Computations with Low Rank Matrices in Logarithmic Space

Attila Pereszlényi ${ }^{1} \boxtimes$ peresz@sztaki.hu Joint work with Katalin Friedl ${ }^{2}$, László Kabódi ${ }^{2}$, Dániel Szabó ${ }^{2}$
${ }^{1}$ Institute for Computer Science and Control, Budapest, Hungary (SZTAKI)
${ }^{2}$ Department of Computer Science and Information Theory (BME SZIT)
Mathematical Modeling Seminar
$3^{\text {rd }}$ November, 2020

Outline

(1) Introduction

- Low Rank Matrices
- Matrix Sampling

Outline

(9) Introduction

- Low Rank Matrices
- Matrix Sampling

2) Space Bounded Algorithms

- Reducing Randomness
- Applications
\circlearrowright sztaki

Outline

(1) Introduction

- Low Rank Matrices
- Matrix Sampling

2) Space Bounded Algorithms

- Reducing Randomness
- Applications
\circlearrowright sztaki

Why low rank matrices?

Matrices that are low rank or can be approximated well by low rank matrices are common in many areas.

Why low rank matrices?

Matrices that are low rank or can be approximated well by low rank matrices are common in many areas.

- Example: recommendation systems

Source: Google ' \mathcal{B} developers.google.com/machine-learning/ recommendation/collaborative/matrix

Singular value decomposition

The singular value decomposition (SVD) of $\mathbf{M} \in \mathbb{R}^{\mathfrak{m} \times n}$ is

$$
\mathbf{M}=\mathbf{U} \Sigma \mathbf{V}^{\top}
$$

Singular value decomposition

The singular value decomposition (SVD) of $M \in \mathbb{R}^{m \times n}$ is

$$
\mathbf{M}=\mathbf{U} \Sigma \mathbf{V}^{\top}
$$

- $\mathbf{U} \in \mathbb{R}^{m \times r}, \Sigma \in \mathbb{R}^{r \times r}, \mathbf{V} \in \mathbb{R}^{n \times r}$ where $r=\operatorname{rank}(\mathbf{M})$

Singular value decomposition

The singular value decomposition (SVD) of $M \in \mathbb{R}^{m \times n}$ is

$$
\mathbf{M}=\mathbf{U} \Sigma \mathbf{V}^{\top}
$$

- $\mathbf{U} \in \mathbb{R}^{m \times r}, \Sigma \in \mathbb{R}^{r \times r}, V \in \mathbb{R}^{n \times r}$ where $r=\operatorname{rank}(\mathbf{M})$
- $\mathbf{U}^{\top} \mathbf{U}=\mathbf{V}^{\top} \mathbf{V}=\mathbb{1}$

Singular value decomposition

The singular value decomposition (SVD) of $\mathbf{M} \in \mathbb{R}^{m \times n}$ is

$$
\mathbf{M}=\mathbf{U} \Sigma \mathbf{V}^{\top}
$$

- $\mathbf{U} \in \mathbb{R}^{m \times r}, \Sigma \in \mathbb{R}^{r \times r}, V \in \mathbb{R}^{n \times r}$ where $r=\operatorname{rank}(\mathbf{M})$
- $\mathbf{U}^{\top} \mathbf{U}=\mathbf{V}^{\top} \mathbf{V}=\mathbb{1}$
- $\Sigma=\operatorname{diag}\left(\sigma_{1}(\boldsymbol{M}), \sigma_{2}(\boldsymbol{M}), \ldots, \sigma_{r}(\boldsymbol{M})\right)$ where $\sigma_{1}(\boldsymbol{M}) \geqslant \sigma_{2}(\boldsymbol{M}) \geqslant \ldots \geqslant \sigma_{r}(\boldsymbol{M})>0$

Singular value decomposition

The singular value decomposition (SVD) of $\mathbf{M} \in \mathbb{R}^{m \times n}$ is

$$
\mathbf{M}=\mathbf{U} \Sigma \mathbf{V}^{\top}
$$

- $\mathbf{U} \in \mathbb{R}^{m \times r}, \Sigma \in \mathbb{R}^{r \times r}, V \in \mathbb{R}^{n \times r}$ where $r=\operatorname{rank}(\mathbf{M})$
- $\mathbf{U}^{\top} \mathbf{U}=\mathbf{V}^{\top} \mathbf{V}=\mathbb{1}$
- $\Sigma=\operatorname{diag}\left(\sigma_{1}(\mathbf{M}), \sigma_{2}(\mathbf{M}), \ldots, \sigma_{r}(\mathbf{M})\right)$ where $\sigma_{1}(\boldsymbol{M}) \geqslant \sigma_{2}(\boldsymbol{M}) \geqslant \ldots \geqslant \sigma_{r}(\boldsymbol{M})>0$
- The $\sigma_{i}(\boldsymbol{M})$'s are called the singular values of \boldsymbol{M} and the columns of \mathbf{U} and \mathbf{V} are called the left and right singular vectors of M.

Some notations

- We denote the
- ($\mathfrak{i}, \mathfrak{j}$)-th element of \mathbf{M} by $\mathbf{M}(\mathbf{i}, \mathfrak{j})$

Some notations

- We denote the
- ($\mathfrak{i}, \mathfrak{j}$)-th element of \mathbf{M} by $\mathbf{M}(\mathbf{i}, \mathfrak{j})$
- i-th row of \mathbf{M} by $\mathbf{M}(\mathfrak{i},:$)
. sZtaki

Some notations

- We denote the
- ($\mathfrak{i}, \mathfrak{j})$-th element of \boldsymbol{M} by $\mathbf{M}(\mathbf{i}, \mathfrak{j})$
- i-th row of \mathbf{M} by $\mathbf{M}(i,:)$
- j-th column of \mathbf{M} by $\mathbf{M}(:, \mathfrak{j})$

Some notations

- We denote the
- ($\mathfrak{i}, \mathfrak{j}$)-th element of \mathbf{M} by $\mathbf{M}(\mathbf{i}, \mathfrak{j})$
- i-th row of \boldsymbol{M} by $\boldsymbol{M}(i,:)$
- j-th column of \mathbf{M} by $\boldsymbol{M}(:, \mathfrak{j})$
- The Frobenius norm of M is

$$
\|\boldsymbol{M}\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} \boldsymbol{M}(i, j)^{2}}
$$

Some notations

- We denote the
- $(\mathbf{i}, \mathfrak{j})$-th element of \boldsymbol{M} by $\boldsymbol{M}(i, j)$
- i-th row of \mathbf{M} by $\mathbf{M}(i,:)$
- j-th column of \mathbf{M} by $\boldsymbol{M}(:, j)$
- The Frobenius norm of \mathbf{M} is

$$
\|\boldsymbol{M}\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} \boldsymbol{M}(i, j)^{2}}=\sqrt{\sum_{i=1}^{r} \sigma_{i}(\boldsymbol{M})^{2}}
$$

Approximately low rank matrices

If M can be approximated well by a low rank matrix then its singular values look like this.

- $\exists \tilde{r} \in \mathbb{Z}^{+}, \tilde{r} \leqslant r$ and $0 \leqslant \tilde{\varepsilon} \leqslant 0.9$

Outline

(1) Introduction

- Low Rank Matrices
- Matrix Sampling

2) Space Bounded Algorithms

- Reducing Randomness
- Applications
\circlearrowright sztaki

Sampling a column

Given $\mathbf{M} \in \mathbb{R}^{\mathrm{m} \times n}$ let's estimate $\mathbf{M} \mathbf{M}^{\top}$.

Sampling a column

Given $\mathbf{M} \in \mathbb{R}^{\mathbf{m} \times \mathfrak{n}}$ let's estimate $\mathbf{M} \mathbf{M}^{\top}$.

- Pick a column randomly. Let $\mathrm{J} \in[\mathrm{n}]$ be the index of the picked column.

Sampling a column

Given $\mathbf{M} \in \mathbb{R}^{\mathbf{m} \times n}$ let's estimate $\mathbf{M} \mathbf{M}^{\top}$.

- Pick a column randomly. Let $\mathrm{J} \in[\mathrm{n}]$ be the index of the picked column. Let

$$
\operatorname{Pr}[J=j]=\frac{\|\boldsymbol{M}(:, j)\|^{2}}{\|\boldsymbol{M}\|_{F}^{2}}
$$

Sampling a column

Given $\mathbf{M} \in \mathbb{R}^{\mathbf{m} \times n}$ let's estimate $\mathbf{M} \mathbf{M}^{\top}$.

- Pick a column randomly. Let $\mathrm{J} \in[\mathrm{n}]$ be the index of the picked column. Let

$$
\operatorname{Pr}[\mathrm{J}=\mathfrak{j}]=\frac{\|\boldsymbol{M}(:, \mathfrak{j})\|^{2}}{\|\boldsymbol{M}\|_{\mathrm{F}}^{2}}=\mathrm{p}_{\mathfrak{j}} .
$$

Sampling a column

Given $\mathbf{M} \in \mathbb{R}^{\mathbf{m} \times n}$ let's estimate $\mathbf{M} \mathbf{M}^{\top}$.

- Pick a column randomly. Let $\mathrm{J} \in[\mathrm{n}]$ be the index of the picked column. Let

$$
\operatorname{Pr}[J=j]=\frac{\|\boldsymbol{M}(:, \mathfrak{j})\|^{2}}{\|\boldsymbol{M}\|_{F}^{2}}=p_{j} .
$$

- Let $\mathrm{c}=\frac{\mathbf{M}(:, \mathrm{J})}{\sqrt{\boldsymbol{P}_{\mathrm{J}}}}$.

Sampling a column

Given $\mathbf{M} \in \mathbb{R}^{\mathbf{m} \times n}$ let's estimate $\mathbf{M} \mathbf{M}^{\top}$.

- Pick a column randomly. Let $\mathrm{J} \in[\mathrm{n}]$ be the index of the picked column. Let

$$
\operatorname{Pr}[\mathrm{J}=\mathfrak{j}]=\frac{\|\boldsymbol{M}(:, \mathfrak{j})\|^{2}}{\|\boldsymbol{M}\|_{\mathrm{F}}^{2}}=\mathrm{p}_{\mathfrak{j}}
$$

- Let $\mathbf{c}=\frac{\mathbf{M}(:, \mathrm{J})}{\sqrt{\boldsymbol{P}_{\mathrm{J}}}}$. We approximate $\mathbf{M} \mathbf{M}^{\top}$ with cc^{\top}.

