
Vehicle Routing: problems and methods

Tamás Kis
ELKH SZTAKI

kis.tamas@sztaki.hu

November 29, 2022

Overview

I What is Vehicle Routing?
I Offline problems:

I VRP with time windows
I Pickup-and-Delivery problems

I Online problems:
I Stochastic Pickup-and-Delivery
I The pickup-and-delivery challange of ICAPS2021

What is Vehicle Routing?

Input:

I Fleet of vehicles

I Depot(s)

I Clients

I Distance matrix

I Additional constraints

I Objective function

VRP: Find a set of tours that
covers a subset of the clients,
satisfies the constraints, and is
optimal for the given objective
function.

D

c1

c2 c3

c4

c5

c6

First concrete example: VRP with Time Windows

I V : set of clients and the depot.

I Vcl : set of clients, i.e., V = V \ {0}.
I for each i ∈ V :

I [ei , di]: time window of client i ,
I qi : demand of client i .

I q : Vcl → R>0: demand function of the clients.

I G = (V ,A) complete graph on V .

I Q: capacity of the vehicles.

I c : A→ R≥0: distance function on the edges, satisfies the
triangle inequality.

I for S ⊂ V :

δ+(S) = {(i , j) ∈ A | i ∈ S , j ∈ V \ S},
δ−(S) = {(i , j) ∈ A | i ∈ V \ S , j ∈ S}.

VRP with time windows

I for S ⊂ Vcl : r(S) is the minimum number of vehicles required
to load the demand of the clients in S .
I Computing r(S) exactly requires the solution of a bin-packing

problem.
I Trivial lower bound: d

∑
i∈S qi/Qe.

I Path P = (v1, . . . , vk) with arc set
AP = {(vi , vi+1) : i = 1 . . . , k − 1}. All vertices are different
with the exception that both v1 and vk are the depot.

I Infeasible path: not possible to respect all its time windows
while traversing the path.

MIP formulation of VRP with time windows
I For each (i , j) ∈ A, decision variable xij ∈ {0, 1}: it is 1 if

(i , j) is in a vehicle’s route, and 0 otherwise.

min
∑

(i ,j)∈A

cijxij (1)

s.t.
∑

(i ,k)∈δ−(k)

xik = 1, k ∈ Vcl (2)

∑
(k,j)∈δ+(k)

xkj = 1, k ∈ Vcl (3)

x(δ−(S)) ≥ r(S), S ⊆ Vcl (4)

x(AP) ≤ |P| − 2, for each minimial infeasible path P
(5)

xij ∈ {0, 1}, (i , j) ∈ A. (6)

I The VRPTW polytope is the convex hull of points satisfying
(2)-(6).

Linear programming based branch-and-bound

I LP relaxation: drop
integrality of variables

I Solve LP relaxation, and if
the solution is not-integral,
branch on some variable.

I We get two subproblems,
and repeat the above with
them.

Solution by branch-and-cut

I Branch-and-bound +
cutting planes

I Strengthen the LP relaxation
by valid inequalities

I After solving the LP
relaxation in a node, try to
separate violated inequalities
from different classes of
valid inequalities

Example for LP-solution

Some classes of valid inequalities

For the infeasible path
P = (v1, . . . , vk) the tournament
constraint is

k−1∑
i=1

k∑
j=i+1

xvivj ≤ k − 2. (7)

Proposition

The (7) is valid for the VRPTW
polytope.

The reachability cuts of Lysgaard

I For any customer i ∈ Vcl , A
−
i ⊂ A is the minimum arc set

such that any feasible path (0, . . . , i) lies in A−i , i.e.,
(j , k) ∈ A−i for each arc on the feasible path.

I To determine A−i , for each arc (j , k) ∈ A check if there is a
feasible path (0, . . . , j , k , . . . , i).

I For any S ⊆ Vcl , and customer i ∈ S , define the R−i (S) cut:

x(δ−(S) ∩ A−i) ≥ 1. (8)

Proposition

The cut (8) is valid for the VRPTW polytope.

Example for R−i (S) cut

For S = {1, 3, 9},
and i = 9, S is
disconnected from
the depot, and
x(δ−(S) ∩ A−i) ≥ 1
is violated.

Reachability cuts

I For any customer i ∈ Vcl , A
+
i ⊂ A is the minimum arc set

such that any feasible path (i , . . . , 0) lies in A+
i , i.e.,

(j , k) ∈ A+
i for each arc on the feasible path.

