
Computations with Low Rank Matrices in
Logarithmic Space

Attila Pereszlényi1 Q peresz@sztaki.hu

Joint work with Katalin Friedl2, László Kabódi2, Dániel Szabó2

1Institute for Computer Science and Control, Budapest, Hungary (SZTAKI)

2Department of Computer Science and Information Theory (BME SZIT)

Mathematical Modeling Seminar 3rd November, 2020

mailto:peresz@sztaki.hu

Introduction Space Bounded Algorithms

Outline

1 Introduction
Low Rank Matrices
Matrix Sampling

2 Space Bounded Algorithms
Reducing Randomness
Applications

Introduction Space Bounded Algorithms

Outline

1 Introduction
Low Rank Matrices
Matrix Sampling

2 Space Bounded Algorithms
Reducing Randomness
Applications

Introduction Space Bounded Algorithms

Low Rank Matrices

Outline

1 Introduction
Low Rank Matrices
Matrix Sampling

2 Space Bounded Algorithms
Reducing Randomness
Applications

Introduction Space Bounded Algorithms

Low Rank Matrices

Why low rank matrices?

Matrices that are low rank or can be approximated well by low rank
matrices are common in many areas.

Example: recommendation systems

Source: Google W developers.google.com/machine-learning/

recommendation/collaborative/matrix

https://developers.google.com/machine-learning/recommendation/collaborative/matrix
https://developers.google.com/machine-learning/recommendation/collaborative/matrix

Introduction Space Bounded Algorithms

Low Rank Matrices

Why low rank matrices?

Matrices that are low rank or can be approximated well by low rank
matrices are common in many areas.

Example: recommendation systems

Source: Google W developers.google.com/machine-learning/

recommendation/collaborative/matrix

https://developers.google.com/machine-learning/recommendation/collaborative/matrix
https://developers.google.com/machine-learning/recommendation/collaborative/matrix

Introduction Space Bounded Algorithms

Low Rank Matrices

Singular value decomposition

The singular value decomposition (SVD) of M ∈ Rm×n is

M = UΣVT

U ∈ Rm×r, Σ ∈ Rr×r, V ∈ Rn×r where r = rank(M)

UTU = VTV = 1

Σ = diag(σ1(M) ,σ2(M) , . . . ,σr(M))

where σ1(M) > σ2(M) > . . . > σr(M) > 0

The σi(M)’s are called the singular values of M and the
columns of U and V are called the left and right singular vectors
of M.

Introduction Space Bounded Algorithms

Low Rank Matrices

Singular value decomposition

The singular value decomposition (SVD) of M ∈ Rm×n is

M = UΣVT

U ∈ Rm×r, Σ ∈ Rr×r, V ∈ Rn×r where r = rank(M)

UTU = VTV = 1

Σ = diag(σ1(M) ,σ2(M) , . . . ,σr(M))

where σ1(M) > σ2(M) > . . . > σr(M) > 0

The σi(M)’s are called the singular values of M and the
columns of U and V are called the left and right singular vectors
of M.

Introduction Space Bounded Algorithms

Low Rank Matrices

Singular value decomposition

The singular value decomposition (SVD) of M ∈ Rm×n is

M = UΣVT

U ∈ Rm×r, Σ ∈ Rr×r, V ∈ Rn×r where r = rank(M)

UTU = VTV = 1

Σ = diag(σ1(M) ,σ2(M) , . . . ,σr(M))

where σ1(M) > σ2(M) > . . . > σr(M) > 0

The σi(M)’s are called the singular values of M and the
columns of U and V are called the left and right singular vectors
of M.

Introduction Space Bounded Algorithms

Low Rank Matrices

Singular value decomposition

The singular value decomposition (SVD) of M ∈ Rm×n is

M = UΣVT

U ∈ Rm×r, Σ ∈ Rr×r, V ∈ Rn×r where r = rank(M)

UTU = VTV = 1

Σ = diag(σ1(M) ,σ2(M) , . . . ,σr(M))

where σ1(M) > σ2(M) > . . . > σr(M) > 0

The σi(M)’s are called the singular values of M and the
columns of U and V are called the left and right singular vectors
of M.

Introduction Space Bounded Algorithms

Low Rank Matrices

Singular value decomposition

The singular value decomposition (SVD) of M ∈ Rm×n is

M = UΣVT

U ∈ Rm×r, Σ ∈ Rr×r, V ∈ Rn×r where r = rank(M)

UTU = VTV = 1

Σ = diag(σ1(M) ,σ2(M) , . . . ,σr(M))

where σ1(M) > σ2(M) > . . . > σr(M) > 0

The σi(M)’s are called the singular values of M and the
columns of U and V are called the left and right singular vectors
of M.

Introduction Space Bounded Algorithms

Low Rank Matrices

Some notations

We denote the
(i, j)-th element of M by M(i, j)

i-th row of M by M(i, :)
j-th column of M by M(:, j)

The Frobenius norm of M is

‖M‖F =

√√√√ m∑
i=1

n∑
j=1

M(i, j)2 =

√√√√ r∑
i=1

σi(M)2

Introduction Space Bounded Algorithms

Low Rank Matrices

Some notations

We denote the
(i, j)-th element of M by M(i, j)
i-th row of M by M(i, :)

j-th column of M by M(:, j)

The Frobenius norm of M is

‖M‖F =

√√√√ m∑
i=1

n∑
j=1

M(i, j)2 =

√√√√ r∑
i=1

σi(M)2

Introduction Space Bounded Algorithms

Low Rank Matrices

Some notations

We denote the
(i, j)-th element of M by M(i, j)
i-th row of M by M(i, :)
j-th column of M by M(:, j)

The Frobenius norm of M is

‖M‖F =

√√√√ m∑
i=1

n∑
j=1

M(i, j)2 =

√√√√ r∑
i=1

σi(M)2

Introduction Space Bounded Algorithms

Low Rank Matrices

Some notations

We denote the
(i, j)-th element of M by M(i, j)
i-th row of M by M(i, :)
j-th column of M by M(:, j)

The Frobenius norm of M is

‖M‖F =

√√√√ m∑
i=1

n∑
j=1

M(i, j)2

=

√√√√ r∑
i=1

σi(M)2

Introduction Space Bounded Algorithms

Low Rank Matrices

Some notations

We denote the
(i, j)-th element of M by M(i, j)
i-th row of M by M(i, :)
j-th column of M by M(:, j)

The Frobenius norm of M is

‖M‖F =

√√√√ m∑
i=1

n∑
j=1

M(i, j)2 =

√√√√ r∑
i=1

σi(M)2

Introduction Space Bounded Algorithms

Low Rank Matrices

Approximately low rank matrices

If M can be approximated well by a low rank matrix then its singular
values look like this.

1 2 . . . r̃ r
i

σi(M)2

>
(1
−
ε̃)
‖M
‖2 F

6 ε̃ ‖M‖2
F

∃r̃ ∈ Z+, r̃ 6 r and 0 6 ε̃ 6 0.9
such that∑r

i=r̃+1 σi(M)2 6 ε̃ ‖M‖2
F

Equivalently,
‖M−Mr̃‖2

F 6 ε̃ ‖M‖2
F

Typically, r̃� min {m,n} and
ε̃� 0.9

Introduction Space Bounded Algorithms

Matrix Sampling

Outline

1 Introduction
Low Rank Matrices
Matrix Sampling

2 Space Bounded Algorithms
Reducing Randomness
Applications

Introduction Space Bounded Algorithms

Matrix Sampling

Sampling a column

Given M ∈ Rm×n let’s estimate MMT.

Pick a column randomly. Let J ∈ [n] be the index of the picked
column. Let

Pr[J = j] =
‖M(:, j)‖2

‖M‖2
F

= pj.

Let c = M(:,J)√
pJ

. We approximate MMT with ccT.

E
[
ccT] = n∑

k=1

Pr[J = k]
M(:,k)MT(k, :)

pk

=

n∑
k=1

M(:,k)MT(k, :)

= MMT

Introduction Space Bounded Algorithms

Matrix Sampling

Sampling a column

Given M ∈ Rm×n let’s estimate MMT.

Pick a column randomly. Let J ∈ [n] be the index of the picked
column.

Let

Pr[J = j] =
‖M(:, j)‖2

‖M‖2
F

= pj.

Let c = M(:,J)√
pJ

. We approximate MMT with ccT.

E
[
ccT] = n∑

k=1

Pr[J = k]
M(:,k)MT(k, :)

pk

=

n∑
k=1

M(:,k)MT(k, :)

= MMT

Introduction Space Bounded Algorithms

Matrix Sampling

Sampling a column

Given M ∈ Rm×n let’s estimate MMT.

Pick a column randomly. Let J ∈ [n] be the index of the picked
column. Let

Pr[J = j] =
‖M(:, j)‖2

‖M‖2
F

= pj.

Let c = M(:,J)√
pJ

. We approximate MMT with ccT.

E
[
ccT] = n∑

k=1

Pr[J = k]
M(:,k)MT(k, :)

pk

=

n∑
k=1

M(:,k)MT(k, :)

= MMT

Introduction Space Bounded Algorithms

Matrix Sampling

Sampling a column

Given M ∈ Rm×n let’s estimate MMT.