Sampling a column

Given $\mathbf{M} \in \mathbb{R}^{\mathbf{m} \times n}$ let's estimate $\mathbf{M} \mathbf{M}^{\top}$.

- Pick a column randomly. Let $J \in[n]$ be the index of the picked column. Let

$$
\operatorname{Pr}[J=j]=\frac{\|\boldsymbol{M}(:, \mathfrak{j})\|^{2}}{\|\boldsymbol{M}\|_{F}^{2}}=p_{j} .
$$

- Let $\mathbf{c}=\frac{\mathbf{M}(:, \mathrm{J})}{\sqrt{\boldsymbol{P}_{\mathrm{J}}}}$. We approximate $\mathbf{M} \mathbf{M}^{\top}$ with cc^{\top}.

$$
\mathbb{E}\left[\mathbf{c c}^{\top}\right]=\sum_{\mathrm{k}=1}^{\mathrm{n}} \operatorname{Pr}[\mathrm{~J}=\mathrm{k}] \frac{\boldsymbol{M}(:, \mathrm{k}) \boldsymbol{M}^{\top}(\mathrm{k},:)}{\mathrm{p}_{\mathrm{k}}}
$$

Sampling a column

Given $\mathbf{M} \in \mathbb{R}^{\mathbf{m} \times \mathfrak{n}}$ let's estimate $\mathbf{M} \mathbf{M}^{\top}$.

- Pick a column randomly. Let $J \in[n]$ be the index of the picked column. Let

$$
\operatorname{Pr}[J=j]=\frac{\|\boldsymbol{M}(:, \mathfrak{j})\|^{2}}{\|\boldsymbol{M}\|_{F}^{2}}=p_{j} .
$$

- Let $\mathbf{c}=\frac{\mathbf{M}(:, \mathrm{J})}{\sqrt{\boldsymbol{P}_{\mathrm{J}}}}$. We approximate $\mathbf{M} \mathbf{M}^{\top}$ with cc^{\top}.

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{c c}^{\top}\right] & =\sum_{k=1}^{n} \operatorname{Pr}[J=k] \frac{\boldsymbol{M}(:, k) \boldsymbol{M}^{\top}(\mathrm{k},:)}{p_{k}} \\
& =\sum_{k=1}^{n} \boldsymbol{M}(:, k) \boldsymbol{M}^{\top}(k,:)
\end{aligned}
$$

Sampling a column

Given $\mathbf{M} \in \mathbb{R}^{\mathbf{m} \times n}$ let's estimate $\mathbf{M} \mathbf{M}^{\top}$.

- Pick a column randomly. Let $J \in[n]$ be the index of the picked column. Let

$$
\operatorname{Pr}[J=j]=\frac{\|\boldsymbol{M}(:, \mathfrak{j})\|^{2}}{\|\boldsymbol{M}\|_{F}^{2}}=p_{j} .
$$

- Let $\mathbf{c}=\frac{\mathbf{M}(:, \mathrm{J})}{\sqrt{\boldsymbol{P}_{\mathrm{J}}}}$. We approximate $\mathbf{M} \mathbf{M}^{\top}$ with cc^{\top}.

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{c c}^{\top}\right] & =\sum_{k=1}^{n} \operatorname{Pr}[J=k] \frac{\boldsymbol{M}(:, k) \boldsymbol{M}^{\top}(\mathrm{k},:)}{p_{k}} \\
& =\sum_{k=1}^{n} \boldsymbol{M}(:, k) \boldsymbol{M}^{\top}(k,:) \\
& =\mathbf{M} \boldsymbol{M}^{\top}
\end{aligned}
$$

Variance

How good is the approximation?

Variance

How good is the approximation?

$$
\operatorname{Var}\left(\mathbf{c c}^{\top}\right) \stackrel{\text { def }}{=} \mathbb{E}\left[\left\|\mathbf{c c}^{\top}-\mathbf{M} \mathbf{M}^{\top}\right\|_{F}^{2}\right]
$$

Variance

How good is the approximation?

$$
\begin{aligned}
\operatorname{Var}\left(c c^{\top}\right) & \stackrel{\text { def }}{=} \mathbb{E}\left[\left\|c c^{\top}-\mathbf{M} \mathbf{M}^{\top}\right\|_{F}^{2}\right] \\
& =\sum_{i, j \in[m]} \operatorname{Var}\left(\left(c c^{\top}\right)(i, j)\right)
\end{aligned}
$$

Variance

How good is the approximation?

$$
\begin{aligned}
\operatorname{Var}\left(\mathbf{c c}^{\top}\right) & \stackrel{\text { def }}{=} \mathbb{E}\left[\left\|\mathbf{c c}^{\top}-\mathbf{M} \mathbf{M}^{\top}\right\|_{F}^{2}\right] \\
& =\sum_{i, j \in[m]} \operatorname{Var}\left(\left(\mathbf{c c}^{\top}\right)(\mathfrak{i}, \mathfrak{j})\right) \\
& =\sum_{i, j \in[m]} \operatorname{Var}\left(\frac{\mathbf{M}(i, J) \boldsymbol{M}(\mathfrak{j}, \mathrm{J})}{p_{J}}\right)
\end{aligned}
$$

Variance

How good is the approximation?

$$
\begin{aligned}
\operatorname{Var}\left(\mathbf{c c}^{\top}\right) & \stackrel{\text { def }}{=} \mathbb{E}\left[\left\|\mathbf{c c}^{\top}-\mathbf{M} \mathbf{M}^{\top}\right\|_{F}^{2}\right] \\
& =\sum_{i, j \in[m]} \operatorname{Var}\left(\left(\mathbf{c c}^{\top}\right)(i, j)\right) \\
& =\sum_{i, j \in[m]} \operatorname{Var}\left(\frac{\mathbf{M}(i, J) \mathbf{M}(j, J)}{p_{J}}\right) \\
& \leqslant \sum_{i, j \in[m]} \mathbb{E}\left[\frac{\mathbf{M}(i, J)^{2} \mathbf{M}(j, J)^{2}}{p_{J}^{2}}\right]
\end{aligned}
$$

Variance cont.

$$
\mathbb{E}\left[\left\|c^{\top}-\boldsymbol{M} \boldsymbol{M}^{\top}\right\|_{F}^{2}\right] \leqslant \mathbb{E}\left[\sum_{i, j \in[m]} \frac{\boldsymbol{M}(i, J)^{2} \boldsymbol{M}(\mathfrak{j}, \mathrm{~J})^{2}\|\boldsymbol{M}\|_{\mathrm{F}}^{4}}{\|\boldsymbol{M}(:, \mathrm{J})\|^{4}}\right]
$$

Variance cont.

$$
\begin{aligned}
\mathbb{E}\left[\| \mathbf{c} \mathbf{c}^{\top}\right. & \left.-\boldsymbol{M} \boldsymbol{M}^{\top} \|_{F}^{2}\right] \leqslant \mathbb{E}\left[\sum_{i, j \in[m]} \frac{\boldsymbol{M}(i, J)^{2} \boldsymbol{M}(j, J)^{2}\|\boldsymbol{M}\|_{F}^{4}}{\|\boldsymbol{M}(:, j)\|^{4}}\right] \\
& =\|\boldsymbol{M}\|_{F}^{4} \cdot \mathbb{E}\left[\left(\sum_{i=1}^{m} \frac{\boldsymbol{M}(i, J)^{2}}{\|\boldsymbol{M}(:, j)\|^{2}}\right)\left(\sum_{j=1}^{m} \frac{\boldsymbol{M}(j, J)^{2}}{\|\boldsymbol{M}(:, j)\|^{2}}\right)\right]
\end{aligned}
$$

Variance cont.

$$
\begin{aligned}
\mathbb{E}\left[\| \mathbf{c} \mathbf{c}^{\top}\right. & \left.-\boldsymbol{M} \boldsymbol{M}^{\top} \|_{F}^{2}\right] \leqslant \mathbb{E}\left[\sum_{i, j \in[\mathbf{m}]} \frac{\boldsymbol{M}(\mathrm{i}, \mathrm{~J})^{2} \boldsymbol{M}(\mathfrak{j}, \mathrm{~J})^{2}\|\boldsymbol{M}\|_{\mathrm{F}}^{4}}{\|\boldsymbol{M}(:, \mathrm{J})\|^{4}}\right] \\
& =\|\boldsymbol{M}\|_{F}^{4} \cdot \mathbb{E}\left[\left(\sum_{i=1}^{m} \frac{\boldsymbol{M}(\mathrm{i}, \mathrm{~J})^{2}}{\|\boldsymbol{M}(:, \mathrm{J})\|^{2}}\right)\left(\sum_{\mathrm{j}=1}^{\mathrm{m}} \frac{\boldsymbol{M}(\mathrm{j}, \mathrm{~J})^{2}}{\|\boldsymbol{M}(:, \mathrm{J})\|^{2}}\right)\right] \\
& =\|\boldsymbol{M}\|_{F}^{4}
\end{aligned}
$$

Sampling multiple columns

Let's sample s columns independently: $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{s}$.

Sampling multiple columns

Let's sample s columns independently: $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{s}$.

- Form matrix $C \in \mathbb{R}^{m \times s}$ by $C(:, j) \stackrel{\text { def }}{=} \frac{c_{j}}{\sqrt{s}}$.

Sampling multiple columns

Let's sample s columns independently: $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{s}$.

- Form matrix $C \in \mathbb{R}^{m \times s}$ by $C(:, j) \stackrel{\text { def }}{=} \frac{c_{j}}{\sqrt{s}}$.
- We approximate $\mathbf{M} M^{\top}$ with CC^{\top}.

Sampling multiple columns

Let's sample s columns independently: $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{s}$.

- Form matrix $C \in \mathbb{R}^{m \times s}$ by $C(:, j) \stackrel{\text { def }}{=} \frac{c_{j}}{\sqrt{s}}$.
- We approximate $M M^{\top}$ with ${C C^{\top}}^{\top}$.
- $\mathbb{E}\left[\mathrm{CC}^{\top}\right]=\mathbb{E}\left[\sum_{k=1}^{s} \frac{\boldsymbol{c}_{k} \mathbf{c}_{k}^{\top}}{\mathrm{s}}\right]$

Sampling multiple columns

Let's sample s columns independently: $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{s}$.

