$.

## Coupling and Separation Gains and Losses

Two transactions: $x>0$ and $y>0$ (a loss: $-x$ and $-y$ )
Prospect theory's value function $v$
(1) Multiple gains: $v(x)+v(y)>v(x+y)$.

Separate
(2) Multiple losses: $v(-x-y)>v(-x)+v(-y)$.

Couple
(3) Mixed gain $x$ and loss $-y$ : suppose $x>y$, then $v(x)+v(-y)<v(x-y)$. Couple
(9) Mixed loss $-y$ and gain $x$ : suppose $y>x$, then both coupling and separation can be favorable, depending on $x$ and $y$.

If $x \ll y$, Separate (consolation)

## Transactional Utility Theory

- Product value $z$
- Actual price $c$
- Indifference price $\bar{c}$
- Anticipated fair reference price $c^{*}$

Purchase utility: $v(z,-c)=v(\bar{c},-c)$
Transactional utility: $v\left(-c \mid-c^{*}\right)$, that is, $c^{*}$ is anticipated, $c$ is paid
Value of buying at market price $c$ while we anticipated reference price $c^{*}$

$$
w\left(z, c, c^{*}\right)=v(\bar{c},-c)+v\left(-c \mid-c^{*}\right)
$$

Why people were willing to pay $\$ 2.65$ for a beer from a fancy beach hotel while they offered only $\$ 1.50$ for the same beer bought from a small shop near the beach?

## Transactional Utility Theory

- Product value $z$
- Actual price c
- Indifference price $\bar{c}$
- Anticipated fair reference price $c^{*}$

Purchase utility: $v(z,-c)=v(\bar{c},-c)$
Transactional utility: $v\left(-c \mid-c^{*}\right)$, that is, $c^{*}$ is anticipated, $c$ is paid
Value of buying at market price $c$ while we anticipated reference price $c^{*}$

$$
w\left(z, c, c^{*}\right)=v(\bar{c},-c)+v\left(-c \mid-c^{*}\right)
$$

Why people were willing to pay $\$ 2.65$ for a beer from a fancy beach hotel while they offered only $\$ 1.50$ for the same beer bought from a small shop near the beach?

## Transactional Utility Theory

- Product value $z$
- Actual price $c$
- Indifference price $\bar{c}$
- Anticipated fair reference price $c^{*}$

Purchase utility: $v(z,-c)=v(\bar{c},-c)$
Transactional utility: $v\left(-c \mid-c^{*}\right)$, that is, $c^{*}$ is anticipated, $c$ is paid Value of buying at market price $c$ while we anticipated reference price $c^{*}$ :

$$
w\left(z, c, c^{*}\right)=v(\bar{c},-c)+v\left(-c \mid-c^{*}\right)
$$

Why people were willing to pay $\$ 2.65$ for a beer from a fancy beach hotel
while they offered only $\$ 1.50$ for the same beer bought from a small shop near the beach?

## Transactional Utility Theory

- Product value $z$
- Actual price $c$
- Indifference price $\bar{c}$
- Anticipated fair reference price $c^{*}$

Purchase utility: $v(z,-c)=v(\bar{c},-c)$
Transactional utility: $v\left(-c \mid-c^{*}\right)$, that is, $c^{*}$ is anticipated, $c$ is paid Value of buying at market price $c$ while we anticipated reference price $c^{*}$ :

$$
w\left(z, c, c^{*}\right)=v(\bar{c},-c)+v\left(-c \mid-c^{*}\right)
$$

Why people were willing to pay $\$ 2.65$ for a beer from a fancy beach hotel while they offered only $\$ 1.50$ for the same beer bought from a small shop near the beach?

## Mental Account Types

- Current Income
- Current Wealth
- Future Income


## Further Examples

- Stock premium puzzle (around 6\% historically): portfolio evaluation frequency (myopic loss aversion)
- Opening and closing positions (paper vs realized P\&L)
- Payment decoupling: flat price vs pay-as-you-go (credit cards)
- Notice expenses first: small amounts are not booked to mental accounts (27c a day vs $\$ 100$ a year)


## Further Examples

- Stock premium puzzle (around 6\% historically): portfolio evaluation frequency (myopic loss aversion)
- Opening and closing positions (paper vs realized P\&L)
- Payment decoupling: flat price vs pay-as-you-go (credit cards)
- Notice expenses first: small amounts are not booked to mental accounts (27c a day vs \$100 a year)


## Further Examples

- Stock premium puzzle (around 6\% historically): portfolio evaluation frequency (myopic loss aversion)
- Opening and closing positions (paper vs realized P\&L)
- Payment decoupling: flat price vs pay-as-you-go (credit cards)
- Notice expenses first: small amounts are not booked to mental accounts (27c a day vs $\$ 100$ a year)


## Further Examples

- Stock premium puzzle (around 6\% historically): portfolio evaluation frequency (myopic loss aversion)
- Opening and closing positions (paper vs realized P\&L)
- Payment decoupling: flat price vs pay-as-you-go (credit cards)
- Notice expenses first: small amounts are not booked to mental accounts (27c a day vs $\$ 100$ a year)


## Investor mistakes

- "House-money": risk-taking increases with wealth increasing
- Underdiversification due to thinking of separate accounts
- Seeking for income over capital gain (dividend and its tax disadvantages)


## Investor mistakes

- "House-money": risk-taking increases with wealth increasing
- Underdiversification due to thinking of separate accounts
- Seeking for income over capital gain (dividend and its tax disadvantages)


## Investor mistakes

- "House-money": risk-taking increases with wealth increasing
- Underdiversification due to thinking of separate accounts
- Seeking for income over capital gain (dividend and its tax disadvantages)


## Investor Benefits

Self-Control Tool
Goal Based Planning

- Needs and Obligations $\longrightarrow$ LOW risk
- Priorities and Desires $\longrightarrow$ MEDIUM risk
- Aspirations $\longrightarrow$ HIGH risk


## Investor Benefits

Self-Control Tool
Goal Based Planning

- Needs and Obligations $\longrightarrow$ LOW risk
- Priorities and Desires $\longrightarrow$ MEDIUM risk
- Aspirations $\longrightarrow$ HIGH risk


## So what...

## ... about Xmas boxing?

## So what...

... about Xmas boxing?

## References

© Szántó-Wimmer-Zoltayné (eds): Döntéseink Csapdájában - Alinea
(2) Pompian: Behavioral Finance and Wealth Management - Wiley Finance
(3) Thaler: Mental Accounting and Consumer Choice - Marketing Science Vol. 4
(4) Thaler: Mental Accounting Matters - Journal of Behavioral Decision Making Vol. 12