Pick a column randomly. Let J ∈ [n] be the index of the picked
column. Let

Pr[J = j] =
‖M(:, j)‖2

‖M‖2
F

= pj.

Let c = M(:,J)√
pJ

. We approximate MMT with ccT.

E
[
ccT] = n∑

k=1

Pr[J = k]
M(:,k)MT(k, :)

pk

=

n∑
k=1

M(:,k)MT(k, :)

= MMT

Introduction Space Bounded Algorithms

Matrix Sampling

Sampling a column

Given M ∈ Rm×n let’s estimate MMT.

Pick a column randomly. Let J ∈ [n] be the index of the picked
column. Let

Pr[J = j] =
‖M(:, j)‖2

‖M‖2
F

= pj.

Let c = M(:,J)√
pJ

.

We approximate MMT with ccT.

E
[
ccT] = n∑

k=1

Pr[J = k]
M(:,k)MT(k, :)

pk

=

n∑
k=1

M(:,k)MT(k, :)

= MMT

Introduction Space Bounded Algorithms

Matrix Sampling

Sampling a column

Given M ∈ Rm×n let’s estimate MMT.

Pick a column randomly. Let J ∈ [n] be the index of the picked
column. Let

Pr[J = j] =
‖M(:, j)‖2

‖M‖2
F

= pj.

Let c = M(:,J)√
pJ

. We approximate MMT with ccT.

E
[
ccT] = n∑

k=1

Pr[J = k]
M(:,k)MT(k, :)

pk

=

n∑
k=1

M(:,k)MT(k, :)

= MMT

Introduction Space Bounded Algorithms

Matrix Sampling

Sampling a column

Given M ∈ Rm×n let’s estimate MMT.

Pick a column randomly. Let J ∈ [n] be the index of the picked
column. Let

Pr[J = j] =
‖M(:, j)‖2

‖M‖2
F

= pj.

Let c = M(:,J)√
pJ

. We approximate MMT with ccT.

E
[
ccT] = n∑

k=1

Pr[J = k]
M(:,k)MT(k, :)

pk

=

n∑
k=1

M(:,k)MT(k, :)

= MMT

Introduction Space Bounded Algorithms

Matrix Sampling

Sampling a column

Given M ∈ Rm×n let’s estimate MMT.

Pick a column randomly. Let J ∈ [n] be the index of the picked
column. Let

Pr[J = j] =
‖M(:, j)‖2

‖M‖2
F

= pj.

Let c = M(:,J)√
pJ

. We approximate MMT with ccT.

E
[
ccT] = n∑

k=1

Pr[J = k]
M(:,k)MT(k, :)

pk

=

n∑
k=1

M(:,k)MT(k, :)

= MMT

Introduction Space Bounded Algorithms

Matrix Sampling

Sampling a column

Given M ∈ Rm×n let’s estimate MMT.

Pick a column randomly. Let J ∈ [n] be the index of the picked
column. Let

Pr[J = j] =
‖M(:, j)‖2

‖M‖2
F

= pj.

Let c = M(:,J)√
pJ

. We approximate MMT with ccT.

E
[
ccT] = n∑

k=1

Pr[J = k]
M(:,k)MT(k, :)

pk

=

n∑
k=1

M(:,k)MT(k, :)

= MMT

Introduction Space Bounded Algorithms

Matrix Sampling

Variance

How good is the approximation?

Var
(
ccT) def

= E
[∥∥ccT −MMT

∥∥2
F

]

=
∑

i,j∈[m]

Var
((
ccT)(i, j))

=
∑

i,j∈[m]

Var

(
M(i, J)M(j, J)

pJ

)

6
∑

i,j∈[m]

E

[
M(i, J)2 M(j, J)2

p2
J

]

Introduction Space Bounded Algorithms

Matrix Sampling

Variance

How good is the approximation?

Var
(
ccT) def

= E
[∥∥ccT −MMT

∥∥2
F

]

=
∑

i,j∈[m]

Var
((
ccT)(i, j))

=
∑

i,j∈[m]

Var

(
M(i, J)M(j, J)

pJ

)

6
∑

i,j∈[m]

E

[
M(i, J)2 M(j, J)2

p2
J

]

Introduction Space Bounded Algorithms

Matrix Sampling

Variance

How good is the approximation?

Var
(
ccT) def

= E
[∥∥ccT −MMT

∥∥2
F

]
=

∑
i,j∈[m]

Var
((
ccT)(i, j))

=
∑

i,j∈[m]

Var

(
M(i, J)M(j, J)

pJ

)

6
∑

i,j∈[m]

E

[
M(i, J)2 M(j, J)2

p2
J

]

Introduction Space Bounded Algorithms

Matrix Sampling

Variance

How good is the approximation?

Var
(
ccT) def

= E
[∥∥ccT −MMT

∥∥2
F

]
=

∑
i,j∈[m]

Var
((
ccT)(i, j))

=
∑

i,j∈[m]

Var

(
M(i, J)M(j, J)

pJ

)

6
∑

i,j∈[m]

E

[
M(i, J)2 M(j, J)2

p2
J

]

Introduction Space Bounded Algorithms

Matrix Sampling

Variance

How good is the approximation?

Var
(
ccT) def

= E
[∥∥ccT −MMT

∥∥2
F

]
=

∑
i,j∈[m]

Var
((
ccT)(i, j))

=
∑

i,j∈[m]

Var

(
M(i, J)M(j, J)

pJ

)

6
∑

i,j∈[m]

E

[
M(i, J)2 M(j, J)2

p2
J

]

Introduction Space Bounded Algorithms

Matrix Sampling

Variance cont.

E
[∥∥ccT −MMT

∥∥2
F

]
6 E

 ∑
i,j∈[m]

M(i, J)2 M(j, J)2 ‖M‖4
F

‖M(:, J)‖4



= ‖M‖4
F · E

(m∑
i=1

M(i, J)2

‖M(:, J)‖2

) m∑
j=1

M(j, J)2

‖M(:, J)‖2


= ‖M‖4

F

Introduction Space Bounded Algorithms

Matrix Sampling

Variance cont.

E
[∥∥ccT −MMT

∥∥2
F

]
6 E

 ∑
i,j∈[m]

M(i, J)2 M(j, J)2 ‖M‖4
F

‖M(:, J)‖4


= ‖M‖4

F · E

(m∑
i=1

M(i, J)2

‖M(:, J)‖2

) m∑
j=1

M(j, J)2

‖M(:, J)‖2



= ‖M‖4
F

Introduction Space Bounded Algorithms

Matrix Sampling

Variance cont.

E
[∥∥ccT −MMT

∥∥2
F

]
6 E

 ∑
i,j∈[m]

M(i, J)2 M(j, J)2 ‖M‖4
F

‖M(:, J)‖4


= ‖M‖4

F · E

(m∑
i=1

M(i, J)2

‖M(:, J)‖2

) m∑
j=1

M(j, J)2

‖M(:, J)‖2


= ‖M‖4

F

Introduction Space Bounded Algorithms

Matrix Sampling

Sampling multiple columns

Let’s sample s columns independently: c1, c2, . . . , cs.

Form matrix C ∈ Rm×s by C(:, j)
def
=

cj√
s

.

We approximate MMT with CCT.

E
[
CCT] = E

[
s∑

k=1

ckck
T

s

]
= E

[
c1c1

T] = MMT

Var
(
CCT) = Var

(
s∑

k=1

ckck
T

s

)
=

Var
(
c1c1

T
)

s
6
‖M‖4

F

s

E
[∥∥CCT −MMT

∥∥2
F

]
6
‖M‖4

F

s

Introduction Space Bounded Algorithms

Matrix Sampling

Sampling multiple columns

Let’s sample s columns independently: c1, c2, . . . , cs.

Form matrix C ∈ Rm×s by C(:, j)
def
=

cj√
s

.

We approximate MMT with CCT.

E
[
CCT] = E

[
s∑

k=1

ckck
T

s

]
= E

[
c1c1

T] = MMT

Var
(
CCT) = Var

(
s∑

k=1

ckck
T

s

)
=

Var
(
c1c1

T
)

s
6
‖M‖4

F

s

E
[∥∥CCT −MMT

∥∥2
F

]
6
‖M‖4

F

s

Introduction Space Bounded Algorithms

Matrix Sampling

Sampling multiple columns

Let’s sample s columns independently: c1, c2, . . . , cs.

Form matrix C ∈ Rm×s by C(:, j)
def
=

cj√
s

.

We approximate MMT with CCT.

E
[
CCT] = E

[
s∑

k=1

ckck
T

s

]
= E

[
c1c1

T] = MMT

Var
(
CCT) = Var

(
s∑

k=1

ckck
T

s

)
=

Var
(
c1c1

T
)

s
6
‖M‖4

F

s

E
[∥∥CCT −MMT

∥∥2
F

]
6
‖M‖4

F

s

Introduction Space Bounded Algorithms

Matrix Sampling

Sampling multiple columns

Let’s sample s columns independently: c1, c2, . . . , cs.