I To determine A+
i , for each arc (j , k) ∈ A check if there is a

feasible path (i , . . . , j , k , . . . , 0).

I For any S ⊆ Vcl , and customer i ∈ S , define the R+
i (S) cut:

x(δ+(S) ∩ A+
i) ≥ 1. (9)

Proposition

The cut (9) is valid for the VRPTW polytope.

Reachability cuts for a subset of customers

I Customer set T ⊆ Vcl is conflicting if and only if the
customers in T must be served on |T | separate routes in any
feasible solution.

I For a conflicting customer set T ⊆ Vcl , the reaching arc set
A−T is defined as A−T :=

⋃
i∈T A−i . The R−T (S) cut is

x(δ−(S) ∩ A−T) ≥ |T |. (10)

Proposition

The (10) cut is valid for the VRPTW polytope.

Reachability cuts for a subset of customers

I For a conflicting customer set T ⊆ Vcl , the reachable arc set
A+
T is defined as A+

T :=
⋃

i∈T A+
i . The R+

T (S) cut is

x(δ+(S) ∩ A+
T) ≥ |T |. (11)

Proposition

The cut (11) is valid for the VRPTW polytope.

Pickup-and-Delivery Type Problems

I Instead of clients, there are
pairs of pickup-and-delivery
points

I From each pair, first the
pickup point must be visited,
then the delivery point.

I 0 and 2n + 1 are two copies
of the depot.

I P = {1, . . . , n} are the
pickup points, and
D = {n + 1, . . . , 2n} are the
delivery points, and (i , n + i)
forms a pickup-delivery pair
for i ∈ P.

0

1

2

3

4

5

6

7

8

9

Pickup-and-Delivery Type Problems

I Instead of clients, there are
pairs of pickup-and-delivery
points

I From each pair, first the
pickup point must be visited,
then the delivery point.

I 0 and 2n + 1 are two copies
of the depot.

I P = {1, . . . , n} are the
pickup points, and
D = {n + 1, . . . , 2n} are the
delivery points, and (i , n + i)
forms a pickup-delivery pair
for i ∈ P.

0

1

2

3

4

5

6

7

8

9

Modeling by a Mixed-Integer Program

min
∑
a∈A

caxa (12)

s.t. ∑
a∈δ+(0)

xa = m (13)

∑
a∈δ+(i)

xa = 1 ∀i ∈ P ∪ D (14)

∑
a∈δ−(i)

xa = 1 ∀i ∈ P ∪ D (15)

sj − si ≥ tij −M(1− xij) ∀(i , j) ∈ A (16)

si+n − si ≤ Tmax ∀i ∈ P (17)

ei ≤ si ≤ `i ∀i ∈ P ∪ D (18)

Modeling by a Mixed-Integer Program (cnt.)

∑
(i ,j)∈A:i ,j∈S

xij ≤ |S | − 2 ∀S ∈ S (19)

qi +
∑

a∈δ−(i)

ba =
∑

a∈δ+(i)

ba ∀i ∈ P ∪ D (20)

0 ≤ ba ≤ Qxa ∀a ∈ A (21)

b0i = bi+n,2n+1 = 0 ∀i ∈ P (22)

xa ∈ {0, 1} ∀a ∈ A (23)

where S consists of all the sets S ⊂ N such that 0 ∈ S ,
2n + 1 /∈ S , and ∃ i ∈ P such that i /∈ S , but i + n ∈ S .
Example: S = {0, 1, n + 1, n + 2}.

0

1

n + 2

n + 1

Valid inequalities

π = (k1, . . . , kr) compatible path,
Eπ = {(ki , ki+1) : i = 1, . . . , r − 1}.

Proposition

For each i ∈ {1, . . . , r}, let S1 ⊆ δ−(k1) and Ti ⊆ δ+(ki) \ Eπ such
that the path (s, k1, ..., ki , t) is incompatible for all (s, k1) ∈ S1

and (ki , t) ∈ Ti for any 1 ≤ i ≤ r . The outfork constraint

∑
a∈S1

xa +
r∑

i=1

∑
a∈Ti

xa +
r−1∑
i=1

xki ,ki+1
≤ r (24)

is valid for the DARP.

k1 k2 kr−1 kr

Fully lifted fork constraints

π = (k1, . . . , kr) compatible path,
Eπ = {(ki , ki+1) : i = 1, . . . , r − 1}
∀i ∈ {1, . . . , r}: Si ⊆ δ−(ki) \ Eπ and Ti ⊆ δ+(ki) \ Eπ such that
the path (s, ki , ..., kj , t) is not compatible for all (s, ki) ∈ Si and
(kj , t) ∈ Tj for any 1 ≤ i ≤ j ≤ r .