- Form matrix $C \in \mathbb{R}^{m \times s}$ by $C(:, j) \stackrel{\text { def }}{=} \frac{c_{j}}{\sqrt{s}}$.
- We approximate $M M^{\top}$ with ${C C^{\top}}^{\top}$.
- $\mathbb{E}\left[\mathbf{C C}^{\top}\right]=\mathbb{E}\left[\sum_{k=1}^{s} \frac{\mathbf{c}_{\mathrm{k}} \mathbf{c}_{\mathrm{k}}^{\top}}{\mathrm{s}}\right]=\mathbb{E}\left[\mathbf{c}_{1} \mathbf{c}_{1}^{\top}\right]$

Sampling multiple columns

Let's sample s columns independently: $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{s}$.

- Form matrix $C \in \mathbb{R}^{m \times s}$ by $C(:, j) \stackrel{\text { def }}{=} \frac{c_{j}}{\sqrt{s}}$.
- We approximate $\mathbf{M} M^{\top}$ with ${C C^{\top}}^{\top}$.
- $\mathbb{E}\left[\mathbf{C C}^{\top}\right]=\mathbb{E}\left[\sum_{k=1}^{s} \frac{\mathbf{c}_{\mathrm{k}} \mathbf{c}_{\mathrm{k}}^{\top}}{\mathrm{s}}\right]=\mathbb{E}\left[\mathbf{c}_{1} \mathbf{c}_{1}^{\top}\right]=\mathbf{M} \boldsymbol{M}^{\top}$

Sampling multiple columns

Let's sample s columns independently: $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{s}$.

- Form matrix $C \in \mathbb{R}^{m \times s}$ by $C(:, j) \stackrel{\text { def }}{=} \frac{c_{j}}{\sqrt{s}}$.
- We approximate $M M^{\top}$ with ${C C^{\top}}^{\top}$.
- $\mathbb{E}\left[\mathbf{C C}^{\top}\right]=\mathbb{E}\left[\sum_{k=1}^{s} \frac{\mathbf{c}_{k} \mathbf{c}_{k}^{\top}}{s}\right]=\mathbb{E}\left[\mathbf{c}_{1} \mathbf{c}_{1}{ }^{\top}\right]=\mathbf{M} \boldsymbol{M}^{\top}$
- $\operatorname{Var}\left(\mathbf{C C}^{\boldsymbol{\top}}\right)=\operatorname{Var}\left(\sum_{k=1}^{s} \frac{\mathbf{c}_{\mathrm{k}} \mathbf{c}_{\mathrm{k}}^{\top}}{s}\right)$

Sampling multiple columns

Let's sample s columns independently: $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{s}$.

- Form matrix $C \in \mathbb{R}^{m \times s}$ by $C(:, j) \stackrel{\text { def }}{=} \frac{c_{j}}{\sqrt{s}}$.
- We approximate $M M^{\top}$ with ${C C^{\top}}^{\top}$.
- $\mathbb{E}\left[\mathbf{C C}^{\top}\right]=\mathbb{E}\left[\sum_{k=1}^{s} \frac{\mathbf{c}_{k} \mathbf{c}_{k}^{\top}}{s}\right]=\mathbb{E}\left[\mathbf{c}_{1} \mathbf{c}_{1}{ }^{\top}\right]=\mathbf{M} \boldsymbol{M}^{\top}$
- $\operatorname{Var}\left(\mathbf{C C}^{\boldsymbol{\top}}\right)=\operatorname{Var}\left(\sum_{k=1}^{s} \frac{\mathbf{c}_{\mathrm{k}} \mathbf{c}_{k}^{\top}}{\mathrm{s}}\right)=\frac{\operatorname{Var}\left(\mathbf{c}_{1} \mathbf{c}_{1}^{\top}\right)}{\mathrm{s}}$

Sampling multiple columns

Let's sample s columns independently: $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{s}$.

- Form matrix $C \in \mathbb{R}^{m \times s}$ by $C(:, j) \stackrel{\text { def }}{=} \frac{c_{j}}{\sqrt{s}}$.
- We approximate $M M^{\top}$ with ${C C^{\top}}^{\top}$.
- $\mathbb{E}\left[\mathbf{C C}^{\top}\right]=\mathbb{E}\left[\sum_{k=1}^{s} \frac{\mathbf{c}_{k} \mathbf{c}_{k}^{\top}}{s}\right]=\mathbb{E}\left[\mathbf{c}_{1} \mathbf{c}_{1}^{\top}\right]=\mathbf{M} \boldsymbol{M}^{\top}$
- $\operatorname{Var}\left(\mathbf{C C}^{\boldsymbol{\top}}\right)=\operatorname{Var}\left(\sum_{\mathrm{k}=1}^{\mathrm{s}} \frac{\mathbf{c}_{\mathrm{k}} \mathbf{c}_{\mathrm{k}}^{\boldsymbol{\top}}}{\mathrm{s}}\right)=\frac{\operatorname{Var}\left(\mathbf{c}_{1} \mathbf{c}_{1}^{\top}\right)}{\mathrm{s}} \leqslant \frac{\|\boldsymbol{M}\|_{\mathrm{F}}^{4}}{\mathrm{~s}}$

Sampling multiple columns

Let's sample s columns independently: $\mathbf{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{s}$.

- Form matrix $C \in \mathbb{R}^{m \times s}$ by $C(:, j) \stackrel{\text { def }}{=} \frac{c_{j}}{\sqrt{s}}$.
- We approximate $M M^{\top}$ with ${C C^{\top}}^{\top}$.
- $\mathbb{E}\left[\mathbf{C C}^{\top}\right]=\mathbb{E}\left[\sum_{k=1}^{s} \frac{\mathbf{c}_{k} \mathbf{c}_{k}^{\top}}{s}\right]=\mathbb{E}\left[\mathbf{c}_{1} \mathbf{c}_{1}^{\top}\right]=\mathbf{M} \boldsymbol{M}^{\top}$
- $\operatorname{Var}\left(\mathbf{C C}^{\top}\right)=\operatorname{Var}\left(\sum_{\mathrm{k}=1}^{\mathrm{s}} \frac{\mathbf{c}_{\mathrm{k}} \mathbf{c}_{\mathrm{k}}^{\top}}{\mathrm{s}}\right)=\frac{\operatorname{Var}\left(\mathbf{c}_{1} \mathbf{c}_{1}^{\top}\right)}{\mathrm{s}} \leqslant \frac{\|\boldsymbol{M}\|_{\mathrm{F}}^{4}}{\mathrm{~s}}$

$$
\mathbb{E}\left[\left\|C C^{\top}-M M^{\top}\right\|_{F}^{2}\right] \leqslant \frac{\|M\|_{F}^{4}}{s}
$$

Why does M have to be low rank?

We have the following bound: $\mathbb{E}\left[\left\|C^{\top}-M M^{\top}\right\|_{F}^{2}\right] \leqslant \frac{\|\boldsymbol{M}\|_{F}^{4}}{s}$

Why does M have to be low rank?

We have the following bound: $\mathbb{E}\left[\left\|C C^{\top}-M M^{\top}\right\|_{F}^{2}\right] \leqslant \frac{\|\boldsymbol{M}\|_{F}^{4}}{s}$

- Let $\mathrm{r}=\operatorname{rank}(\boldsymbol{M})$.

Why does M have to be low rank?

We have the following bound: $\mathbb{E}\left[\left\|C C^{\top}-M M^{\top}\right\|_{F}^{2}\right] \leqslant \frac{\|\boldsymbol{M}\|_{F}^{4}}{s}$

- Let $\mathrm{r}=\operatorname{rank}(\mathbf{M})$.
- Suppose $\mathbf{C}=0$ (trivial approximation).

Why does M have to be low rank?

We have the following bound: $\mathbb{E}\left[\left\|C^{\top}-\boldsymbol{M} \boldsymbol{M}^{\top}\right\|_{F}^{2}\right] \leqslant \frac{\|\boldsymbol{M}\|_{F}^{4}}{s}$

- Let $\mathrm{r}=\operatorname{rank}(\boldsymbol{M})$.
- Suppose $\mathbf{C}=0$ (trivial approximation).
- Left hand side: $\left\|\boldsymbol{M} \boldsymbol{M}^{\top}\right\|_{F}^{2}=\sum_{k=1}^{r} \sigma_{M}(k)^{4}$

Why does M have to be low rank?

We have the following bound: $\mathbb{E}\left[\left\|C^{\top}-M M^{\top}\right\|_{F}^{2}\right] \leqslant \frac{\|\boldsymbol{M}\|_{F}^{4}}{s}$

- Let $\mathrm{r}=\operatorname{rank}(\mathbf{M})$.
- Suppose $\mathbf{C}=0$ (trivial approximation).
- Left hand side: $\left\|\boldsymbol{M} \boldsymbol{M}^{\top}\right\|_{F}^{2}=\sum_{k=1}^{r} \sigma_{M}(k)^{4}$
- Right hand side: $\frac{1}{s}\left(\sum_{k=1}^{r} \sigma_{M}(k)^{2}\right)^{2}$

Why does M have to be low rank?

We have the following bound: $\mathbb{E}\left[\left\|C^{\top}-M M^{\top}\right\|_{F}^{2}\right] \leqslant \frac{\|\boldsymbol{M}\|_{F}^{4}}{s}$

- Let $\mathrm{r}=\operatorname{rank}(\mathbf{M})$.
- Suppose $\mathbf{C}=0$ (trivial approximation).
- Left hand side: $\left\|\boldsymbol{M} \boldsymbol{M}^{\top}\right\|_{F}^{2}=\sum_{k=1}^{r} \sigma_{M}(k)^{4}$
- Right hand side: $\frac{1}{s}\left(\sum_{k=1}^{r} \sigma_{M}(k)^{2}\right)^{2}$
- For the bound to be non-trivial:

$$
\frac{1}{s}\left(\sum_{k=1}^{r} \sigma_{M}(k)^{2}\right)^{2}<\sum_{k=1}^{r} \sigma_{M}(k)^{4}
$$

Why does M have to be low rank?

We have the following bound: $\mathbb{E}\left[\left\|C^{\top}-\boldsymbol{M} \boldsymbol{M}^{\top}\right\|_{F}^{2}\right] \leqslant \frac{\|\boldsymbol{M}\|_{F}^{4}}{s}$

- Let $\mathrm{r}=\operatorname{rank}(\mathbf{M})$.
- Suppose $\mathbf{C}=0$ (trivial approximation).
- Left hand side: $\left\|\boldsymbol{M} \boldsymbol{M}^{\top}\right\|_{F}^{2}=\sum_{k=1}^{r} \sigma_{M}(k)^{4}$
- Right hand side: $\frac{1}{s}\left(\sum_{k=1}^{r} \sigma_{M}(k)^{2}\right)^{2}$
- For the bound to be non-trivial:

$$
\frac{1}{s}\left(\sum_{k=1}^{r} \sigma_{M}(k)^{2}\right)^{2}<\sum_{k=1}^{r} \sigma_{M}(k)^{4}
$$

which holds if $s>r$.