Form matrix C ∈ Rm×s by C(:, j)
def
=

cj√
s

.

We approximate MMT with CCT.

E
[
CCT] = E

[
s∑

k=1

ckck
T

s

]

= E
[
c1c1

T] = MMT

Var
(
CCT) = Var

(
s∑

k=1

ckck
T

s

)
=

Var
(
c1c1

T
)

s
6
‖M‖4

F

s

E
[∥∥CCT −MMT

∥∥2
F

]
6
‖M‖4

F

s

Introduction Space Bounded Algorithms

Matrix Sampling

Sampling multiple columns

Let’s sample s columns independently: c1, c2, . . . , cs.

Form matrix C ∈ Rm×s by C(:, j)
def
=

cj√
s

.

We approximate MMT with CCT.

E
[
CCT] = E

[
s∑

k=1

ckck
T

s

]
= E

[
c1c1

T]

= MMT

Var
(
CCT) = Var

(
s∑

k=1

ckck
T

s

)
=

Var
(
c1c1

T
)

s
6
‖M‖4

F

s

E
[∥∥CCT −MMT

∥∥2
F

]
6
‖M‖4

F

s

Introduction Space Bounded Algorithms

Matrix Sampling

Sampling multiple columns

Let’s sample s columns independently: c1, c2, . . . , cs.

Form matrix C ∈ Rm×s by C(:, j)
def
=

cj√
s

.

We approximate MMT with CCT.

E
[
CCT] = E

[
s∑

k=1

ckck
T

s

]
= E

[
c1c1

T] = MMT

Var
(
CCT) = Var

(
s∑

k=1

ckck
T

s

)
=

Var
(
c1c1

T
)

s
6
‖M‖4

F

s

E
[∥∥CCT −MMT

∥∥2
F

]
6
‖M‖4

F

s

Introduction Space Bounded Algorithms

Matrix Sampling

Sampling multiple columns

Let’s sample s columns independently: c1, c2, . . . , cs.

Form matrix C ∈ Rm×s by C(:, j)
def
=

cj√
s

.

We approximate MMT with CCT.

E
[
CCT] = E

[
s∑

k=1

ckck
T

s

]
= E

[
c1c1

T] = MMT

Var
(
CCT) = Var

(
s∑

k=1

ckck
T

s

)

=
Var
(
c1c1

T
)

s
6
‖M‖4

F

s

E
[∥∥CCT −MMT

∥∥2
F

]
6
‖M‖4

F

s

Introduction Space Bounded Algorithms

Matrix Sampling

Sampling multiple columns

Let’s sample s columns independently: c1, c2, . . . , cs.

Form matrix C ∈ Rm×s by C(:, j)
def
=

cj√
s

.

We approximate MMT with CCT.

E
[
CCT] = E

[
s∑

k=1

ckck
T

s

]
= E

[
c1c1

T] = MMT

Var
(
CCT) = Var

(
s∑

k=1

ckck
T

s

)
=

Var
(
c1c1

T
)

s

6
‖M‖4

F

s

E
[∥∥CCT −MMT

∥∥2
F

]
6
‖M‖4

F

s

Introduction Space Bounded Algorithms

Matrix Sampling

Sampling multiple columns

Let’s sample s columns independently: c1, c2, . . . , cs.

Form matrix C ∈ Rm×s by C(:, j)
def
=

cj√
s

.

We approximate MMT with CCT.

E
[
CCT] = E

[
s∑

k=1

ckck
T

s

]
= E

[
c1c1

T] = MMT

Var
(
CCT) = Var

(
s∑

k=1

ckck
T

s

)
=

Var
(
c1c1

T
)

s
6
‖M‖4

F

s

E
[∥∥CCT −MMT

∥∥2
F

]
6
‖M‖4

F

s

Introduction Space Bounded Algorithms

Matrix Sampling

Sampling multiple columns

Let’s sample s columns independently: c1, c2, . . . , cs.

Form matrix C ∈ Rm×s by C(:, j)
def
=

cj√
s

.

We approximate MMT with CCT.

E
[
CCT] = E

[
s∑

k=1

ckck
T

s

]
= E

[
c1c1

T] = MMT

Var
(
CCT) = Var

(
s∑

k=1

ckck
T

s

)
=

Var
(
c1c1

T
)

s
6
‖M‖4

F

s

E
[∥∥CCT −MMT

∥∥2
F

]
6
‖M‖4

F

s

Introduction Space Bounded Algorithms

Matrix Sampling

Why does M have to be low rank?

We have the following bound: E
[∥∥CCT −MMT

∥∥2
F

]
6
‖M‖4

F

s

Let r = rank(M).

Suppose C = 0 (trivial approximation).

Left hand side:
∥∥MMT

∥∥2
F =

r∑
k=1

σM(k)4

Right hand side:
1
s

(
r∑

k=1

σM(k)2

)2

For the bound to be non-trivial:

1
s

(
r∑

k=1

σM(k)2

)2

<

r∑
k=1

σM(k)4

which holds if s > r.

Introduction Space Bounded Algorithms

Matrix Sampling

Why does M have to be low rank?

We have the following bound: E
[∥∥CCT −MMT

∥∥2
F

]
6
‖M‖4

F

s
Let r = rank(M).

Suppose C = 0 (trivial approximation).

Left hand side:
∥∥MMT

∥∥2
F =

r∑
k=1

σM(k)4

Right hand side:
1
s

(
r∑

k=1

σM(k)2

)2

For the bound to be non-trivial:

1
s

(
r∑

k=1

σM(k)2

)2

<

r∑
k=1

σM(k)4

which holds if s > r.

Introduction Space Bounded Algorithms

Matrix Sampling

Why does M have to be low rank?

We have the following bound: E
[∥∥CCT −MMT

∥∥2
F

]
6
‖M‖4

F

s
Let r = rank(M).

Suppose C = 0 (trivial approximation).

Left hand side:
∥∥MMT

∥∥2
F =

r∑
k=1

σM(k)4

Right hand side:
1
s

(
r∑

k=1

σM(k)2

)2

For the bound to be non-trivial:

1
s

(
r∑

k=1

σM(k)2

)2

<

r∑
k=1

σM(k)4

which holds if s > r.

Introduction Space Bounded Algorithms

Matrix Sampling

Why does M have to be low rank?

We have the following bound: E
[∥∥CCT −MMT

∥∥2
F

]
6
‖M‖4

F

s
Let r = rank(M).

Suppose C = 0 (trivial approximation).

Left hand side:
∥∥MMT

∥∥2
F =

r∑
k=1

σM(k)4

Right hand side:
1
s

(
r∑

k=1

σM(k)2

)2

For the bound to be non-trivial:

1
s

(
r∑

k=1

σM(k)2

)2

<

r∑
k=1

σM(k)4

which holds if s > r.

Introduction Space Bounded Algorithms

Matrix Sampling

Why does M have to be low rank?

We have the following bound: E
[∥∥CCT −MMT

∥∥2
F

]
6
‖M‖4

F

s
Let r = rank(M).

Suppose C = 0 (trivial approximation).

Left hand side:
∥∥MMT

∥∥2
F =

r∑
k=1

σM(k)4

Right hand side:
1
s

(
r∑

k=1

σM(k)2

)2

For the bound to be non-trivial:

1
s

(
r∑

k=1

σM(k)2

)2

<

r∑
k=1

σM(k)4

which holds if s > r.

Introduction Space Bounded Algorithms

Matrix Sampling

Why does M have to be low rank?

We have the following bound: E
[∥∥CCT −MMT

∥∥2
F

]
6
‖M‖4

F

s
Let r = rank(M).

Suppose C = 0 (trivial approximation).

Left hand side:
∥∥MMT

∥∥2
F =

r∑
k=1

σM(k)4

Right hand side:
1
s

(
r∑

k=1

σM(k)2

)2

For the bound to be non-trivial:

1
s

(
r∑

k=1

σM(k)2

)2

<

r∑
k=1

σM(k)4

which holds if s > r.

Introduction Space Bounded Algorithms

Matrix Sampling

Why does M have to be low rank?

We have the following bound: E
[∥∥CCT −MMT

∥∥2
F

]
6
‖M‖4

F

s
Let r = rank(M).

Suppose C = 0 (trivial approximation).

Left hand side:
∥∥MMT

∥∥2
F =

r∑
k=1

σM(k)4

Right hand side:
1
s

(
r∑

k=1

σM(k)2

)2

For the bound to be non-trivial:

1
s

(
r∑

k=1

σM(k)2

)2

<

r∑
k=1

σM(k)4

which holds if s > r.

Introduction Space Bounded Algorithms

Reducing Randomness

Outline

1 Introduction
Low Rank Matrices
Matrix Sampling

2 Space Bounded Algorithms
Reducing Randomness
Applications

Introduction Space Bounded Algorithms

Reducing Randomness

Random walks on expander graphs

Sampling s columns independently requires s · log(n) random
bits.

Perform random walk on an expander graph to reduce
randomness.

