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The scheme of communication
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The message can be: text, picture, sound, measurement data, etc.

The communication channel can be: one way, two way, data
transmission, data storage, etc.
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Digitization, digital reformatting

INFORMATION
text, picture, voice, . . .

0-1 SEQUENCES
bits, bytes, . . .

DIGITALIZATION

John von Neumann
(1903-1957)
Hungarian
mathematician
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Digitization, digital reformatting (cont.)
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We are not interested in different digitization techniques.

We will assume that our messages are 0/1 sequences of fixed length.
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Communication on noisy channel

Claude Shannon
(1916-2001)
US mathematician
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Simple noise modell: Binary Symmetric Channel with fixed bit error
ratio.
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Error correction on noisy communication channel
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Example: 3-fold repetition code: 0 7→ 0|00, 1 7→ 1|11.
Majority/Nearest neighbor/Maximum likelihood Encoding:
0|00, 1|00, 0|10, 0|01 7→ 0|00 7→ 0
1|10, 1|01, 0|11, 1|11 7→ 1|11 7→ 1.
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Example: QR codes
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Gino Fano
(1871-1952)

Italian mathematician

Richard Hamming
(1915-1998)

US mathematician
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The Fano plane: 7 points, 7 „lines”
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The codewords of the Hamming code

0 0 0 0 0 0 0
1 1 1 0 0 0 0
0 0 1 1 1 0 0
1 0 0 0 1 1 0
1 0 0 1 0 0 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 1 0 1 0 1 0
0 0 0 1 1 1 1
1 1 0 0 0 1 1
0 1 1 1 0 0 1
0 1 1 0 1 1 0
1 0 1 1 0 1 0
1 1 0 1 1 0 0
1 0 1 0 1 0 1
1 1 1 1 1 1 1

1 + 7 + 7 + 1 = 16 bit sequences of
length 7.

YELLOW: All 0’s and all 1’s.

RED: The matrix M of the Fano plane

BLUE: The complementer matrix of
M.

Claim
Any two codewords of the Hamming code
differ in at least 3 positions.
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The Hamming code: computer memory error correction

0 0 0 0 0 0 0 0
14 1 1 1 0 0 0 0

3 0 0 1 1 1 0 0
8 1 0 0 0 1 1 0
9 1 0 0 1 0 0 1
4 0 1 0 0 1 0 1
2 0 0 1 0 0 1 1
5 0 1 0 1 0 1 0
1 0 0 0 1 1 1 1

12 1 1 0 0 0 1 1
7 0 1 1 1 0 0 1
6 0 1 1 0 1 1 0

11 1 0 1 1 0 1 0
13 1 1 0 1 1 0 0
10 1 0 1 0 1 0 1
15 1 1 1 1 1 1 1

Claim 1
The first four bits of the codewords
contain all 0/1 vectors of length 4
precisely once.

GREEN: Information bits

SÁRGA: Parity check bits

Claim 2
The Hamming code can detect 2
errors and correct 1 error.

Claim 3
The Hamming code is linear over F2
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Basic concepts

Definition: Error correction codes over a finite alphabet
Let Q be a finite set and n a positive integer. Any subset C of the
Cartesian product Qn is called a code of length n over the alphabet Q .

The elements of C are called codewords.

The encoding map is a 1 − 1 correspondence between the set of
messagesM and C.

The channel noise is a random map from C to Qn, uniform on each
component.

The decoding map is a 2-step procedure.

Step 1 (hard): a function from Qn to C ∪ {?}.

Step 2 (easy): the inverse of the encoding function, mapping C ∪ {?}
toM∪ {?}.

Output „?” means uncorrectable transmission error (erasure).
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Hamming distance and nearest neighbor decoding

Definition
For two tuples x = (x1, . . . , xn) and y = (y1, . . . , yn) the Hamming
distance

dH(x, y) = |{i | xi , yi}|

is the number of position where x, y differ.

The minimum distance of the code C ⊆ Qn is

d(C) = min{dH(x, y) | x, y ∈ C , x , y}.

The map D : Qn → C ∪ {?} is a nearest neighbor decoding, if D(x) is
one of the nearest codewords to x w.r.t. the Hamming distance.

Theorem
The Hamming distance defines a metric in the geometric sense. Any code
can detect d(C) − 1 and correct bd(C)−1

2 c errors per codewords.
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Codes with good parameters

Definition: Information rate, error correction rate
The number of information symbols per codeword is approx. log |C |.

The information rate of C is R = log |C |
n .

The error correction rate of C is δ =
d(C)

n .

Remarks.
Mathematicians look for codes with high information and error
correcting rates.
The Singleton bound restricts R + δ ≤ 1 + 1

n .
Engineers compare codes using their BER curves.
In fact, the package error ratio p∗ of the code is a function of bit error
ratio p of the channel.
For the Hamming code of length 7, we have

p∗ = 1 − (1 − p)7 − 7p(1 − p)6 ≈ 21p2 + o(3).
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Mathematicians look for codes with high information and error
correcting rates.
The Singleton bound restricts R + δ ≤ 1 + 1

n .
Engineers compare codes using their BER curves.
In fact, the package error ratio p∗ of the code is a function of bit error
ratio p of the channel.
For the Hamming code of length 7, we have

p∗ = 1 − (1 − p)7 − 7p(1 − p)6 ≈ 21p2 + o(3).
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Good news on binary linear codes

Nothing is easier than to produce good binary linear codes:

Theorem (Shannon’s Noisy-Channel
Coding Theorem 1948)
Define the binary entropy function

H(p) = −p log2 p − (1 − p) log2(1 − p).