Proposition

The fully lifted fork constraint is valid for the DARP.

r∑
i=1

∑
a∈Si∪Ti

xa +
r−1∑
i=1

xi ,i+1 ≤ r . (25)

k1 k2 k3 k4 k5 k6 k7

Separation

H = (S ,T ,E) bipartite graph, S and T color classes, where
S = ∪ri=1δ

−(ki) \ Eπ, T = ∪ri=1δ
+(ki) \ Eπ.

For ai = (vi , ki) ∈ δ−(ki) and aj = (kj , vj) ∈ δ+(kj), the edge
{ai , aj} belongs to E for all 1 ≤ i ≤ j ≤ r if and only if the path
(vi , ki , ..., kj , vj) is compatible.

Proposition

Let U ⊂ S ∪ T be a stable set in H. Then the system of sets
Si = δ−(ki) ∩ U and Ti = δ+(ki) ∩ U for all i ∈ {1, ..., r}
determines a fully lifted fork constraint.

Proof.
If the path (vi , ki , ..., kj , vj) is compatible, then the two nodes
corresponding to the arcs (vi , ki) and (kj , vj) are connected in the
bipartite graph, so a stable set cannot contain both (vi , ki) and
(kj , vj).

Separation (cnt.)

Algorithm

input: vector x?, compatible path (k1, . . . , kr), and bipartite graph
H.
output: either a violated inequality or ∅.

1. Weight each node a of H with x?a .

2. Determine a maximum weight stable set U in H.

3. If x?(U) > r −
∑r−1

i=1 x?ki ,ki+1
, then return

x(U) +
∑r−1

i=1 xki ,ki+1
≤ r , otherwise return ∅.

Commodity cuts

For i ∈ P, let Si ⊂ δ−(i) and Si+n ⊂ δ−(i + n) be such that a1

and a2 are incompatible for all a1 ∈ Si and a2 ∈ Si+n. The
following inequality is valid for DARP:∑

a∈Si∪Si+n

xa ≤ 1. (26)

Define analogously the inequalities∑
a∈Si∪Ti+n

xa ≤ 1. (27)

∑
a∈Ti∪Si+n

xa ≤ 1 (28)

∑
a∈Ti∪Ti+n

xa ≤ 1 (29)

Computational results

I CPLEX solver and implementation in C++

I CUT1 = some basic cuts and reachability cuts

I CUT2 = CUT1 + fully lifted fork constraints for r ∈ {1, 2}
I CUT3 = CUT2 + commodity cuts