We only consider graphs that are undirected, connected,
d-regular, non-bipartite.
A random walk is a random sequence of vertices. We start from a
uniform random vertex. In each step we choose a random
neighbor of the current vertex.
Randomness required for a walk of length s: log(N) + s log(d).
(N is the number of vertices.)
A graph is a good expander if, after O(log(N)) steps, the
probability to arrive at a given vertex is close to uniform on all
vertices. Also, d = O(1).
We need: good expanders exist for all N = n4.

Introduction Space Bounded Algorithms

Reducing Randomness

Random walks on expander graphs

Sampling s columns independently requires s · log(n) random
bits.
Perform random walk on an expander graph to reduce
randomness.

We only consider graphs that are undirected, connected,
d-regular, non-bipartite.
A random walk is a random sequence of vertices. We start from a
uniform random vertex. In each step we choose a random
neighbor of the current vertex.
Randomness required for a walk of length s: log(N) + s log(d).
(N is the number of vertices.)
A graph is a good expander if, after O(log(N)) steps, the
probability to arrive at a given vertex is close to uniform on all
vertices. Also, d = O(1).
We need: good expanders exist for all N = n4.

Introduction Space Bounded Algorithms

Reducing Randomness

Random walks on expander graphs

Sampling s columns independently requires s · log(n) random
bits.
Perform random walk on an expander graph to reduce
randomness.

We only consider graphs that are undirected, connected,
d-regular, non-bipartite.

A random walk is a random sequence of vertices. We start from a
uniform random vertex. In each step we choose a random
neighbor of the current vertex.
Randomness required for a walk of length s: log(N) + s log(d).
(N is the number of vertices.)
A graph is a good expander if, after O(log(N)) steps, the
probability to arrive at a given vertex is close to uniform on all
vertices. Also, d = O(1).
We need: good expanders exist for all N = n4.

Introduction Space Bounded Algorithms

Reducing Randomness

Random walks on expander graphs

Sampling s columns independently requires s · log(n) random
bits.
Perform random walk on an expander graph to reduce
randomness.

We only consider graphs that are undirected, connected,
d-regular, non-bipartite.
A random walk is a random sequence of vertices. We start from a
uniform random vertex. In each step we choose a random
neighbor of the current vertex.

Randomness required for a walk of length s: log(N) + s log(d).
(N is the number of vertices.)
A graph is a good expander if, after O(log(N)) steps, the
probability to arrive at a given vertex is close to uniform on all
vertices. Also, d = O(1).
We need: good expanders exist for all N = n4.

Introduction Space Bounded Algorithms

Reducing Randomness

Random walks on expander graphs

Sampling s columns independently requires s · log(n) random
bits.
Perform random walk on an expander graph to reduce
randomness.

We only consider graphs that are undirected, connected,
d-regular, non-bipartite.
A random walk is a random sequence of vertices. We start from a
uniform random vertex. In each step we choose a random
neighbor of the current vertex.
Randomness required for a walk of length s: log(N) + s log(d).
(N is the number of vertices.)

A graph is a good expander if, after O(log(N)) steps, the
probability to arrive at a given vertex is close to uniform on all
vertices. Also, d = O(1).
We need: good expanders exist for all N = n4.

Introduction Space Bounded Algorithms

Reducing Randomness

Random walks on expander graphs

Sampling s columns independently requires s · log(n) random
bits.
Perform random walk on an expander graph to reduce
randomness.

We only consider graphs that are undirected, connected,
d-regular, non-bipartite.
A random walk is a random sequence of vertices. We start from a
uniform random vertex. In each step we choose a random
neighbor of the current vertex.
Randomness required for a walk of length s: log(N) + s log(d).
(N is the number of vertices.)
A graph is a good expander if, after O(log(N)) steps, the
probability to arrive at a given vertex is close to uniform on all
vertices.

Also, d = O(1).
We need: good expanders exist for all N = n4.

Introduction Space Bounded Algorithms

Reducing Randomness

Random walks on expander graphs

Sampling s columns independently requires s · log(n) random
bits.
Perform random walk on an expander graph to reduce
randomness.

We only consider graphs that are undirected, connected,
d-regular, non-bipartite.
A random walk is a random sequence of vertices. We start from a
uniform random vertex. In each step we choose a random
neighbor of the current vertex.
Randomness required for a walk of length s: log(N) + s log(d).
(N is the number of vertices.)
A graph is a good expander if, after O(log(N)) steps, the
probability to arrive at a given vertex is close to uniform on all
vertices. Also, d = O(1).

We need: good expanders exist for all N = n4.

Introduction Space Bounded Algorithms

Reducing Randomness

Random walks on expander graphs

Sampling s columns independently requires s · log(n) random
bits.
Perform random walk on an expander graph to reduce
randomness.

We only consider graphs that are undirected, connected,
d-regular, non-bipartite.
A random walk is a random sequence of vertices. We start from a
uniform random vertex. In each step we choose a random
neighbor of the current vertex.
Randomness required for a walk of length s: log(N) + s log(d).
(N is the number of vertices.)
A graph is a good expander if, after O(log(N)) steps, the
probability to arrive at a given vertex is close to uniform on all
vertices. Also, d = O(1).
We need: good expanders exist for all N = n4.

Introduction Space Bounded Algorithms

Reducing Randomness

Labeling vertices with columns

Given M ∈ Rm×n, take an expander graph with N = n4

vertices.

Label the vertices with columns of M. Formally, take
f : [N]→ [n] such that for a uniform v ∈ [N]

Pr[f(v) = j] ≈
‖M(:, j)‖2

‖M‖2
F

= pj.

Let v1, v2, . . . , vs be the vertices visited by the walk. Then

C =
1√
s

[
M(:, f(v1))√

pf(v1)

M(:, f(v2))√
pf(v2)

· · · M(:, f(vs))√
pf(vs)

]
.

Randomness required: O(log(n) + s).

Introduction Space Bounded Algorithms

Reducing Randomness

Labeling vertices with columns

Given M ∈ Rm×n, take an expander graph with N = n4

vertices.

Label the vertices with columns of M. Formally, take
f : [N]→ [n]

such that for a uniform v ∈ [N]

Pr[f(v) = j] ≈
‖M(:, j)‖2

‖M‖2
F

= pj.

Let v1, v2, . . . , vs be the vertices visited by the walk. Then

C =
1√
s

[
M(:, f(v1))√

pf(v1)

M(:, f(v2))√
pf(v2)

· · · M(:, f(vs))√
pf(vs)

]
.

Randomness required: O(log(n) + s).

Introduction Space Bounded Algorithms

Reducing Randomness

Labeling vertices with columns

Given M ∈ Rm×n, take an expander graph with N = n4

vertices.

Label the vertices with columns of M. Formally, take
f : [N]→ [n] such that for a uniform v ∈ [N]

Pr[f(v) = j] ≈
‖M(:, j)‖2

‖M‖2
F

= pj.

Let v1, v2, . . . , vs be the vertices visited by the walk. Then

C =
1√
s

[
M(:, f(v1))√

pf(v1)

M(:, f(v2))√
pf(v2)

· · · M(:, f(vs))√
pf(vs)

]
.

Randomness required: O(log(n) + s).

Introduction Space Bounded Algorithms

Reducing Randomness

Labeling vertices with columns

Given M ∈ Rm×n, take an expander graph with N = n4

vertices.

Label the vertices with columns of M. Formally, take
f : [N]→ [n] such that for a uniform v ∈ [N]

Pr[f(v) = j] ≈
‖M(:, j)‖2

‖M‖2
F

= pj.

Let v1, v2, . . . , vs be the vertices visited by the walk. Then

C =
1√
s

[
M(:, f(v1))√

pf(v1)

M(:, f(v2))√
pf(v2)

· · · M(:, f(vs))√
pf(vs)

]
.

Randomness required: O(log(n) + s).

Introduction Space Bounded Algorithms

Reducing Randomness

Labeling vertices with columns

Given M ∈ Rm×n, take an expander graph with N = n4

vertices.

Label the vertices with columns of M. Formally, take
f : [N]→ [n] such that for a uniform v ∈ [N]

Pr[f(v) = j] ≈
‖M(:, j)‖2

‖M‖2
F

= pj.

Let v1, v2, . . . , vs be the vertices visited by the walk. Then

C =
1√
s

[
M(:, f(v1))√

pf(v1)

M(:, f(v2))√
pf(v2)

· · · M(:, f(vs))√
pf(vs)

]
.

Randomness required: O(log(n) + s).

Introduction Space Bounded Algorithms

Reducing Randomness

Labeling vertices with columns

Given M ∈ Rm×n, take an expander graph with N = n4

vertices.

Label the vertices with columns of M. Formally, take
f : [N]→ [n] such that for a uniform v ∈ [N]

Pr[f(v) = j] ≈
‖M(:, j)‖2

‖M‖2
F

= pj.

Let v1, v2, . . . , vs be the vertices visited by the walk. Then

C =
1√
s

[
M(:, f(v1))√

pf(v1)

M(:, f(v2))√
pf(v2)

· · · M(:, f(vs))√
pf(vs)

]
.

Randomness required: O(log(n) + s).