Outline

(1) Introduction
 - Low Rank Matrices - Matrix Sampling

(2) Space Bounded Algorithms

- Reducing Randomness
- Applications

Random walks on expander graphs

- Sampling s columns independently requires $s \cdot \log (n)$ random bits.

Random walks on expander graphs

- Sampling s columns independently requires $s \cdot \log (n)$ random bits.
- Perform random walk on an expander graph to reduce randomness.

Random walks on expander graphs

- Sampling s columns independently requires $s \cdot \log (n)$ random bits.
- Perform random walk on an expander graph to reduce randomness.
- We only consider graphs that are undirected, connected, d-regular, non-bipartite.

Random walks on expander graphs

- Sampling s columns independently requires $s \cdot \log (n)$ random bits.
- Perform random walk on an expander graph to reduce randomness.
- We only consider graphs that are undirected, connected, d-regular, non-bipartite.
- A random walk is a random sequence of vertices. We start from a uniform random vertex. In each step we choose a random neighbor of the current vertex.

Random walks on expander graphs

- Sampling s columns independently requires $s \cdot \log (n)$ random bits.
- Perform random walk on an expander graph to reduce randomness.
- We only consider graphs that are undirected, connected, d-regular, non-bipartite.
- A random walk is a random sequence of vertices. We start from a uniform random vertex. In each step we choose a random neighbor of the current vertex.
- Randomness required for a walk of length $s: \log (N)+s \log (d)$. (N is the number of vertices.)

Random walks on expander graphs

- Sampling s columns independently requires $s \cdot \log (n)$ random bits.
- Perform random walk on an expander graph to reduce randomness.
- We only consider graphs that are undirected, connected, d-regular, non-bipartite.
- A random walk is a random sequence of vertices. We start from a uniform random vertex. In each step we choose a random neighbor of the current vertex.
- Randomness required for a walk of length $s: \log (N)+s \log (d)$. (N is the number of vertices.)
- A graph is a good expander if, after $\mathrm{O}(\log (\mathrm{N}))$ steps, the probability to arrive at a given vertex is close to uniform on all vertices.

Random walks on expander graphs

- Sampling s columns independently requires $s \cdot \log (n)$ random bits.
- Perform random walk on an expander graph to reduce randomness.
- We only consider graphs that are undirected, connected, d-regular, non-bipartite.
- A random walk is a random sequence of vertices. We start from a uniform random vertex. In each step we choose a random neighbor of the current vertex.
- Randomness required for a walk of length $s: \log (N)+s \log (d)$. (N is the number of vertices.)
- A graph is a good expander if, after $\mathrm{O}(\log (\mathrm{N}))$ steps, the probability to arrive at a given vertex is close to uniform on all vertices. Also, $\mathrm{d}=\mathrm{O}(1)$.

Random walks on expander graphs

- Sampling s columns independently requires $s \cdot \log (n)$ random bits.
- Perform random walk on an expander graph to reduce randomness.
- We only consider graphs that are undirected, connected, d-regular, non-bipartite.
- A random walk is a random sequence of vertices. We start from a uniform random vertex. In each step we choose a random neighbor of the current vertex.
- Randomness required for a walk of length $s: \log (N)+s \log (d)$. (N is the number of vertices.)
- A graph is a good expander if, after $\mathrm{O}(\log (\mathrm{N}))$ steps, the probability to arrive at a given vertex is close to uniform on all vertices. Also, $d=O(1)$.
- We need: good expanders exist for all $N=n^{4}$.

Labeling vertices with columns

- Given $\mathbf{M} \in \mathbb{R}^{m \times n}$, take an expander graph with $N=n^{4}$ vertices.

Labeling vertices with columns

- Given $\mathbf{M} \in \mathbb{R}^{m \times n}$, take an expander graph with $N=n^{4}$ vertices.
- Label the vertices with columns of \mathbf{M}. Formally, take $\mathrm{f}:[\mathrm{N}] \rightarrow[\mathrm{n}]$

Labeling vertices with columns

- Given $\mathbf{M} \in \mathbb{R}^{m \times n}$, take an expander graph with $N=n^{4}$ vertices.
- Label the vertices with columns of \mathbf{M}. Formally, take $\mathrm{f}:[\mathrm{N}] \rightarrow[\mathrm{n}]$ such that for a uniform $v \in[\mathrm{~N}]$

$$
\operatorname{Pr}[\mathbf{f}(v)=j] \approx \frac{\|\boldsymbol{M}(:, \mathfrak{j})\|^{2}}{\|\boldsymbol{M}\|_{F}^{2}}
$$

Labeling vertices with columns

- Given $\mathbf{M} \in \mathbb{R}^{m \times n}$, take an expander graph with $N=n^{4}$ vertices.
- Label the vertices with columns of M. Formally, take $\mathrm{f}:[\mathrm{N}] \rightarrow[\mathrm{n}]$ such that for a uniform $v \in[\mathrm{~N}]$

$$
\operatorname{Pr}[f(v)=j] \approx \frac{\|\boldsymbol{M}(:, j)\|^{2}}{\|\boldsymbol{M}\|_{F}^{2}}=p_{j}
$$

Labeling vertices with columns

- Given $\mathbf{M} \in \mathbb{R}^{m \times n}$, take an expander graph with $N=n^{4}$ vertices.
- Label the vertices with columns of \mathbf{M}. Formally, take $\mathrm{f}:[\mathrm{N}] \rightarrow[\mathrm{n}]$ such that for a uniform $v \in[\mathrm{~N}]$

$$
\operatorname{Pr}[f(v)=j] \approx \frac{\|\boldsymbol{M}(:, j)\|^{2}}{\|\boldsymbol{M}\|_{F}^{2}}=p_{j}
$$

- Let $v_{1}, v_{2}, \ldots, v_{\mathrm{s}}$ be the vertices visited by the walk. Then

$$
\mathbf{C}=\frac{1}{\sqrt{s}}\left[\begin{array}{llll}
\boldsymbol{M}\left(:, \mathrm{f}\left(v_{1}\right)\right) \\
\sqrt{\boldsymbol{p}_{\mathbf{f}\left(v_{1}\right)}} & \frac{\boldsymbol{M}\left(:, \mathrm{f}\left(v_{2}\right)\right)}{\sqrt{\boldsymbol{p}_{\mathrm{f}\left(v_{2}\right)}}} & \cdots & \frac{\boldsymbol{M}\left(:, \mathrm{f}\left(v_{s}\right)\right)}{\sqrt{\boldsymbol{p}_{\mathrm{f}}\left(v_{s}\right)}}
\end{array}\right] .
$$

Labeling vertices with columns

- Given $\mathbf{M} \in \mathbb{R}^{m \times n}$, take an expander graph with $N=n^{4}$ vertices.
- Label the vertices with columns of \mathbf{M}. Formally, take $\mathrm{f}:[\mathrm{N}] \rightarrow[\mathrm{n}]$ such that for a uniform $v \in[\mathrm{~N}]$

$$
\operatorname{Pr}[f(v)=j] \approx \frac{\|\boldsymbol{M}(:, j)\|^{2}}{\|\boldsymbol{M}\|_{F}^{2}}=p_{j}
$$

- Let $v_{1}, v_{2}, \ldots, v_{\mathrm{s}}$ be the vertices visited by the walk. Then

$$
\mathbf{C}=\frac{1}{\sqrt{s}}\left[\begin{array}{llll}
\boldsymbol{M}\left(:, \mathrm{f}\left(v_{1}\right)\right) \\
\sqrt{\boldsymbol{p}_{\mathbf{f}\left(v_{1}\right)}} & \frac{\boldsymbol{M}\left(:, \mathrm{f}\left(v_{2}\right)\right)}{\sqrt{\boldsymbol{p}_{\mathrm{f}}\left(v_{2}\right)}} & \cdots & \frac{\boldsymbol{M}\left(:, \mathrm{f}\left(v_{s}\right)\right)}{\sqrt{\boldsymbol{p}_{\mathrm{f}}\left(v_{s}\right)}}
\end{array}\right] .
$$

- Randomness required: $\mathrm{O}(\log (n)+s)$.

Approximation with expanders

Theorem

For $M \in \mathbb{R}^{\mathfrak{m} \times n}$, let $\mathrm{C} \in \mathbb{R}^{\mathfrak{m} \times s}$ be the matrix we get by the sampling procedure. It holds that

$$
\mathbb{E}\left[\left\|C^{\top}-M M^{\top}\right\|_{F}^{2}\right]=O\left(\frac{\|\boldsymbol{M}\|_{F}^{4}}{s}\right)
$$

Approximation with expanders

Theorem

For $\mathbf{M} \in \mathbb{R}^{m \times n}$, let $\mathbf{C} \in \mathbb{R}^{m \times s}$ be the matrix we get by the sampling procedure. It holds that

$$
\mathbb{E}\left[\left\|C^{\top}-M M^{\top}\right\|_{F}^{2}\right]=\mathrm{O}\left(\frac{\|\boldsymbol{M}\|_{F}^{4}}{s}\right) .
$$

This procedure uses $\mathrm{O}(\mathrm{s}+\log (\mathrm{mn}))$ space including the number of random bits.

Approximation with expanders

Theorem

For $M \in \mathbb{R}^{m \times n}$, let $\mathrm{C} \in \mathbb{R}^{\mathrm{m} \times s}$ be the matrix we get by the sampling procedure. It holds that

$$
\mathbb{E}\left[\left\|C^{\top}-\boldsymbol{M} \boldsymbol{M}^{\top}\right\|_{F}^{2}\right]=\mathrm{O}\left(\frac{\|\boldsymbol{M}\|_{F}^{4}}{s}\right) .
$$

This procedure uses $\mathrm{O}(\mathrm{s}+\log (\mathrm{mn}))$ space including the number of random bits.

- The constant in the big O notation only depends on the expansion parameter of the graph.

Approximation with expanders

Theorem

For $M \in \mathbb{R}^{m \times n}$, let $C \in \mathbb{R}^{m \times s}$ be the matrix we get by the sampling procedure. It holds that

$$
\mathbb{E}\left[\left\|C^{\top}-\boldsymbol{M} \boldsymbol{M}^{\top}\right\|_{F}^{2}\right]=\mathrm{O}\left(\frac{\|\boldsymbol{M}\|_{F}^{4}}{s}\right) .
$$

This procedure uses $\mathrm{O}(\mathrm{s}+\log (\mathrm{mn}))$ space including the number of random bits.