I gap closed = ”solution value”
”best lower bound” − 1

Comparisons

File
root gap final gap #nodes #cuts

CUT1 CUT2 CUT3 CUT1 CUT2 CUT3 CUT1 CUT2 CUT3 CUT1 CUT2 CUT3

a2-16 0.0070 0 0 0 0 0 12 0 0 27 49 60
a2-20 0.0014 0 0 0 0 0 0 0 0 42 67 94
a2-24 0.0400 0.0031 0 0 0 0 1628 3 0 81 120 144
a3-18 0.0060 0 0 0 0 0 7 0 0 108 84 124
a3-24 0.0270 0 0 0 0 0 1486 0 0 347 185 162
a3-30 0.0003 0 0 0 0 0 3 0 0 269 341 240
a3-36 0.0198 0.0055 0 0 0 0 156 14 0 462 727 401
a4-16 0.0159 0.0040 0.0039 0 0 0 249 7 0 552 290 235
a4-24 0 0 0 0 0 0 0 0 0 122 169 161
a4-32 0.0273 0 0 0 0 0 7062 0 0 1750 689 586
a4-40 0.0492 0.0089 0.0045 0 0 0 140341 250 13 3366 1774 799
a4-48 0.0741 0.0143 0.0044 0.0484 0 0 137130 693 13 4733 4430 1105
a5-40 0.0484 0 0 0.0146 0 0 205485 0 0 2415 702 465
a5-50 0.0811 0.0105 0.0042 0.0607 0 0 92714 1090 70 7117 4357 1470
a5-60 0.0546 0.0104 0.0054 0.0352 0 0 49392 1183 224 5926 5412 2375
a6-48 0.1400 0.0088 0.0031 0.1140 0 0 82360 401 14 15643 6549 1847
a6-60 0.0407 0.0156 0.0022 0.0277 0 0 35503 667 9 16011 7558 2025
a6-72 0.0866 0.0168 0.0080 0.0706 0 29996 6476 675 9125 10637 4292
a7-56 0.0338 0.0113 0.0104 0.0227 0 0 42652 433 179 14577 5824 3062
a7-70 0.0553 0.0094 0.0043 0.0465 0 0 22315 2749 1232 19858 12642 6142
a7-84 0.0982 0.0220 0.0095 0.0899 0.0127 0 17955 8557 2061 19496 31022 7168
a8-64 0.0857 0.0189 0.0095 0.0768 0 0 29072 6768 427 12726 17933 3538
a8-80 0.1080 0.0217 0.0084 0.1000 0.0112 0 18182 5616 1378 17696 28579 6606
a8-96 0.1120 0.0336 0.0119 0.1070 0.0322 0.0018 8729 3100 8224 22672 38257 16760∑

1.213 0.215 0.0903 0.814 0.0569 0.0023 922429 38007 14519 175121 178397 59861

Dynamic vehicle routing problems

I Dynamic problems: transportation requests are not known in
advance. Each request i has an preannouncement time ai , a
pickup location p(i), a delivery location d(i), and a
preannounced time window [êi , ˆ̀

i].

I After the preannouncement, transportation request i gets
confirmed at some time ci > ai , and the confirmed time
window is [ei , `i].

I If request i is fulfilled, the profit earned is profit i

timejob prean-
nounced, ai

job con-
firmed, ci ei

êi

`i

ˆ̀
i

announcement
lead time, Li

confirmed
time window

preannounced
time window

Dynamic vehicle routing

I The vehicles serve one request at time, and after fulfilling a
request, they proceed to the next request, or go back to the
depot.

I The routing cost is the total distance traveled without serving
a request.

I The objective is to minimize the routing cost + the total
profit of unserved (rejected) requests.

Formulation of the static problem

minimize
∑

(α,β)∈E

costα,βxα,β (30)

subject to

xsv = 1, ∀v ∈ V (31)∑
(α,β)∈E

xα,β =
∑

(β,α)∈E

xβ,α, ∀α ∈ N \ {s, t}

(32)

max{ei , τdepot,p(i)} ≤ δi ≤ `i , ∀i ∈ J (33)

δj + M(1− xd(i),p(j)) ≥ δi + τp(i),d(i) + τd(i),p(j), ∀i , j ∈ J (34)

xα,β ∈ {0, 1}. ∀(α, β) ∈ E
(35)

Formulation of the static problem (cnt.)

s

v1

v2

.

p(i) d(i) p(j) d(j)

t

vk : vehicle node

p(i), d(i): pickup and drop-off nodes of customer i

costα,β :=

0, if (α = s and β ∈ V), or (α ∈ V and β = t),

or, for some i ∈ J, α = p(i) and β = d(i)
h · distdepot,p(i) − profit i , if α ∈ V and β = p(i) for some i ∈ J
h · distd(j),p(i) − profit i , if α = d(j) and β = p(i) for some i 6= j ∈ J
h · distd(i),depot , if i ∈ J for some i ∈ J, α = d(i) and β = t.

V = set of vehicle nodes, P = set of pickup nodes p(i), D = set of delivery
nodes d(i)

Stochastic information

I `i − ei = ˆ̀
i − êi = TWi .

I There is a parameter Li , the lead time, such that ei = ci + Li .

I There exists ∆ > 0, the range, such that ei is uniformly
distributed in [êi −∆, êi + ∆].

I Consequently, [ei , `i] ⊂ [êi −∆, ˆ̀
i + ∆].

The Evenet Loop

Algorithm Event loop

Initialization: each vehicle is in the depot, no information is
available about the customers.

1. Wait until a new event occurs (a customer
preannounces/confirms its request or a vehicle arrives to its
target location).