Introduction Space Bounded Algorithms

Reducing Randomness

Approximation with expanders

Theorem

For M ∈ Rm×n, let C ∈ Rm×s be the matrix we get by the sampling
procedure. It holds that

E
[∥∥CCT −MMT

∥∥2
F

]
= O

(
‖M‖4

F

s

)
.

This procedure uses O(s+ log(mn)) space including the number of
random bits.

The constant in the big O notation only depends on the
expansion parameter of the graph.

Only the “work space” counts in the space complexity, reading the
input and writing the output does not.

Introduction Space Bounded Algorithms

Reducing Randomness

Approximation with expanders

Theorem

For M ∈ Rm×n, let C ∈ Rm×s be the matrix we get by the sampling
procedure. It holds that

E
[∥∥CCT −MMT

∥∥2
F

]
= O

(
‖M‖4

F

s

)
.

This procedure uses O(s+ log(mn)) space including the number of
random bits.

The constant in the big O notation only depends on the
expansion parameter of the graph.

Only the “work space” counts in the space complexity, reading the
input and writing the output does not.

Introduction Space Bounded Algorithms

Reducing Randomness

Approximation with expanders

Theorem

For M ∈ Rm×n, let C ∈ Rm×s be the matrix we get by the sampling
procedure. It holds that

E
[∥∥CCT −MMT

∥∥2
F

]
= O

(
‖M‖4

F

s

)
.

This procedure uses O(s+ log(mn)) space including the number of
random bits.

The constant in the big O notation only depends on the
expansion parameter of the graph.

Only the “work space” counts in the space complexity, reading the
input and writing the output does not.

Introduction Space Bounded Algorithms

Reducing Randomness

Approximation with expanders

Theorem

For M ∈ Rm×n, let C ∈ Rm×s be the matrix we get by the sampling
procedure. It holds that

E
[∥∥CCT −MMT

∥∥2
F

]
= O

(
‖M‖4

F

s

)
.

This procedure uses O(s+ log(mn)) space including the number of
random bits.

The constant in the big O notation only depends on the
expansion parameter of the graph.

Only the “work space” counts in the space complexity, reading the
input and writing the output does not.

Introduction Space Bounded Algorithms

Reducing Randomness

Derandomized algorithm

We can iterate over all the possible random bits.

Theorem

There exists a deterministic algorithm that, on input M ∈ Rm×n,
outputs C ∈ Rm×s for which

∥∥CCT −MMT
∥∥

F = O

(
‖M‖2

F√
s

)
.

The algorithm uses O(s+ log(mn)) space.∥∥AAT − BBT
∥∥

F is a distance measure between A and B.

For different random bits we get different CCT matrices. We just
have to pick one that is close to many others.

Introduction Space Bounded Algorithms

Reducing Randomness

Derandomized algorithm

We can iterate over all the possible random bits.

Theorem

There exists a deterministic algorithm that, on input M ∈ Rm×n,
outputs C ∈ Rm×s for which

∥∥CCT −MMT
∥∥

F = O

(
‖M‖2

F√
s

)
.

The algorithm uses O(s+ log(mn)) space.∥∥AAT − BBT
∥∥

F is a distance measure between A and B.

For different random bits we get different CCT matrices. We just
have to pick one that is close to many others.

Introduction Space Bounded Algorithms

Reducing Randomness

Derandomized algorithm

We can iterate over all the possible random bits.

Theorem

There exists a deterministic algorithm that, on input M ∈ Rm×n,
outputs C ∈ Rm×s for which

∥∥CCT −MMT
∥∥

F = O

(
‖M‖2

F√
s

)
.

The algorithm uses O(s+ log(mn)) space.

∥∥AAT − BBT
∥∥

F is a distance measure between A and B.

For different random bits we get different CCT matrices. We just
have to pick one that is close to many others.

Introduction Space Bounded Algorithms

Reducing Randomness

Derandomized algorithm

We can iterate over all the possible random bits.

Theorem

There exists a deterministic algorithm that, on input M ∈ Rm×n,
outputs C ∈ Rm×s for which

∥∥CCT −MMT
∥∥

F = O

(
‖M‖2

F√
s

)
.

The algorithm uses O(s+ log(mn)) space.∥∥AAT − BBT
∥∥

F is a distance measure between A and B.

For different random bits we get different CCT matrices. We just
have to pick one that is close to many others.

Introduction Space Bounded Algorithms

Reducing Randomness

Derandomized algorithm

We can iterate over all the possible random bits.

Theorem

There exists a deterministic algorithm that, on input M ∈ Rm×n,
outputs C ∈ Rm×s for which

∥∥CCT −MMT
∥∥

F = O

(
‖M‖2

F√
s

)
.

The algorithm uses O(s+ log(mn)) space.∥∥AAT − BBT
∥∥

F is a distance measure between A and B.

For different random bits we get different CCT matrices. We just
have to pick one that is close to many others.

Introduction Space Bounded Algorithms

Applications

Outline

1 Introduction
Low Rank Matrices
Matrix Sampling

2 Space Bounded Algorithms
Reducing Randomness
Applications

Introduction Space Bounded Algorithms

Applications

Low rank approximation with singular vectors

Theorem (known from earlier)

For any A ∈ Rm×s, M ∈ Rm×n, k > 1, if the columns of
Uk ∈ Rm×k are the left singular vectors corresponding to the top k
singular values of A and Mk is the best rank-k approximation to M

then∥∥M−UkU
T
kM

∥∥2
F 6 ‖M−Mk‖2

F + 2
√
k
∥∥AAT −MMT

∥∥
F .

UT
kUk = 1 while UkU

T
k 6 1 is the projection to the range of the

best rank-k approximation to A.

The first term is the best possible error.

The second term is what we pay for calculating with A.

Introduction Space Bounded Algorithms

Applications

Low rank approximation with singular vectors

Theorem (known from earlier)

For any A ∈ Rm×s, M ∈ Rm×n, k > 1, if the columns of
Uk ∈ Rm×k are the left singular vectors corresponding to the top k
singular values of A and Mk is the best rank-k approximation to M

then∥∥M−UkU
T
kM

∥∥2
F 6 ‖M−Mk‖2

F + 2
√
k
∥∥AAT −MMT

∥∥
F .

UT
kUk = 1 while UkU

T
k 6 1 is the projection to the range of the

best rank-k approximation to A.

The first term is the best possible error.

The second term is what we pay for calculating with A.

Introduction Space Bounded Algorithms

Applications

Low rank approximation with singular vectors

Theorem (known from earlier)

For any A ∈ Rm×s, M ∈ Rm×n, k > 1, if the columns of
Uk ∈ Rm×k are the left singular vectors corresponding to the top k
singular values of A and Mk is the best rank-k approximation to M

then∥∥M−UkU
T
kM

∥∥2
F 6 ‖M−Mk‖2

F + 2
√
k
∥∥AAT −MMT

∥∥
F .

UT
kUk = 1 while UkU

T
k 6 1 is the projection to the range of the

best rank-k approximation to A.

The first term is the best possible error.

The second term is what we pay for calculating with A.

Introduction Space Bounded Algorithms

Applications

Low rank approximation with singular vectors

Theorem (known from earlier)

For any A ∈ Rm×s, M ∈ Rm×n, k > 1, if the columns of
Uk ∈ Rm×k are the left singular vectors corresponding to the top k
singular values of A and Mk is the best rank-k approximation to M

then∥∥M−UkU
T
kM

∥∥2
F 6 ‖M−Mk‖2

F + 2
√
k
∥∥AAT −MMT

∥∥
F .

UT
kUk = 1 while UkU

T
k 6 1 is the projection to the range of the

best rank-k approximation to A.

The first term is the best possible error.

The second term is what we pay for calculating with A.

Introduction Space Bounded Algorithms

Applications

Low rank approximation in small space

Problem with the previous theorem (substituting C for A): calculating
SVD of C is costly

even if we use the small matrix CTC ∈ Rs×s.
Idea: Use CC+ instead of UkU

T
k.

C+ is the Moore-Penrose pseudoinverse of C.
If the SVD of C is UΣVT then C+ = VΣ−1UT.
So, CC+ = UUT = Urank(C)U

T
rank(C).

But calculating the Moore-Penrose pseudoinverse is easier than
the SVD. It reduces to inverse calculation which can be done in
small space.

Introduction Space Bounded Algorithms

Applications

Low rank approximation in small space

Problem with the previous theorem (substituting C for A): calculating
SVD of C is costly even if we use the small matrix CTC ∈ Rs×s.

Idea: Use CC+ instead of UkU
T
k.

C+ is the Moore-Penrose pseudoinverse of C.
If the SVD of C is UΣVT then C+ = VΣ−1UT.
So, CC+ = UUT = Urank(C)U

T
rank(C).

But calculating the Moore-Penrose pseudoinverse is easier than
the SVD. It reduces to inverse calculation which can be done in
small space.

Introduction Space Bounded Algorithms

Applications

Low rank approximation in small space

Problem with the previous theorem (substituting C for A): calculating
SVD of C is costly even if we use the small matrix CTC ∈ Rs×s.

Idea: Use CC+ instead of UkU
T
k.