- The constant in the big O notation only depends on the expansion parameter of the graph.
- Only the "work space" counts in the space complexity, reading the input and writing the output does not.

Derandomized algorithm

We can iterate over all the possible random bits.

Derandomized algorithm

We can iterate over all the possible random bits.

Theorem

There exists a deterministic algorithm that, on input $\mathbf{M} \in \mathbb{R}^{\mathfrak{m} \times n}$, outputs $\mathbf{C} \in \mathbb{R}^{m \times s}$ for which

$$
\left\|\mathbf{C C}^{\top}-M M^{\top}\right\|_{F}=\mathrm{O}\left(\frac{\|\boldsymbol{M}\|_{F}^{2}}{\sqrt{s}}\right)
$$

Derandomized algorithm

We can iterate over all the possible random bits.

Theorem

There exists a deterministic algorithm that, on input $\mathbf{M} \in \mathbb{R}^{\mathrm{m} \times n}$, outputs $\mathbf{C} \in \mathbb{R}^{m \times s}$ for which

$$
\left\|\mathbf{C C}^{\top}-M M^{\top}\right\|_{F}=\mathrm{O}\left(\frac{\|\boldsymbol{M}\|_{F}^{2}}{\sqrt{s}}\right)
$$

The algorithm uses $\mathrm{O}(\mathrm{s}+\log (\mathrm{mn}))$ space.

Derandomized algorithm

We can iterate over all the possible random bits.

Theorem

There exists a deterministic algorithm that, on input $\mathbf{M} \in \mathbb{R}^{\mathbf{m} \times n}$, outputs $\mathbf{C} \in \mathbb{R}^{m \times s}$ for which

$$
\left\|\mathbf{C C}^{\top}-M M^{\top}\right\|_{F}=\mathrm{O}\left(\frac{\|\boldsymbol{M}\|_{F}^{2}}{\sqrt{s}}\right)
$$

The algorithm uses $\mathrm{O}(\mathrm{s}+\log (\mathrm{mn}))$ space.

- $\left\|A A^{\top}-B^{\top}\right\|_{F}$ is a distance measure between \boldsymbol{A} and \mathbf{B}.

Derandomized algorithm

We can iterate over all the possible random bits.

Theorem

There exists a deterministic algorithm that, on input $\mathbf{M} \in \mathbb{R}^{\mathfrak{m} \times n}$, outputs $\mathbf{C} \in \mathbb{R}^{m \times s}$ for which

$$
\left\|\mathbf{C} \mathbf{C}^{\top}-\mathbf{M} \mathbf{M}^{\top}\right\|_{F}=\mathrm{O}\left(\frac{\|\mathbf{M}\|_{F}^{2}}{\sqrt{s}}\right)
$$

The algorithm uses $\mathrm{O}(\mathrm{s}+\log (\mathrm{mn}))$ space.

- $\left\|A A^{\top}-B^{\top}\right\|_{F}$ is a distance measure between \boldsymbol{A} and \mathbf{B}.
- For different random bits we get different CC^{\top} matrices. We just have to pick one that is close to many others.

Outline

2) Space Bounded Algorithms

- Reducing Randomness
- Applications

Low rank approximation with singular vectors

Theorem (known from earlier)

For any $\boldsymbol{A} \in \mathbb{R}^{m \times s}, \mathbf{M} \in \mathbb{R}^{m \times n}, k \geqslant 1$, if the columns of $\mathrm{U}_{\mathrm{k}} \in \mathbb{R}^{\mathrm{m} \times \mathrm{k}}$ are the left singular vectors corresponding to the top k singular values of \mathbf{A} and \mathbf{M}_{k} is the best rank- k approximation to \mathbf{M} then

$$
\left\|\boldsymbol{M}-\mathbf{U}_{\mathrm{k}} \mathbf{U}_{\mathrm{k}}^{\top} \boldsymbol{M}\right\|_{\mathrm{F}}^{2} \leqslant\left\|\boldsymbol{M}-\boldsymbol{M}_{\mathrm{k}}\right\|_{\mathrm{F}}^{2}+2 \sqrt{\mathrm{k}}\left\|\boldsymbol{A} \boldsymbol{A}^{\top}-\boldsymbol{M} \boldsymbol{M}^{\top}\right\|_{\mathrm{F}}
$$

Low rank approximation with singular vectors

Theorem (known from earlier)

For any $\boldsymbol{A} \in \mathbb{R}^{m \times s}, \mathbf{M} \in \mathbb{R}^{m \times n}, k \geqslant 1$, if the columns of $\mathrm{U}_{\mathrm{k}} \in \mathbb{R}^{\mathrm{m} \times \mathrm{k}}$ are the left singular vectors corresponding to the top k singular values of \mathbf{A} and \mathbf{M}_{k} is the best rank- k approximation to \mathbf{M} then

$$
\left\|\boldsymbol{M}-\mathbf{U}_{\mathrm{k}} \mathbf{U}_{\mathrm{k}}^{\top} \boldsymbol{M}\right\|_{\mathrm{F}}^{2} \leqslant\left\|\boldsymbol{M}-\boldsymbol{M}_{\mathrm{k}}\right\|_{\mathrm{F}}^{2}+2 \sqrt{\mathrm{k}}\left\|\boldsymbol{A} \boldsymbol{A}^{\top}-\boldsymbol{M} \boldsymbol{M}^{\top}\right\|_{\mathrm{F}}
$$

- $\mathbf{U}_{k}^{\top} \mathbf{U}_{k}=\mathbb{1}$ while $\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \leqslant \mathbb{1}$ is the projection to the range of the best rank-k approximation to \boldsymbol{A}.

Low rank approximation with singular vectors

Theorem (known from earlier)

For any $\boldsymbol{A} \in \mathbb{R}^{m \times s}, M \in \mathbb{R}^{m \times n}, k \geqslant 1$, if the columns of
$\mathrm{U}_{\mathrm{k}} \in \mathbb{R}^{\mathrm{m} \times \mathrm{k}}$ are the left singular vectors corresponding to the top k singular values of \mathbf{A} and \mathbf{M}_{k} is the best rank- k approximation to \mathbf{M} then

$$
\left\|\boldsymbol{M}-\mathbf{U}_{\mathrm{k}} \mathbf{U}_{\mathrm{k}}^{\top} \boldsymbol{M}\right\|_{\mathrm{F}}^{2} \leqslant\left\|\mathbf{M}-\mathbf{M}_{\mathrm{k}}\right\|_{\mathrm{F}}^{2}+2 \sqrt{\mathrm{k}}\left\|\boldsymbol{A} \boldsymbol{A}^{\top}-\boldsymbol{M} \boldsymbol{M}^{\top}\right\|_{\mathrm{F}}
$$

- $\mathbf{U}_{k}^{\top} \mathbf{U}_{k}=\mathbb{1}$ while $\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \leqslant \mathbb{1}$ is the projection to the range of the best rank-k approximation to \boldsymbol{A}.
- The first term is the best possible error.

Low rank approximation with singular vectors

Theorem (known from earlier)

For any $\boldsymbol{A} \in \mathbb{R}^{m \times s}, M \in \mathbb{R}^{m \times n}, k \geqslant 1$, if the columns of
$\mathrm{U}_{\mathrm{k}} \in \mathbb{R}^{\mathrm{m} \times \mathrm{k}}$ are the left singular vectors corresponding to the top k singular values of \mathbf{A} and \mathbf{M}_{k} is the best rank- k approximation to \mathbf{M} then

$$
\left\|\boldsymbol{M}-\mathbf{U}_{\mathrm{k}} \mathbf{U}_{\mathrm{k}}^{\top} \boldsymbol{M}\right\|_{\mathrm{F}}^{2} \leqslant\left\|\boldsymbol{M}-\mathbf{M}_{\mathrm{k}}\right\|_{\mathrm{F}}^{2}+2 \sqrt{\mathrm{k}}\left\|\boldsymbol{A} \boldsymbol{A}^{\top}-\boldsymbol{M} \boldsymbol{M}^{\top}\right\|_{\mathrm{F}}
$$

- $\mathbf{U}_{k}^{\top} \mathbf{U}_{k}=\mathbb{1}$ while $\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \leqslant \mathbb{1}$ is the projection to the range of the best rank-k approximation to \boldsymbol{A}.
- The first term is the best possible error.
- The second term is what we pay for calculating with \boldsymbol{A}.

Low rank approximation in small space

Problem with the previous theorem (substituting \mathbf{C} for \boldsymbol{A}): calculating SVD of \mathbf{C} is costly

Low rank approximation in small space

Problem with the previous theorem (substituting \mathbf{C} for \boldsymbol{A}): calculating SVD of \mathbf{C} is costly even if we use the small matrix $\mathbf{C}^{\top} \mathbf{C} \in \mathbb{R}^{s \times s}$.

Low rank approximation in small space

Problem with the previous theorem (substituting \mathbf{C} for \boldsymbol{A}): calculating SVD of \mathbf{C} is costly even if we use the small matrix $\mathbf{C}^{\top} \mathbf{C} \in \mathbb{R}^{s \times s}$.

- Idea: Use $\mathbf{C C}^{+}$instead of $\mathbf{U}_{\mathrm{k}} \mathbf{U}_{\mathrm{k}}^{\top}$.

Low rank approximation in small space

Problem with the previous theorem (substituting \mathbf{C} for \boldsymbol{A}): calculating SVD of \mathbf{C} is costly even if we use the small matrix $\mathbf{C}^{\top} \mathbf{C} \in \mathbb{R}^{s \times s}$.

- Idea: Use $\mathbf{C C}{ }^{+}$instead of $\mathbf{U}_{k} \mathbf{U}_{k}^{\top}$.
- \mathbf{C}^{+}is the Moore-Penrose pseudoinverse of \mathbf{C}.

Low rank approximation in small space

Problem with the previous theorem (substituting \mathbf{C} for \boldsymbol{A}): calculating SVD of \mathbf{C} is costly even if we use the small matrix $\mathbf{C}^{\top} \mathbf{C} \in \mathbb{R}^{s \times s}$.