2. Invoke Subroutine Opt with the actual time tact , the actual
positions and states of the vehicles and the set Jact of
not-yet-finished-or-rejected preannounced or confirmed
requests received so-far.

3. According to the output of Subroutine Opt, send new
commands to the vehicles.

4. If all customers are served or rejected, then the vehicles go
back to the depot, and the processing of events is stopped.
Otherwise, proceed with Step 1.

Subroutine Opt

Subroutine Opt

Input: actual time tact , actual positions and states of the vehicles,
confirmed information from each customer i with ci ≤ tact ,
preannounced information from each customer with ai ≤ tact .
Output: new actions for the vehicles

1. Build a minimum cost flow problem with respect to tact .

2. Search an optimal (0/1) solution.

3. Determine |V | (internally) node disjoint s − t paths from the
arcs with flow value 1 in the solution.

4. Determine the next action for each vehicle (according to the
node that follows the vehicle node in a path).

Probabilistic model

I The arc costs on the arcs (α, p(j)), where α ∈ V ∪ D are
redefined as

h · distα,p(j) − P(Iα,p(j) = 1) · profit j .

I Random variable Xi represents the completion time of serving
customer i .

I Random variable Yj represents the end of the time window for
serving customer j .

I If α = v for some v ∈ V , then

Iv ,p(j) =

{
1, if tact + τvj ≤ Yj

0, otherwise.

P(Iv ,p(j) = 1) := P(tact + τvj ≤ Yj).

Probabilistic model (cnt.)

If α = d(i) for some i ∈ Jact ,
then

Id(i),p(j) =

{
1, if Xi + τij ≤ Yj

0, otherwise.

P(Id(i),p(j) = 1) := P(Xi+τij ≤ Yj).

12 16
9

15

10

14

Xi

Yj

Illustration for computing the probabilities

8

possible realization of [e1, `1]

14

9 possible drop-off of cust. 1 15

10

possible realization of [e2, `2]

16 17

service of cust. 1

travel to cust. 2

∆ [ê1, ˆ̀
1] = [10, 12] ∆

8 9 10 11 12 13 14 15 16 17

t

0

1

3

distance travelled

∆ [ê2, ˆ̀
2] = [12, 14] ∆

Example

customer ai [êi , ˆ̀
i] pickup loc. drop-off loc. ci [ei , `i]

0 1 [22 23] (3, 1) (1, 2) 2 [27, 28]
1 1 [18, 19] (0, 3) (1, 1) 1 [18, 19]
2 2 [20, 21] (2, 5) (4, 1) 3 [20, 21]

j0s

j0e

[ê0, ˆ̀
0] = [22, 23]

j1s

j1e

[e1, `1] = [18, 19]

hgjg

s v1

p(1) d(1)

p(0) d(0)

t

Figure: Left: known information at t = 1; the vehicle is at the red point
(at (0, 0)). Right: the network flow problem at t = 1; the edges with
flow value 1 in the optimal solution are red.

Example (cnt.)

j0s

j0e

[e0, `0] = [27, 28]

j1s

j1e

[e1, `1] = [18, 19]

j2s

j2e

[ê2, ˆ̀
2] = [20, 21]

hgjg

s v1

p(1) d(1)

p(0) d(0)

p(2) d(2)

t

The MTS-seq method of Srour, Agatz and Oppen

I Maintain 60 scenarios and corresponding optimal routs of the
vehicles.

I One scenario consists of randomly generated time windows for
the not-yet-confirmed, but announced requests, and the
confirmed time windows for the confirmed ones.

I A scenario is changed if
I A time window is confirmed, or
I tact passes the beginning of a not-yet-confirmed, i.e., guessed,

time window.

When a scenario changes, a new optimal solution is computed
by solving a MIP model.

I At any decision point, a route is chosen based on the 60
optimal solutions for 60 scenarios.

Computational results

0 5 15 30 60

400

500

600

700

800

Lead Time Length (minutes)

A
vg

.
T

ot
al

C
os

ts

MTS-seq
our

Perfect Information

Figure: Dependence on Lead Time

Computational results (cnt.)

5 15 30 60

400

500

600

700

800

Time Window Length (minutes)

MTS-seq
our

Perfect Information

Figure: Dependence on Time Window Length

Computational results (cnt.)