C+ is the Moore-Penrose pseudoinverse of C.
If the SVD of C is UΣVT then C+ = VΣ−1UT.
So, CC+ = UUT = Urank(C)U

T
rank(C).

But calculating the Moore-Penrose pseudoinverse is easier than
the SVD. It reduces to inverse calculation which can be done in
small space.

Introduction Space Bounded Algorithms

Applications

Low rank approximation in small space

Problem with the previous theorem (substituting C for A): calculating
SVD of C is costly even if we use the small matrix CTC ∈ Rs×s.

Idea: Use CC+ instead of UkU
T
k.

C+ is the Moore-Penrose pseudoinverse of C.

If the SVD of C is UΣVT then C+ = VΣ−1UT.
So, CC+ = UUT = Urank(C)U

T
rank(C).

But calculating the Moore-Penrose pseudoinverse is easier than
the SVD. It reduces to inverse calculation which can be done in
small space.

Introduction Space Bounded Algorithms

Applications

Low rank approximation in small space

Problem with the previous theorem (substituting C for A): calculating
SVD of C is costly even if we use the small matrix CTC ∈ Rs×s.

Idea: Use CC+ instead of UkU
T
k.

C+ is the Moore-Penrose pseudoinverse of C.
If the SVD of C is UΣVT then C+ = VΣ−1UT.

So, CC+ = UUT = Urank(C)U
T
rank(C).

But calculating the Moore-Penrose pseudoinverse is easier than
the SVD. It reduces to inverse calculation which can be done in
small space.

Introduction Space Bounded Algorithms

Applications

Low rank approximation in small space

Problem with the previous theorem (substituting C for A): calculating
SVD of C is costly even if we use the small matrix CTC ∈ Rs×s.

Idea: Use CC+ instead of UkU
T
k.

C+ is the Moore-Penrose pseudoinverse of C.
If the SVD of C is UΣVT then C+ = VΣ−1UT.
So, CC+ = UUT

= Urank(C)U
T
rank(C).

But calculating the Moore-Penrose pseudoinverse is easier than
the SVD. It reduces to inverse calculation which can be done in
small space.

Introduction Space Bounded Algorithms

Applications

Low rank approximation in small space

Problem with the previous theorem (substituting C for A): calculating
SVD of C is costly even if we use the small matrix CTC ∈ Rs×s.

Idea: Use CC+ instead of UkU
T
k.

C+ is the Moore-Penrose pseudoinverse of C.
If the SVD of C is UΣVT then C+ = VΣ−1UT.
So, CC+ = UUT = Urank(C)U

T
rank(C).

But calculating the Moore-Penrose pseudoinverse is easier than
the SVD. It reduces to inverse calculation which can be done in
small space.

Introduction Space Bounded Algorithms

Applications

Low rank approximation in small space

Problem with the previous theorem (substituting C for A): calculating
SVD of C is costly even if we use the small matrix CTC ∈ Rs×s.

Idea: Use CC+ instead of UkU
T
k.

C+ is the Moore-Penrose pseudoinverse of C.
If the SVD of C is UΣVT then C+ = VΣ−1UT.
So, CC+ = UUT = Urank(C)U

T
rank(C).

But calculating the Moore-Penrose pseudoinverse is easier than
the SVD. It reduces to inverse calculation which can be done in
small space.

Introduction Space Bounded Algorithms

Applications

Low rank approximation in small space cont.

Theorem

Let the input matrix be M ∈ Rm×n. Suppose that, for some r̃ ∈ Z+,
r̃ 6 rank(M) and 0 6 ε 6 0.9, it holds that ‖M−Mr̃‖F 6 ε ‖M‖F
where Mr̃ is the best r̃-rank approximation of M.

Then, for every
constant δ > 0, there exists an O(r̃ log r̃+ log(mn))-space
deterministic algorithm that outputs C and C+M for which∥∥M−CC+M

∥∥
F 6 (ε+ δ) ‖M‖F

and the number of columns of C is O(r̃). If r̃ = O
(

log(mn)
log(log(mn))

)
then

the space bound of the algorithm is O(log(mn)).

Intuitively, C must “cover” most of the space that is spanned by the
singular vectors corresponding to the top r̃ singular values of M. Then
CC+ is a projector that projects to this “covered” subspace.

Introduction Space Bounded Algorithms

Applications

Low rank approximation in small space cont.

Theorem

Let the input matrix be M ∈ Rm×n. Suppose that, for some r̃ ∈ Z+,
r̃ 6 rank(M) and 0 6 ε 6 0.9, it holds that ‖M−Mr̃‖F 6 ε ‖M‖F
where Mr̃ is the best r̃-rank approximation of M. Then, for every
constant δ > 0, there exists an O(r̃ log r̃+ log(mn))-space
deterministic algorithm that outputs C and C+M

for which∥∥M−CC+M
∥∥

F 6 (ε+ δ) ‖M‖F

and the number of columns of C is O(r̃). If r̃ = O
(

log(mn)
log(log(mn))

)
then

the space bound of the algorithm is O(log(mn)).

Intuitively, C must “cover” most of the space that is spanned by the
singular vectors corresponding to the top r̃ singular values of M. Then
CC+ is a projector that projects to this “covered” subspace.

Introduction Space Bounded Algorithms

Applications

Low rank approximation in small space cont.

Theorem

Let the input matrix be M ∈ Rm×n. Suppose that, for some r̃ ∈ Z+,
r̃ 6 rank(M) and 0 6 ε 6 0.9, it holds that ‖M−Mr̃‖F 6 ε ‖M‖F
where Mr̃ is the best r̃-rank approximation of M. Then, for every
constant δ > 0, there exists an O(r̃ log r̃+ log(mn))-space
deterministic algorithm that outputs C and C+M for which∥∥M−CC+M

∥∥
F 6 (ε+ δ) ‖M‖F

and the number of columns of C is O(r̃). If r̃ = O
(

log(mn)
log(log(mn))

)
then

the space bound of the algorithm is O(log(mn)).

Intuitively, C must “cover” most of the space that is spanned by the
singular vectors corresponding to the top r̃ singular values of M. Then
CC+ is a projector that projects to this “covered” subspace.

Introduction Space Bounded Algorithms

Applications

Low rank approximation in small space cont.

Theorem

Let the input matrix be M ∈ Rm×n. Suppose that, for some r̃ ∈ Z+,
r̃ 6 rank(M) and 0 6 ε 6 0.9, it holds that ‖M−Mr̃‖F 6 ε ‖M‖F
where Mr̃ is the best r̃-rank approximation of M. Then, for every
constant δ > 0, there exists an O(r̃ log r̃+ log(mn))-space
deterministic algorithm that outputs C and C+M for which∥∥M−CC+M

∥∥
F 6 (ε+ δ) ‖M‖F

and the number of columns of C is O(r̃).

If r̃ = O
(

log(mn)
log(log(mn))

)
then

the space bound of the algorithm is O(log(mn)).

Intuitively, C must “cover” most of the space that is spanned by the
singular vectors corresponding to the top r̃ singular values of M. Then
CC+ is a projector that projects to this “covered” subspace.

Introduction Space Bounded Algorithms

Applications

Low rank approximation in small space cont.

Theorem

Let the input matrix be M ∈ Rm×n. Suppose that, for some r̃ ∈ Z+,
r̃ 6 rank(M) and 0 6 ε 6 0.9, it holds that ‖M−Mr̃‖F 6 ε ‖M‖F
where Mr̃ is the best r̃-rank approximation of M. Then, for every
constant δ > 0, there exists an O(r̃ log r̃+ log(mn))-space
deterministic algorithm that outputs C and C+M for which∥∥M−CC+M

∥∥
F 6 (ε+ δ) ‖M‖F

and the number of columns of C is O(r̃). If r̃ = O
(

log(mn)
log(log(mn))

)
then

the space bound of the algorithm is O(log(mn)).

Intuitively, C must “cover” most of the space that is spanned by the
singular vectors corresponding to the top r̃ singular values of M. Then
CC+ is a projector that projects to this “covered” subspace.

Introduction Space Bounded Algorithms

Applications

Low rank approximation in small space cont.

Theorem

Let the input matrix be M ∈ Rm×n. Suppose that, for some r̃ ∈ Z+,
r̃ 6 rank(M) and 0 6 ε 6 0.9, it holds that ‖M−Mr̃‖F 6 ε ‖M‖F
where Mr̃ is the best r̃-rank approximation of M. Then, for every
constant δ > 0, there exists an O(r̃ log r̃+ log(mn))-space
deterministic algorithm that outputs C and C+M for which∥∥M−CC+M

∥∥
F 6 (ε+ δ) ‖M‖F

and the number of columns of C is O(r̃). If r̃ = O
(

log(mn)
log(log(mn))

)
then

the space bound of the algorithm is O(log(mn)).

Intuitively, C must “cover” most of the space that is spanned by the
singular vectors corresponding to the top r̃ singular values of M.

Then
CC+ is a projector that projects to this “covered” subspace.

Introduction Space Bounded Algorithms

Applications

Low rank approximation in small space cont.