- Idea: Use $\mathbf{C C}^{+}$instead of $\mathbf{U}_{k} \mathbf{U}_{\mathrm{k}}^{\top}$.
- \mathbf{C}^{+}is the Moore-Penrose pseudoinverse of \mathbf{C}.
- If the SVD of \mathbf{C} is $\mathbf{U} \Sigma \mathbf{V}^{\top}$ then $\mathbf{C}^{+}=\mathbf{V} \Sigma^{-1} \mathbf{U}^{\top}$.

Low rank approximation in small space

Problem with the previous theorem (substituting \mathbf{C} for \boldsymbol{A}): calculating SVD of \mathbf{C} is costly even if we use the small matrix $\mathbf{C}^{\top} \mathbf{C} \in \mathbb{R}^{s \times s}$.

- Idea: Use $\mathbf{C C}^{+}$instead of $\mathbf{U}_{\mathrm{k}} \mathbf{U}_{\mathrm{k}}^{\top}$.
- \mathbf{C}^{+}is the Moore-Penrose pseudoinverse of \mathbf{C}.
- If the SVD of \mathbf{C} is $\mathbf{U} \Sigma \mathbf{V}^{\top}$ then $\mathbf{C}^{+}=\mathbf{V} \Sigma^{-1} \mathbf{U}^{\top}$.
- $\mathrm{So}_{\mathrm{o}} \mathbf{C C}^{+}=\mathbf{U U}^{\top}$

Low rank approximation in small space

Problem with the previous theorem (substituting \mathbf{C} for \boldsymbol{A}): calculating SVD of \mathbf{C} is costly even if we use the small matrix $\mathbf{C}^{\top} \mathbf{C} \in \mathbb{R}^{s \times s}$.

- Idea: Use $\mathbf{C C}^{+}$instead of $\mathbf{U}_{k} \mathbf{U}_{\mathrm{k}}^{\top}$.
- \mathbf{C}^{+}is the Moore-Penrose pseudoinverse of \mathbf{C}.
- If the SVD of \mathbf{C} is $\mathbf{U} \Sigma \mathbf{V}^{\top}$ then $\mathbf{C}^{+}=\mathbf{V} \Sigma^{-1} \mathbf{U}^{\top}$.
- So, $\mathbf{C C}^{+}=\mathbf{U U}^{\top}=\mathbf{U}_{\operatorname{rank}(\mathrm{C})} \mathbf{U}_{\operatorname{rank}(\mathrm{C})}^{\top}$.

Low rank approximation in small space

Problem with the previous theorem (substituting \mathbf{C} for \boldsymbol{A}): calculating SVD of \mathbf{C} is costly even if we use the small matrix $\mathbf{C}^{\top} \mathbf{C} \in \mathbb{R}^{s \times s}$.

- Idea: Use $\mathbf{C C}^{+}$instead of $\mathbf{U}_{k} \mathbf{U}_{\mathrm{k}}^{\top}$.
- \mathbf{C}^{+}is the Moore-Penrose pseudoinverse of \mathbf{C}.
- If the SVD of \mathbf{C} is $\mathbf{U} \Sigma \mathbf{V}^{\top}$ then $\mathbf{C}^{+}=\mathbf{V} \Sigma^{-1} \mathbf{U}^{\top}$.
- So, $\mathbf{C C}^{+}=\mathbf{U} \mathbf{U}^{\top}=\mathbf{U}_{\operatorname{rank}(\mathrm{C})} \mathbf{U}_{\operatorname{rank}(\mathrm{C})}^{\top}$.
- But calculating the Moore-Penrose pseudoinverse is easier than the SVD. It reduces to inverse calculation which can be done in small space.

Low rank approximation in small space cont.

Theorem

Let the input matrix be $\mathbf{M} \in \mathbb{R}^{m \times n}$. Suppose that, for some $\tilde{\mathrm{r}} \in \mathbb{Z}^{+}$, $\tilde{\mathrm{r}} \leqslant \operatorname{rank}(\boldsymbol{M})$ and $0 \leqslant \varepsilon \leqslant 0.9$, it holds that $\left\|\mathbf{M}-\mathbf{M}_{\tilde{\mathrm{r}}}\right\|_{F} \leqslant \varepsilon\|\mathbf{M}\|_{F}$ where $\mathbf{M}_{\tilde{\mathrm{r}}}$ is the best $\tilde{\mathrm{r}}$-rank approximation of \mathbf{M}.

Low rank approximation in small space cont.

Theorem

Let the input matrix be $M \in \mathbb{R}^{m \times n}$. Suppose that, for some $\tilde{\mathrm{r}} \in \mathbb{Z}^{+}$, $\tilde{\mathbf{r}} \leqslant \operatorname{rank}(\boldsymbol{M})$ and $0 \leqslant \varepsilon \leqslant 0.9$, it holds that $\left\|\mathbf{M}-\mathbf{M}_{\tilde{\mathbf{r}}}\right\|_{\mathrm{F}} \leqslant \varepsilon\|\boldsymbol{M}\|_{\mathrm{F}}$ where $\mathbf{M}_{\tilde{\mathrm{r}}}$ is the best $\tilde{\mathrm{r}}$-rank approximation of \mathbf{M}. Then, for every constant $\delta>0$, there exists an $\mathrm{O}(\tilde{\mathrm{r}} \log \tilde{\mathrm{r}}+\log (\mathrm{mn}))$-space deterministic algorithm that outputs \mathbf{C} and $\mathbf{C}^{+} \mathbf{M}$

Low rank approximation in small space cont.

Theorem

Let the input matrix be $\mathbf{M} \in \mathbb{R}^{m \times n}$. Suppose that, for some $\tilde{\mathrm{r}} \in \mathbb{Z}^{+}$, $\tilde{\mathbf{r}} \leqslant \operatorname{rank}(\boldsymbol{M})$ and $0 \leqslant \varepsilon \leqslant 0.9$, it holds that $\left\|\boldsymbol{M}-\boldsymbol{M}_{\tilde{\mathrm{r}}}\right\|_{\mathrm{F}} \leqslant \varepsilon\|\boldsymbol{M}\|_{\mathrm{F}}$ where $\mathbf{M}_{\tilde{\mathrm{r}}}$ is the best $\tilde{\mathrm{r}}$-rank approximation of \mathbf{M}. Then, for every constant $\delta>0$, there exists an $\mathrm{O}(\tilde{\mathrm{r}} \log \tilde{\mathrm{r}}+\log (\mathrm{mn}))$-space deterministic algorithm that outputs \mathbf{C} and $\mathbf{C}^{+} \mathbf{M}$ for which

$$
\left\|\boldsymbol{M}-\mathbf{C C}^{+} \boldsymbol{M}\right\|_{F} \leqslant(\varepsilon+\delta)\|\boldsymbol{M}\|_{F}
$$

Low rank approximation in small space cont.

Theorem

Let the input matrix be $\mathbf{M} \in \mathbb{R}^{m \times n}$. Suppose that, for some $\tilde{\mathrm{r}} \in \mathbb{Z}^{+}$, $\tilde{\mathbf{r}} \leqslant \operatorname{rank}(\boldsymbol{M})$ and $0 \leqslant \varepsilon \leqslant 0.9$, it holds that $\left\|\boldsymbol{M}-\mathbf{M}_{\tilde{\mathbf{r}}}\right\|_{\mathrm{F}} \leqslant \varepsilon\|\boldsymbol{M}\|_{\mathrm{F}}$ where $\mathbf{M}_{\tilde{\mathrm{r}}}$ is the best $\tilde{\mathrm{r}}$-rank approximation of \mathbf{M}. Then, for every constant $\delta>0$, there exists an $\mathrm{O}(\tilde{\mathrm{r}} \log \tilde{\mathrm{r}}+\log (\mathrm{mn}))$-space deterministic algorithm that outputs \mathbf{C} and $\mathbf{C}^{+} \mathbf{M}$ for which

$$
\left\|\boldsymbol{M}-\mathbf{C C}^{+} \boldsymbol{M}\right\|_{\mathrm{F}} \leqslant(\varepsilon+\delta)\|\boldsymbol{M}\|_{\mathrm{F}}
$$

and the number of columns of C is $\mathrm{O}(\tilde{\mathrm{r}})$.

Low rank approximation in small space cont.

Theorem

Let the input matrix be $\mathbf{M} \in \mathbb{R}^{m \times n}$. Suppose that, for some $\tilde{\mathrm{r}} \in \mathbb{Z}^{+}$, $\tilde{\mathbf{r}} \leqslant \operatorname{rank}(\boldsymbol{M})$ and $0 \leqslant \varepsilon \leqslant 0.9$, it holds that $\left\|\mathbf{M}-\boldsymbol{M}_{\tilde{\mathrm{r}}}\right\|_{\mathrm{F}} \leqslant \varepsilon\|\boldsymbol{M}\|_{\mathrm{F}}$ where $\mathbf{M}_{\tilde{\mathrm{r}}}$ is the best $\tilde{\mathrm{r}}$-rank approximation of \mathbf{M}. Then, for every constant $\delta>0$, there exists an $\mathrm{O}(\tilde{\mathrm{r}} \log \tilde{\mathrm{r}}+\log (\mathrm{mn}))$-space deterministic algorithm that outputs \mathbf{C} and $\mathbf{C}^{+} \mathbf{M}$ for which

$$
\left\|\boldsymbol{M}-\mathbf{C C}^{+} \boldsymbol{M}\right\|_{\mathrm{F}} \leqslant(\varepsilon+\delta)\|\boldsymbol{M}\|_{\mathrm{F}}
$$

and the number of columns of \mathbf{C} is $\mathrm{O}(\tilde{\mathrm{r}})$. If $\tilde{\mathrm{r}}=\mathrm{O}\left(\frac{\log (m n)}{\log (\log (m n))}\right)$ then the space bound of the algorithm is $\mathrm{O}(\log (\mathrm{mn}))$.

Low rank approximation in small space cont.