60 90 120 180 240

400

500

600

700

800

Range (minutes)

MTS-seq – 5 min
our – 5 min

MTS-seq – 30 min
our – 30 min

Figure: Dependence on Time Window Length and Range:
TWIi ∈ {5, 30} minutes and ∆ ∈ {30, 45, 60, 90, 120} mins.

The ICAPS 2021 competition

Dynamic Pickup and Delivery Problem specified by Huawei Ltd.

The Input

I Road network G = (F ,A, d), where F is the set of factories,
A set of arcs, and d = (dij) distance matrix.

I Set of orders O = {oi | i = 1, . . . ,N}, where
oi = (F i

p,F
i
d , q

i , t ie , t
i
l), where F i

p and F i
d are the pickup and

delivery factories, qi = (qistandar , q
i
small , q

i
box) is the number of

standard, and small pallets, and boxes of the shipment, and t ie ,
t il is the creation time and due date of shipment, respectively.

I V = {vk | k = 1, . . . ,K} set of vehicles of the same capacity
and speed.

I F set of factories, each factory has six cargo docks, where the
vehicles can load and unload.

I Dock approaching time: 1800 seconds.

I Loading and unloading times: for q standard size pallets it is
180q seconds.

Constraints and objective

I All items must be fulfilled

I If an order oi is not completed by t il , then penalty is payed
proportional to the delay.

I Orders that do not fit on a vehicle are split, the others are not.

I Last-In-First-Out sequence of load and unload. So, a route
(F 1

p ,F
2
p ,F

2
d ,F

1
d) is feasible, but (F 1

p ,F
2
p ,F

1
d ,F

2
d) is not.

I The vehicles are served at the factories by the
first-come-first-served rule.

t1 t2 t3 t4 t5 t6 t7 t8

vehicle 1

vehicle 2

vehicle 3

vehicle 4

port 1

port 2

port 2

port 1

Simulation environment

I Provided by Huawei Ltd, implemented in Python.

Solution of one epoch
I Solution representation

(P1,P2) −P2 +P3 +P4 +P5 −P5 +P6 −P6 −P4 −P3 −P1

F1 F1 F1 F1 F2 F2 F1 F3 F3 F4

I Example for unfeasible route

· · · · · · · · · · · · · · ·
+Pi +Pj −Pi −Pj

I Blocks
+P3 +P4 +P5 −P5 +P6 −P6 −P4 −P3

I Bridges
+P3 +P4 +P5 −P5 −P4 −P3

F1 F1 F1 F2 F3 F3

Neighborhood operations

I Block relocation between routes

· · ·
· · ·

· · ·× ×
· · · · · ·×

I Bridge relocation between routes. The two parts of the bridge
will be adjacent after relocation.

· · ·
· · ·

· · ·
· · ·

· · ·× × × ×
· · · · · ·×

I Block exchange between routes.

· · · · · · · · ·× ×

· · · · · · · · ·× ×

Problem instances

Table: Basic properties of public instances

Group Instances Orders Vehicles

1 1 – 8 50 5
2 9 – 16 100 10
3 17 – 24 300 20
4 25 – 32 500 20
5 33 – 40 1000 50
6 41 – 48 2000 50
7 49 – 56 3000 100
8 57 – 64 4000 100

Comparison of different methods

Instances LSBA* 1st Team1 2nd Team2 3rd Team3

Group 1 1 306.7 2 896.4 13 676.2 1 763.8
Group 2 34 046.3 41 535.3 - 62 180.2
Group 3 687.8 5 860.4 2 310.7 8 969.7
Group 4 6 831.4 6 544.5 105 049.4 26 938.3
Group 5 10 344.8 10 459.1 17 284.3 94 794.9
Group 6 42 249.8 41 494.3 153 419.1 651 944.9
Group 7 1 103 798.1 798 240.7 904 586.3 1 941 385.3
Group 8 8 913 545.2 11 359 466.4 18 678 529.1 15 122 816.2

All 1 264 101.3 1 533 312.1 - 2 238 849.2

* New local search-based approach
1 Zhu et al. (2021)
2 Ye and Liang (2021)
3 Horváth el al. (2021)

Final remarks

I Vehicle routing problems are abundant
I Basic problems are still not solved satisfactorily

I Need for faster exact methods
I Need for better heuristics

I Dynamic problems are still not understood well
I Need for a better understanding of the impact of client

selection
I Need for better understanding of route delay
I In general: Need for a theory for dynamic VRP problems