Theorem

Let the input matrix be M ∈ Rm×n. Suppose that, for some r̃ ∈ Z+,
r̃ 6 rank(M) and 0 6 ε 6 0.9, it holds that ‖M−Mr̃‖F 6 ε ‖M‖F
where Mr̃ is the best r̃-rank approximation of M. Then, for every
constant δ > 0, there exists an O(r̃ log r̃+ log(mn))-space
deterministic algorithm that outputs C and C+M for which∥∥M−CC+M

∥∥
F 6 (ε+ δ) ‖M‖F

and the number of columns of C is O(r̃). If r̃ = O
(

log(mn)
log(log(mn))

)
then

the space bound of the algorithm is O(log(mn)).

Intuitively, C must “cover” most of the space that is spanned by the
singular vectors corresponding to the top r̃ singular values of M. Then
CC+ is a projector that projects to this “covered” subspace.

Introduction Space Bounded Algorithms

Applications

Note on the space bound

If r̃� n then O(r̃ log r̃+ log(mn)) space is less than
storing r̃ column indices, which would require r̃ · logn space,

storing the small CTC ∈ Rs×s matrix, which would require space
s2 = Ω(r̃2).

We can’t even calculate the rank of M in this space bound, even
if ε = 0.

Matrix multiplication can be done in this space bound so we can
also output CC+M and C+.

Introduction Space Bounded Algorithms

Applications

Note on the space bound

If r̃� n then O(r̃ log r̃+ log(mn)) space is less than
storing r̃ column indices, which would require r̃ · logn space,
storing the small CTC ∈ Rs×s matrix, which would require space
s2 = Ω(r̃2).

We can’t even calculate the rank of M in this space bound, even
if ε = 0.

Matrix multiplication can be done in this space bound so we can
also output CC+M and C+.

Introduction Space Bounded Algorithms

Applications

Note on the space bound

If r̃� n then O(r̃ log r̃+ log(mn)) space is less than
storing r̃ column indices, which would require r̃ · logn space,
storing the small CTC ∈ Rs×s matrix, which would require space
s2 = Ω(r̃2).

We can’t even calculate the rank of M in this space bound, even
if ε = 0.

Matrix multiplication can be done in this space bound so we can
also output CC+M and C+.

Introduction Space Bounded Algorithms

Applications

Note on the space bound

If r̃� n then O(r̃ log r̃+ log(mn)) space is less than
storing r̃ column indices, which would require r̃ · logn space,
storing the small CTC ∈ Rs×s matrix, which would require space
s2 = Ω(r̃2).

We can’t even calculate the rank of M in this space bound, even
if ε = 0.

Matrix multiplication can be done in this space bound so we can
also output CC+M and C+.

Introduction Space Bounded Algorithms

Applications

Moore-Penrose pseudoinverse of M

We can calculate the Moore-Penrose pseudoinverse of M if M is low
rank.

Approximately low rank is not enough, because we have to invert
all non-zero singular values.

Theorem

Let M ∈ Rm×n be given as input, where the rank of M is r and its
condition number is constant. There exists a deterministic algorithm
that outputs M+ using space O

(
r2 log r+ log(mn)

)
.

If r = O

(√
log(mn)

log(log(mn))

)
then the space bound becomes O(log(mn)).

Bound gets worse: r̃→ r2. This is because the sampled matrix
must “cover” the whole space spanned by the singular vectors of
M.

Introduction Space Bounded Algorithms

Applications

Moore-Penrose pseudoinverse of M

We can calculate the Moore-Penrose pseudoinverse of M if M is low
rank. Approximately low rank is not enough, because we have to invert
all non-zero singular values.

Theorem

Let M ∈ Rm×n be given as input, where the rank of M is r and its
condition number is constant. There exists a deterministic algorithm
that outputs M+ using space O

(
r2 log r+ log(mn)

)
.

If r = O

(√
log(mn)

log(log(mn))

)
then the space bound becomes O(log(mn)).

Bound gets worse: r̃→ r2. This is because the sampled matrix
must “cover” the whole space spanned by the singular vectors of
M.

Introduction Space Bounded Algorithms

Applications

Moore-Penrose pseudoinverse of M

We can calculate the Moore-Penrose pseudoinverse of M if M is low
rank. Approximately low rank is not enough, because we have to invert
all non-zero singular values.

Theorem

Let M ∈ Rm×n be given as input, where the rank of M is r and its
condition number is constant.

There exists a deterministic algorithm
that outputs M+ using space O

(
r2 log r+ log(mn)

)
.

If r = O

(√
log(mn)

log(log(mn))

)
then the space bound becomes O(log(mn)).

Bound gets worse: r̃→ r2. This is because the sampled matrix
must “cover” the whole space spanned by the singular vectors of
M.

Introduction Space Bounded Algorithms

Applications

Moore-Penrose pseudoinverse of M

We can calculate the Moore-Penrose pseudoinverse of M if M is low
rank. Approximately low rank is not enough, because we have to invert
all non-zero singular values.

Theorem

Let M ∈ Rm×n be given as input, where the rank of M is r and its
condition number is constant. There exists a deterministic algorithm
that outputs M+ using space O

(
r2 log r+ log(mn)

)
.

If r = O

(√
log(mn)

log(log(mn))

)
then the space bound becomes O(log(mn)).

Bound gets worse: r̃→ r2. This is because the sampled matrix
must “cover” the whole space spanned by the singular vectors of
M.

Introduction Space Bounded Algorithms

Applications

Moore-Penrose pseudoinverse of M

We can calculate the Moore-Penrose pseudoinverse of M if M is low
rank. Approximately low rank is not enough, because we have to invert
all non-zero singular values.

Theorem

Let M ∈ Rm×n be given as input, where the rank of M is r and its
condition number is constant. There exists a deterministic algorithm
that outputs M+ using space O

(
r2 log r+ log(mn)

)
.

If r = O

(√
log(mn)

log(log(mn))

)
then the space bound becomes O(log(mn)).

Bound gets worse: r̃→ r2. This is because the sampled matrix
must “cover” the whole space spanned by the singular vectors of
M.

Introduction Space Bounded Algorithms

Applications

Moore-Penrose pseudoinverse of M

We can calculate the Moore-Penrose pseudoinverse of M if M is low
rank. Approximately low rank is not enough, because we have to invert
all non-zero singular values.

Theorem

Let M ∈ Rm×n be given as input, where the rank of M is r and its
condition number is constant. There exists a deterministic algorithm
that outputs M+ using space O

(
r2 log r+ log(mn)

)
.

If r = O

(√
log(mn)

log(log(mn))

)
then the space bound becomes O(log(mn)).

Bound gets worse: r̃→ r2.

This is because the sampled matrix
must “cover” the whole space spanned by the singular vectors of
M.

Introduction Space Bounded Algorithms

Applications

Moore-Penrose pseudoinverse of M

We can calculate the Moore-Penrose pseudoinverse of M if M is low
rank. Approximately low rank is not enough, because we have to invert
all non-zero singular values.

Theorem

Let M ∈ Rm×n be given as input, where the rank of M is r and its
condition number is constant. There exists a deterministic algorithm
that outputs M+ using space O

(
r2 log r+ log(mn)

)
.

If r = O

(√
log(mn)

log(log(mn))

)
then the space bound becomes O(log(mn)).

Bound gets worse: r̃→ r2. This is because the sampled matrix
must “cover” the whole space spanned by the singular vectors of
M.

Introduction Space Bounded Algorithms

Applications

Singular value decomposition of M

If we can store CTC then we can calculate an approximate SVD of M.

Theorem

For M ∈ Rm×n, let r = rank(M) and suppose its condition number
is constant. For every constant δ > 0, there exists a deterministic alg.
that outputs U ∈ Rm×r, Σ̃ ∈ Rr×r, W ∈ Rn×r for which

UΣ̃WT = M, UTU = 1,∥∥Σ̃2 − Σ2
∥∥

F =
δ ‖M‖2

F

r
,

∥∥WTW − 1
∥∥

F < δ.

Σ = diag(σ1(M) ,σ2(M) , . . . ,σr(M)). The alg. uses space
O
(
r4 + log(mn)

)
. If r = O

(
log1/4(mn)

)
then the space bound

becomes O(log(mn)).

The bound gets worse: r2 → r4.

Introduction Space Bounded Algorithms

Applications

Singular value decomposition of M

If we can store CTC then we can calculate an approximate SVD of M.

Theorem

For M ∈ Rm×n, let r = rank(M) and suppose its condition number
is constant.

For every constant δ > 0, there exists a deterministic alg.
that outputs U ∈ Rm×r, Σ̃ ∈ Rr×r, W ∈ Rn×r for which

UΣ̃WT = M, UTU = 1,∥∥Σ̃2 − Σ2
∥∥

F =
δ ‖M‖2

F

r
,

∥∥WTW − 1
∥∥

F < δ.

Σ = diag(σ1(M) ,σ2(M) , . . . ,σr(M)). The alg. uses space
O
(
r4 + log(mn)

)
. If r = O

(
log1/4(mn)

)
then the space bound

becomes O(log(mn)).

The bound gets worse: r2 → r4.