Theorem

Let the input matrix be $\mathbf{M} \in \mathbb{R}^{m \times n}$. Suppose that, for some $\tilde{\mathrm{r}} \in \mathbb{Z}^{+}$, $\tilde{\mathbf{r}} \leqslant \operatorname{rank}(\boldsymbol{M})$ and $0 \leqslant \varepsilon \leqslant 0.9$, it holds that $\left\|\mathbf{M}-\boldsymbol{M}_{\tilde{\mathrm{r}}}\right\|_{\mathrm{F}} \leqslant \varepsilon\|\boldsymbol{M}\|_{\mathrm{F}}$ where $\mathbf{M}_{\tilde{r}}$ is the best $\tilde{\mathrm{r}}$-rank approximation of \mathbf{M}. Then, for every constant $\delta>0$, there exists an $\mathrm{O}(\tilde{\mathrm{r}} \log \tilde{\mathrm{r}}+\log (\mathrm{mn}))$-space deterministic algorithm that outputs \mathbf{C} and $\mathbf{C}^{+} \mathbf{M}$ for which

$$
\left\|\boldsymbol{M}-\mathbf{C C}^{+} \boldsymbol{M}\right\|_{\mathrm{F}} \leqslant(\varepsilon+\delta)\|\boldsymbol{M}\|_{\mathrm{F}}
$$

and the number of columns of \mathbf{C} is $\mathrm{O}(\tilde{\mathrm{r}})$. If $\tilde{\mathrm{r}}=\mathrm{O}\left(\frac{\log (m n)}{\log (\log (m n))}\right)$ then the space bound of the algorithm is $\mathrm{O}(\log (\mathrm{mn}))$.

Intuitively, C must "cover" most of the space that is spanned by the singular vectors corresponding to the top \tilde{r} singular values of M.

Low rank approximation in small space cont.

Theorem

Let the input matrix be $\mathbf{M} \in \mathbb{R}^{m \times n}$. Suppose that, for some $\tilde{\mathrm{r}} \in \mathbb{Z}^{+}$, $\tilde{\mathrm{r}} \leqslant \operatorname{rank}(\boldsymbol{M})$ and $0 \leqslant \varepsilon \leqslant 0.9$, it holds that $\left\|\mathbf{M}-\mathbf{M}_{\tilde{\mathrm{r}}}\right\|_{\mathrm{F}} \leqslant \varepsilon\|\boldsymbol{M}\|_{\mathrm{F}}$ where $\mathbf{M}_{\tilde{r}}$ is the best $\tilde{\mathrm{r}}$-rank approximation of \mathbf{M}. Then, for every constant $\delta>0$, there exists an $\mathrm{O}(\tilde{\mathrm{r}} \log \tilde{\mathrm{r}}+\log (\mathrm{mn}))$-space deterministic algorithm that outputs \mathbf{C} and $\mathbf{C}^{+} \mathbf{M}$ for which

$$
\left\|\boldsymbol{M}-\mathbf{C C}^{+} \boldsymbol{M}\right\|_{F} \leqslant(\varepsilon+\delta)\|\boldsymbol{M}\|_{F}
$$

and the number of columns of \mathbf{C} is $\mathrm{O}(\tilde{\mathrm{r}})$. If $\tilde{\mathrm{r}}=\mathrm{O}\left(\frac{\log (m n)}{\log (\log (m n))}\right)$ then the space bound of the algorithm is $\mathrm{O}(\log (\mathrm{mn}))$.

Intuitively, C must "cover" most of the space that is spanned by the singular vectors corresponding to the top \tilde{r} singular values of M. Then CC^{+}is a projector that projects to this "covered" subspace.

Note on the space bound

- If $\tilde{r} \ll n$ then $O(\tilde{r} \log \tilde{r}+\log (m n))$ space is less than
- storing $\tilde{\mathrm{r}}$ column indices, which would require $\tilde{\mathrm{r}} \cdot \log \mathrm{n}$ space,

Note on the space bound

- If $\tilde{r} \ll n$ then $O(\tilde{r} \log \tilde{r}+\log (m n))$ space is less than
- storing \tilde{r} column indices, which would require $\tilde{\mathrm{r}} \cdot \log n$ space,
- storing the small $\mathbf{C}^{\top} \mathbf{C} \in \mathbb{R}^{s \times s}$ matrix, which would require space $s^{2}=\Omega\left(\tilde{r}^{2}\right)$.

Note on the space bound

- If $\tilde{r} \ll n$ then $O(\tilde{r} \log \tilde{r}+\log (m n))$ space is less than
- storing \tilde{r} column indices, which would require $\tilde{r} \cdot \log n$ space,
- storing the small $\mathbf{C}^{\top} \mathbf{C} \in \mathbb{R}^{s \times s}$ matrix, which would require space $s^{2}=\Omega\left(\tilde{r}^{2}\right)$.
- We can't even calculate the rank of \mathbf{M} in this space bound, even if $\varepsilon=0$.

Note on the space bound

- If $\tilde{r} \ll n$ then $O(\tilde{r} \log \tilde{r}+\log (m n))$ space is less than
- storing \tilde{r} column indices, which would require $\tilde{r} \cdot \log n$ space,
- storing the small $\mathbf{C}^{\top} \mathbf{C} \in \mathbb{R}^{s \times s}$ matrix, which would require space $s^{2}=\Omega\left(\tilde{r}^{2}\right)$.
- We can't even calculate the rank of \mathbf{M} in this space bound, even if $\varepsilon=0$.
- Matrix multiplication can be done in this space bound so we can also output $\mathbf{C C}^{+} \mathbf{M}$ and \mathbf{C}^{+}.

Moore-Penrose pseudoinverse of M

We can calculate the Moore-Penrose pseudoinverse of \boldsymbol{M} if \boldsymbol{M} is low rank.

Moore-Penrose pseudoinverse of M

We can calculate the Moore-Penrose pseudoinverse of \boldsymbol{M} if \boldsymbol{M} is low rank. Approximately low rank is not enough, because we have to invert all non-zero singular values.

Moore-Penrose pseudoinverse of M

We can calculate the Moore-Penrose pseudoinverse of \boldsymbol{M} if \boldsymbol{M} is low rank. Approximately low rank is not enough, because we have to invert all non-zero singular values.

Theorem

Let $\mathbf{M} \in \mathbb{R}^{m \times n}$ be given as input, where the rank of \mathbf{M} is r and its condition number is constant.

Moore-Penrose pseudoinverse of M

We can calculate the Moore-Penrose pseudoinverse of \boldsymbol{M} if \boldsymbol{M} is low rank. Approximately low rank is not enough, because we have to invert all non-zero singular values.

Theorem

Let $\mathbf{M} \in \mathbb{R}^{m \times n}$ be given as input, where the rank of \mathbf{M} is r and its condition number is constant. There exists a deterministic algorithm that outputs M^{+}using space $\mathrm{O}\left(\mathrm{r}^{2} \log \mathrm{r}+\log (\mathrm{mn})\right)$.

Moore-Penrose pseudoinverse of M

We can calculate the Moore-Penrose pseudoinverse of M if M is low rank. Approximately low rank is not enough, because we have to invert all non-zero singular values.

Theorem

Let $\mathbf{M} \in \mathbb{R}^{m \times n}$ be given as input, where the rank of \mathbf{M} is r and its condition number is constant. There exists a deterministic algorithm that outputs M^{+}using space $\mathrm{O}\left(\mathrm{r}^{2} \log \mathrm{r}+\log (\mathrm{mn})\right)$.
If $\mathrm{r}=\mathrm{O}\left(\frac{\sqrt{\log (\mathrm{mn})}}{\log (\log (\mathrm{mn}))}\right)$ then the space bound becomes $\mathrm{O}(\log (\mathrm{mn}))$.

Moore-Penrose pseudoinverse of M

We can calculate the Moore-Penrose pseudoinverse of \boldsymbol{M} if \boldsymbol{M} is low rank. Approximately low rank is not enough, because we have to invert all non-zero singular values.

Theorem

Let $\mathbf{M} \in \mathbb{R}^{m \times n}$ be given as input, where the rank of \mathbf{M} is r and its condition number is constant. There exists a deterministic algorithm that outputs M^{+}using space $\mathrm{O}\left(\mathrm{r}^{2} \log \mathrm{r}+\log (\mathrm{mn})\right)$.
If $\mathrm{r}=\mathrm{O}\left(\frac{\sqrt{\log (\mathrm{mn})}}{\log (\log (\mathrm{mn}))}\right)$ then the space bound becomes $\mathrm{O}(\log (\mathrm{mn}))$.

- Bound gets worse: $\tilde{\mathrm{r}} \rightarrow \mathrm{r}^{2}$.

Moore-Penrose pseudoinverse of M

We can calculate the Moore-Penrose pseudoinverse of \boldsymbol{M} if \boldsymbol{M} is low rank. Approximately low rank is not enough, because we have to invert all non-zero singular values.

Theorem

Let $\mathbf{M} \in \mathbb{R}^{\mathbf{m} \times \mathfrak{n}}$ be given as input, where the rank of \mathbf{M} is r and its condition number is constant. There exists a deterministic algorithm that outputs M^{+}using space $\mathrm{O}\left(\mathrm{r}^{2} \log \mathrm{r}+\log (\mathrm{mn})\right)$.
If $\mathrm{r}=\mathrm{O}\left(\frac{\sqrt{\log (\mathrm{mn})}}{\log (\log (\mathrm{mn}))}\right)$ then the space bound becomes $\mathrm{O}(\log (\mathrm{mn}))$.

- Bound gets worse: $\tilde{\mathrm{r}} \rightarrow \mathrm{r}^{2}$. This is because the sampled matrix must "cover" the whole space spanned by the singular vectors of M.

Singular value decomposition of M

If we can store $\mathbf{C}^{\top} \mathbf{C}$ then we can calculate an approximate SVD of \mathbf{M}.

Singular value decomposition of M

If we can store $\mathbf{C}^{\top} \mathbf{C}$ then we can calculate an approximate SVD of \boldsymbol{M}.

Theorem

For $\mathbf{M} \in \mathbb{R}^{\mathbf{m} \times \mathfrak{n}}$, let $\mathrm{r}=\operatorname{rank}(\mathbf{M})$ and suppose its condition number is constant.

Singular value decomposition of M

If we can store $\mathbf{C}^{\top} \mathbf{C}$ then we can calculate an approximate SVD of \mathbf{M}.

Theorem

For $\mathbf{M} \in \mathbb{R}^{\mathbf{m} \times \mathrm{n}}$, let $\mathrm{r}=\operatorname{rank}(\mathbf{M})$ and suppose its condition number is constant. For every constant $\delta>0$, there exists a deterministic alg. that outputs $\mathbf{U} \in \mathbb{R}^{\mathbf{m} \times r}, \tilde{\Sigma} \in \mathbb{R}^{r \times r}, \mathbf{W} \in \mathbb{R}^{n \times r}$

Singular value decomposition of M

If we can store $\mathbf{C}^{\top} \mathbf{C}$ then we can calculate an approximate SVD of \mathbf{M}.