Fix constants 0 < p < 1/2,
0 < R < 1 − H(p) and ε > 0. Then:

for n sufficiently big,

the „random” binary linear code

of length n and rate R satisfies

p∗ ≤ ε.
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Bad news on binary linear codes

It is almost hopeless to make use of random binary linear codes:

Theorem (Berlekamp, McEliece, van Tilborg, 1978)
The following problem is NP-complete: Given a k × n binary matrix A, a
binary vector y and an integer w > 0. Let C be the subspace spanned by
the rows of A. Is there an element c ∈ C such that dH(c, y) ≤ w?

Robert McEliece
(1942-2019)

Elwyn Berlekamp
(1940-2019)

Henk van Tilborg
(1947-)
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Aspects of decoding of linear codes

Let C ≤ Fn
2 be a binary linear code of length n and dimension k .

Let x ∈ C be the sent codeword and y = x + e the received word
with error e.

With hard-decision decoding we have y, e ∈ Fn
2.

Efficient decoding algorithms when C has some algebraic and/or
combinatorial structure: Golay code, Reed-Solomon code, LDPC
codes.

With soft-decision decoding we have y ∈ [0, 1]n.

Easiest example for the repetition code:

decode to

1 if
∑

yi ≥ 0.5

0 if
∑

yi < 0.5

Further examples: Viterbi, turbo code.
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Linear codes over finite fields

Definition: Finite field Fq of order q

Let p be a prime, n a positive integer and q = pn a prime power.

There is a (unique) algebraic structure Fq of order q, endowed with
four operations

x + y, x − y, x · y, x/y.

The operation satisfy the usual arithmetic axioms.

Definition: Linear code
Let C be a linear subspace of Fn

q. Then C is a linear code of length n over
the alphabet Fq.

If k = dim C then |C | = qk and R = k/n.
C is may be given by generators (generator matrix) or by a system of
linear equations (parity check matrix).
Encoding function is matrix calculus: fast and easy Fk

q → F
n
q.
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Generalized Reed-Solomon codes

Let q be a prime power, n, k nonnegative integers such that
1 ≤ k ≤ n ≤ q.

Let α = {α1, ..., αn} be n distinct elements of Fq, v = (v1, ..., vn) a
nonzero vector of Fn

q with vi , 0 for all i.

Definition
The Generalized Reed-Solomon code, denoted by GRSk (α, v) consists of
all vectors

(v1f (α1) , v2f (α2) , ..., vnf (αn)) ,
where f(z) is a polynomial over Fq of degree less than k .

A rich class of codes with an efficient decoding up to (n − k)/2
errors.

Used in QR codes with q = 256.
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Algebraic-geometric codes and curves over finite fields

An algebraic plane curve Γ is given by a polynomial F(X ,Y) = 0 over
the finite field Fq.
Hard: points, divisors G, functions, evaluation, Riemann-Roch space
L (G).
Advantage to RS: More than q points, longer codes.
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Motivation

In this section, we present a public key cryptosystem that was
proposed by McEliece in 1978.

Its security is based on the hardness of binary decoding.

In the last decades, this system was not used because (1) the keys
are large, (2) the encrypted messages are long, and (3) there are not
many safe binary codes beside binary BCH and Goppa codes.

However, this system is one of the few which resists the quantum
attack by Peter Shor (1994).

The recent progress in the construction of quantum computers
indicates that in 30 years, the recently used cryptosystems (RSA,
ECC, etc.) will have to be replaced.
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Public key (asymmetric) cryptography

In a public key (or asymmetric) cryptosystem, each user X has
two keys,
a private key KD(X) and a public key KE(X).
If Bob wants to send a message m to Alice, he encrypts it to m′ using
Alice’s public key KE(Alice).
For the decryption, Alice uses her private key KD(Alice).
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McEliece Cryptosystem

The McEliece Cryptosystem is based on a binary linear code C of
length n and dimension k , which has a fast algorithm correcting up
to t errors per code word. Let G denote the n × k generator matrix of
C.
Creation of Alice’s keys She picks a random k × k invertible matrix
S and a random n × n permutation matrix P. Her private key is the
pair (S,P) and her public key is the n × k matrix G′ = SGP.
Encryption Assume that Bob’s message is m ∈ Fk

2 . Bob picks a
random binary vector e ∈ Fn

2 of weight t and computes the encrypted
message m′ = mG′ + e.
Decryption First Alice computes

m′P−1 = (mG′ + e)P−1 = mSG + e′,

where mSG ∈ C and e′ = eP−1 is an error vector of weight t .
Now, using the fast decoding method, Alice determines mS and e′.
Finally, Alice computes the message m = (mS)S−1.
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Challenges

Find codes with good parameters.

Find codes with effective decoding algorithms.

Give bounds for the parameters of certain codes.

Find the true values of the parameters of certain codes.

Improve the decoding algorithms.

Make probabilistic decoding algorithms into deterministic ones.

Understand the structure of subfield subcodes of AG codes.

Investigate codes w.r.t. to non Hamming distances.

Sloane’s problem (1978): Find a self-dual binary linear code of length
72, dimension 36 and minimum distance 16.
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