Introduction Space Bounded Algorithms

Applications

Singular value decomposition of M

If we can store CTC then we can calculate an approximate SVD of M.

Theorem

For M ∈ Rm×n, let r = rank(M) and suppose its condition number
is constant. For every constant δ > 0, there exists a deterministic alg.
that outputs U ∈ Rm×r, Σ̃ ∈ Rr×r, W ∈ Rn×r

for which

UΣ̃WT = M, UTU = 1,∥∥Σ̃2 − Σ2
∥∥

F =
δ ‖M‖2

F

r
,

∥∥WTW − 1
∥∥

F < δ.

Σ = diag(σ1(M) ,σ2(M) , . . . ,σr(M)). The alg. uses space
O
(
r4 + log(mn)

)
. If r = O

(
log1/4(mn)

)
then the space bound

becomes O(log(mn)).

The bound gets worse: r2 → r4.

Introduction Space Bounded Algorithms

Applications

Singular value decomposition of M

If we can store CTC then we can calculate an approximate SVD of M.

Theorem

For M ∈ Rm×n, let r = rank(M) and suppose its condition number
is constant. For every constant δ > 0, there exists a deterministic alg.
that outputs U ∈ Rm×r, Σ̃ ∈ Rr×r, W ∈ Rn×r for which

UΣ̃WT = M,

UTU = 1,∥∥Σ̃2 − Σ2
∥∥

F =
δ ‖M‖2

F

r
,

∥∥WTW − 1
∥∥

F < δ.

Σ = diag(σ1(M) ,σ2(M) , . . . ,σr(M)). The alg. uses space
O
(
r4 + log(mn)

)
. If r = O

(
log1/4(mn)

)
then the space bound

becomes O(log(mn)).

The bound gets worse: r2 → r4.

Introduction Space Bounded Algorithms

Applications

Singular value decomposition of M

If we can store CTC then we can calculate an approximate SVD of M.

Theorem

For M ∈ Rm×n, let r = rank(M) and suppose its condition number
is constant. For every constant δ > 0, there exists a deterministic alg.
that outputs U ∈ Rm×r, Σ̃ ∈ Rr×r, W ∈ Rn×r for which

UΣ̃WT = M, UTU = 1,

∥∥Σ̃2 − Σ2
∥∥

F =
δ ‖M‖2

F

r
,

∥∥WTW − 1
∥∥

F < δ.

Σ = diag(σ1(M) ,σ2(M) , . . . ,σr(M)). The alg. uses space
O
(
r4 + log(mn)

)
. If r = O

(
log1/4(mn)

)
then the space bound

becomes O(log(mn)).

The bound gets worse: r2 → r4.

Introduction Space Bounded Algorithms

Applications

Singular value decomposition of M

If we can store CTC then we can calculate an approximate SVD of M.

Theorem

For M ∈ Rm×n, let r = rank(M) and suppose its condition number
is constant. For every constant δ > 0, there exists a deterministic alg.
that outputs U ∈ Rm×r, Σ̃ ∈ Rr×r, W ∈ Rn×r for which

UΣ̃WT = M, UTU = 1,∥∥Σ̃2 − Σ2
∥∥

F =
δ ‖M‖2

F

r
,

∥∥WTW − 1
∥∥

F < δ.

Σ = diag(σ1(M) ,σ2(M) , . . . ,σr(M)).

The alg. uses space
O
(
r4 + log(mn)

)
. If r = O

(
log1/4(mn)

)
then the space bound

becomes O(log(mn)).

The bound gets worse: r2 → r4.

Introduction Space Bounded Algorithms

Applications

Singular value decomposition of M

If we can store CTC then we can calculate an approximate SVD of M.

Theorem

For M ∈ Rm×n, let r = rank(M) and suppose its condition number
is constant. For every constant δ > 0, there exists a deterministic alg.
that outputs U ∈ Rm×r, Σ̃ ∈ Rr×r, W ∈ Rn×r for which

UΣ̃WT = M, UTU = 1,∥∥Σ̃2 − Σ2
∥∥

F =
δ ‖M‖2

F

r
,

∥∥WTW − 1
∥∥

F < δ.

Σ = diag(σ1(M) ,σ2(M) , . . . ,σr(M)).

The alg. uses space
O
(
r4 + log(mn)

)
. If r = O

(
log1/4(mn)

)
then the space bound

becomes O(log(mn)).

The bound gets worse: r2 → r4.

Introduction Space Bounded Algorithms

Applications

Singular value decomposition of M

If we can store CTC then we can calculate an approximate SVD of M.

Theorem

For M ∈ Rm×n, let r = rank(M) and suppose its condition number
is constant. For every constant δ > 0, there exists a deterministic alg.
that outputs U ∈ Rm×r, Σ̃ ∈ Rr×r, W ∈ Rn×r for which

UΣ̃WT = M, UTU = 1,∥∥Σ̃2 − Σ2
∥∥

F =
δ ‖M‖2

F

r
,

∥∥WTW − 1
∥∥

F < δ.

Σ = diag(σ1(M) ,σ2(M) , . . . ,σr(M)). The alg. uses space
O
(
r4 + log(mn)

)
.

If r = O
(
log1/4(mn)

)
then the space bound

becomes O(log(mn)).

The bound gets worse: r2 → r4.

Introduction Space Bounded Algorithms

Applications

Singular value decomposition of M

If we can store CTC then we can calculate an approximate SVD of M.

Theorem

For M ∈ Rm×n, let r = rank(M) and suppose its condition number
is constant. For every constant δ > 0, there exists a deterministic alg.
that outputs U ∈ Rm×r, Σ̃ ∈ Rr×r, W ∈ Rn×r for which

UΣ̃WT = M, UTU = 1,∥∥Σ̃2 − Σ2
∥∥

F =
δ ‖M‖2

F

r
,

∥∥WTW − 1
∥∥

F < δ.

Σ = diag(σ1(M) ,σ2(M) , . . . ,σr(M)). The alg. uses space
O
(
r4 + log(mn)

)
. If r = O

(
log1/4(mn)

)
then the space bound

becomes O(log(mn)).

The bound gets worse: r2 → r4.

Introduction Space Bounded Algorithms

Applications

Singular value decomposition of M

If we can store CTC then we can calculate an approximate SVD of M.

Theorem

For M ∈ Rm×n, let r = rank(M) and suppose its condition number
is constant. For every constant δ > 0, there exists a deterministic alg.
that outputs U ∈ Rm×r, Σ̃ ∈ Rr×r, W ∈ Rn×r for which

UΣ̃WT = M, UTU = 1,∥∥Σ̃2 − Σ2
∥∥

F =
δ ‖M‖2

F

r
,

∥∥WTW − 1
∥∥

F < δ.

Σ = diag(σ1(M) ,σ2(M) , . . . ,σr(M)). The alg. uses space
O
(
r4 + log(mn)

)
. If r = O

(
log1/4(mn)

)
then the space bound

becomes O(log(mn)).

The bound gets worse: r2 → r4.

Introduction Space Bounded Algorithms

Applications

Summary

We saw a sampling method to handle low rank matrices.

Reduced the randomness and derandomized the method.
Three applications:

Low rank approximation
Calculating the Moore-Penrose pseudoinverse
Calculating the SVD

Open question:
What other interesting matrix properties can we use it for?

Introduction Space Bounded Algorithms

Applications

Summary

We saw a sampling method to handle low rank matrices.

Reduced the randomness and derandomized the method.

Three applications:
Low rank approximation
Calculating the Moore-Penrose pseudoinverse
Calculating the SVD

Open question:
What other interesting matrix properties can we use it for?

Introduction Space Bounded Algorithms

Applications

Summary

We saw a sampling method to handle low rank matrices.

Reduced the randomness and derandomized the method.
Three applications:

Low rank approximation

Calculating the Moore-Penrose pseudoinverse
Calculating the SVD

Open question:
What other interesting matrix properties can we use it for?

Introduction Space Bounded Algorithms

Applications

Summary

We saw a sampling method to handle low rank matrices.

Reduced the randomness and derandomized the method.
Three applications:

Low rank approximation
Calculating the Moore-Penrose pseudoinverse

Calculating the SVD

Open question:
What other interesting matrix properties can we use it for?

Introduction Space Bounded Algorithms

Applications

Summary

We saw a sampling method to handle low rank matrices.

Reduced the randomness and derandomized the method.
Three applications:

Low rank approximation
Calculating the Moore-Penrose pseudoinverse
Calculating the SVD

Open question:
What other interesting matrix properties can we use it for?

Introduction Space Bounded Algorithms

Applications

Summary

We saw a sampling method to handle low rank matrices.

Reduced the randomness and derandomized the method.
Three applications:

Low rank approximation
Calculating the Moore-Penrose pseudoinverse
Calculating the SVD

Open question:
What other interesting matrix properties can we use it for?

Introduction Space Bounded Algorithms

Applications

Thank you for your attention!

Got comments, questions, ideas?
Email me at Q peresz@sztaki.hu

mailto:peresz@sztaki.hu

	Introduction
	Low Rank Matrices
	Matrix Sampling

	Space Bounded Algorithms
	Reducing Randomness
	Applications