Theorem

For $\mathbf{M} \in \mathbb{R}^{\mathbf{m} \times \mathfrak{n}}$, let $\mathrm{r}=\operatorname{rank}(\mathbf{M})$ and suppose its condition number is constant. For every constant $\delta>0$, there exists a deterministic alg. that outputs $\mathbf{U} \in \mathbb{R}^{\mathbf{m} \times r}, \tilde{\Sigma} \in \mathbb{R}^{r \times r}, \mathbf{W} \in \mathbb{R}^{n \times r}$ for which

$$
\mathbf{U} \tilde{\Sigma} \mathbf{W}^{\top}=\mathbf{M}
$$

Singular value decomposition of M

If we can store $\mathbf{C}^{\top} \mathbf{C}$ then we can calculate an approximate SVD of \mathbf{M}.

Theorem

For $\mathbf{M} \in \mathbb{R}^{\mathbf{m} \times \mathfrak{n}}$, let $\mathrm{r}=\operatorname{rank}(\mathbf{M})$ and suppose its condition number is constant. For every constant $\delta>0$, there exists a deterministic alg. that outputs $\mathbf{U} \in \mathbb{R}^{\mathbf{m} \times r}, \tilde{\Sigma} \in \mathbb{R}^{r \times r}, \mathbf{W} \in \mathbb{R}^{n \times r}$ for which

$$
\mathbf{U} \tilde{\Sigma} \mathbf{W}^{\top}=\mathbf{M}, \quad \mathbf{U}^{\top} \mathbf{U}=\mathbb{1}
$$

Singular value decomposition of M

If we can store $\mathbf{C}^{\top} \mathbf{C}$ then we can calculate an approximate SVD of \mathbf{M}.

Theorem

For $\mathbf{M} \in \mathbb{R}^{\mathbf{m} \times \mathrm{n}}$, let $\mathrm{r}=\operatorname{rank}(\boldsymbol{M})$ and suppose its condition number is constant. For every constant $\delta>0$, there exists a deterministic alg. that outputs $\mathbf{U} \in \mathbb{R}^{\boldsymbol{m} \times r}, \tilde{\Sigma} \in \mathbb{R}^{r \times r}, \mathbf{W} \in \mathbb{R}^{n \times r}$ for which

$$
\begin{array}{cc}
\mathbf{U} \tilde{\Sigma} \mathbf{W}^{\top}=\mathbf{M}, & \mathbf{U}^{\top} \mathbf{U}=\mathbb{1}, \\
\left\|\tilde{\Sigma}^{2}-\Sigma^{2}\right\|_{F}=\frac{\delta\|\boldsymbol{M}\|_{F}^{2}}{r}, \\
\Sigma=\operatorname{diag}\left(\sigma_{1}(\mathbf{M}), \sigma_{2}(\mathbf{M}), \ldots, \sigma_{r}(\mathbf{M})\right) . &
\end{array}
$$

Singular value decomposition of M

If we can store $\mathbf{C}^{\top} \mathbf{C}$ then we can calculate an approximate SVD of \mathbf{M}.

Theorem

For $\mathbf{M} \in \mathbb{R}^{\mathbf{m} \times \mathrm{n}}$, let $\mathrm{r}=\operatorname{rank}(\boldsymbol{M})$ and suppose its condition number is constant. For every constant $\delta>0$, there exists a deterministic alg. that outputs $\mathbf{U} \in \mathbb{R}^{\mathbf{m} \times r}, \tilde{\Sigma} \in \mathbb{R}^{r \times r}, \mathbf{W} \in \mathbb{R}^{n \times r}$ for which

$$
\begin{aligned}
\mathbf{U} \tilde{\Sigma} \mathbf{W}^{\top} & =\mathbf{M} & \mathbf{U}^{\top} \mathbf{U}=\mathbb{1} \\
\left\|\tilde{\Sigma}^{2}-\Sigma^{2}\right\|_{\mathrm{F}} & =\frac{\delta\|\mathbf{M}\|_{\mathrm{F}}^{2}}{\mathrm{r}}, & \left\|\mathbf{W}^{\top} \mathbf{W}-\mathbb{1}\right\|_{\mathrm{F}}<\delta
\end{aligned}
$$

$\Sigma=\operatorname{diag}\left(\sigma_{1}(\boldsymbol{M}), \sigma_{2}(\boldsymbol{M}), \ldots, \sigma_{r}(\boldsymbol{M})\right)$.

Singular value decomposition of M

If we can store $\mathbf{C}^{\top} \mathbf{C}$ then we can calculate an approximate SVD of \mathbf{M}.

Theorem

For $\mathbf{M} \in \mathbb{R}^{\mathbf{m} \times \mathrm{n}}$, let $\mathrm{r}=\operatorname{rank}(\boldsymbol{M})$ and suppose its condition number is constant. For every constant $\delta>0$, there exists a deterministic alg. that outputs $\mathbf{U} \in \mathbb{R}^{\mathbf{m} \times r}, \tilde{\Sigma} \in \mathbb{R}^{r \times r}, \mathbf{W} \in \mathbb{R}^{n \times r}$ for which

$$
\begin{aligned}
\mathbf{U} \tilde{\Sigma} \mathbf{W}^{\top} & =\mathbf{M} & \mathbf{U}^{\top} \mathbf{U}=\mathbb{1} \\
\left\|\tilde{\Sigma}^{2}-\Sigma^{2}\right\|_{F} & =\frac{\delta\|\mathbf{M}\|_{\mathrm{F}}^{2}}{\mathrm{r}}, & \left\|\mathbf{W}^{\top} \mathbf{W}-\mathbb{1}\right\|_{F}<\delta
\end{aligned}
$$

$\Sigma=\operatorname{diag}\left(\sigma_{1}(\boldsymbol{M}), \sigma_{2}(\boldsymbol{M}), \ldots, \sigma_{r}(\boldsymbol{M})\right)$. The alg. uses space $\mathrm{O}\left(\mathrm{r}^{4}+\log (m n)\right)$.

Singular value decomposition of M

If we can store $\mathbf{C}^{\top} \mathbf{C}$ then we can calculate an approximate SVD of \mathbf{M}.

Theorem

For $\mathbf{M} \in \mathbb{R}^{\mathbf{m} \times \mathrm{n}}$, let $\mathrm{r}=\operatorname{rank}(\boldsymbol{M})$ and suppose its condition number is constant. For every constant $\delta>0$, there exists a deterministic alg. that outputs $\mathbf{U} \in \mathbb{R}^{\mathbf{m} \times r}, \tilde{\Sigma} \in \mathbb{R}^{r \times r}, \mathbf{W} \in \mathbb{R}^{n \times r}$ for which

$$
\begin{aligned}
\mathbf{U} \tilde{\Sigma} \mathbf{W}^{\top} & =\mathbf{M} & \mathbf{U}^{\top} \mathbf{U}=\mathbb{1} \\
\left\|\tilde{\Sigma}^{2}-\Sigma^{2}\right\|_{F} & =\frac{\delta\|\mathbf{M}\|_{\mathrm{F}}^{2}}{\mathrm{r}}, & \left\|\mathbf{W}^{\top} \mathbf{W}-\mathbb{1}\right\|_{F}<\delta
\end{aligned}
$$

$\Sigma=\operatorname{diag}\left(\sigma_{1}(\boldsymbol{M}), \sigma_{2}(\boldsymbol{M}), \ldots, \sigma_{r}(\boldsymbol{M})\right)$. The alg. uses space $\mathrm{O}\left(\mathrm{r}^{4}+\log (\mathrm{mn})\right)$. If $\mathrm{r}=\mathrm{O}\left(\log ^{1 / 4}(\mathrm{mn})\right)$ then the space bound becomes $\mathrm{O}(\log (\mathrm{mn}))$.

Singular value decomposition of M

If we can store $\mathbf{C}^{\top} \mathbf{C}$ then we can calculate an approximate SVD of \mathbf{M}.

Theorem

For $\mathbf{M} \in \mathbb{R}^{\mathbf{m} \times \mathrm{n}}$, let $\mathrm{r}=\operatorname{rank}(\boldsymbol{M})$ and suppose its condition number is constant. For every constant $\delta>0$, there exists a deterministic alg. that outputs $\mathbf{U} \in \mathbb{R}^{\mathbf{m} \times r}, \tilde{\Sigma} \in \mathbb{R}^{r \times r}, \mathbf{W} \in \mathbb{R}^{n \times r}$ for which

$$
\begin{aligned}
\mathbf{U} \tilde{\Sigma} \mathbf{W}^{\top} & =\mathbf{M}, & \mathbf{U}^{\top} \mathbf{U}=\mathbb{1} \\
\left\|\tilde{\Sigma}^{2}-\Sigma^{2}\right\|_{F} & =\frac{\delta\|\mathbf{M}\|_{\mathrm{F}}^{2}}{\mathrm{r}}, & \left\|\mathbf{W}^{\top} \mathbf{W}-\mathbb{1}\right\|_{F}<\delta
\end{aligned}
$$

$\Sigma=\operatorname{diag}\left(\sigma_{1}(\boldsymbol{M}), \sigma_{2}(\boldsymbol{M}), \ldots, \sigma_{r}(\boldsymbol{M})\right)$. The alg. uses space $\mathrm{O}\left(\mathrm{r}^{4}+\log (\mathrm{mn})\right)$. If $\mathrm{r}=\mathrm{O}\left(\log ^{1 / 4}(\mathrm{mn})\right)$ then the space bound becomes $\mathrm{O}(\log (\mathrm{mn}))$.

The bound gets worse: $r^{2} \rightarrow r^{4}$.

Summary

- We saw a sampling method to handle low rank matrices.

Summary

- We saw a sampling method to handle low rank matrices.
- Reduced the randomness and derandomized the method.

Summary

- We saw a sampling method to handle low rank matrices.
- Reduced the randomness and derandomized the method.
- Three applications:
- Low rank approximation

Summary

- We saw a sampling method to handle low rank matrices.
- Reduced the randomness and derandomized the method.
- Three applications:
- Low rank approximation
- Calculating the Moore-Penrose pseudoinverse

Summary

- We saw a sampling method to handle low rank matrices.
- Reduced the randomness and derandomized the method.
- Three applications:
- Low rank approximation
- Calculating the Moore-Penrose pseudoinverse
- Calculating the SVD

Summary

- We saw a sampling method to handle low rank matrices.
- Reduced the randomness and derandomized the method.
- Three applications:
- Low rank approximation
- Calculating the Moore-Penrose pseudoinverse
- Calculating the SVD
- Open question:
- What other interesting matrix properties can we use it for?

Thank you for your attention!

Got comments, questions, ideas?
Email me at \square peresz@sztaki.hu

