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Thousands of scientists have been investigating the nervous system for
decades using a variety of approaches, but we still do not really understand
how it works. Why?

Here are a few reasons why the problem is very hard:

* Alarge number of heterogeneous elements with high dimensional,
nonlinear internal dynamics

* Many kinds of structured, state-dependent, delayed interactions
 Several different, but overlapping time scales

 Task-specific solutions which appeared through evolution, and form via
interactions with the environment during development

Is it then hopeless to understand the brain?
I will argue that it is not...
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Theories and models can link

different levels, but they still capture
only a few levels, so they must be
tied together somehow:
“bottom-up”

and

“top-down”

strategies
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If we modeled all details accurately, we would probably get accurate
predictions, but

* it is hopeless to measure all the parameters
« it is impossible to determine the precise initial conditions

« chaotic behavior is also possible

» besides, such a model would have limited utility:

« it could be used for “in silico” experimentation

« would such a full model lead to true understanding?

« depends on the definition of “understanding”...
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In the human brain, there are ~1011 neurons and ~1014 synapses.



The nervous systems of simpler animals can be investigated

« C. elegans (a worm) has 302 neurons, ~6400 chemical and
~900 electric synapses

« Slugs, insects (Drosophila, locust), fish, etc. are also used

A single brain region or a few interacting brain regions, or in vitro
brain slices can be investigated

« These contain ~104 - 10° neurons, ~107-1012 synapses

In models: we can use the average activity of neuronal populations
as our state variables



« Electric and chemical signals

« Complex, nonlinear processing within neurons
« Dendritic action potentials

« Synaptic transmission:

« Excitatory, inhibitory, modulatory

« State-dependent, delayed, plastic on several
different timescales
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Many cell types (up to ~100 within a single brain region), variability within these

classes (also at a functional level).

Common simplifications: only a few cell types, fixed or at most a few independently

varied random parameters.
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Not regular, but not random, at several different scales.

Common simplifications: homogeneous / random / fixed structured anatomical and
functional connections, or calculated / simulated using plasticity rules that depend on

neuronal activity.



Some fundamental problems in computational neuroscience

* How is information encoded by action potential trains? How to decode
information encoded by action potential trains? Why does a specific part of
the brain use a specific type of coding?

* How do neurons as information processing units function; specifically, what
is the relation between the temporal and spatial pattern of the input and
the spatial and temporal pattern of the output?

 How do neurons communicate, and what collective behaviors emerge in
networks?

 How does cellular-level (synaptic) plasticity function? How can we
understand behavioral-level learning? What is the connection between the
two?
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Motivation

Our long-term goal: understand the dynamics and computations in hippocampal
cells and circuits by combining experiments and models

Detailed (data-driven / bottom-up) models can be very useful

Problem: building high-quality data-driven models is difficult and slow

Building on earlier efforts, we are developing and applying software tools for
* parameter optimization
 algorithm benchmarking

e model validation

These tools facilitate a more systematic and reproducible approach to modeling



Parameter optimization

* Detailed biophysical models typically contain several unknown parameters
* Older models were built using mostly ad hoc methods

* Automated parameter tuning has now become widespread

* Several different algorithms have been used

 Many other methods have been successfully applied in other domains

* Their performance (consistence, convergence speed etc.) has not been evaluated
and compared systematically on neural problems

* We developed a neural optimization user interface (Neuroptimus) and a set of
benchmarks to address these issues



Neuroptimus: a tool for the automated fitting of model parameters

Based on our earlier tool Optimizer (https://github.com/KaliLab/optimizer)

Features:

GUI supporting a variety of common scenarios
Batch processing / command line operation
Internal (Neuron) or external (black box) simulator

Includes ~30 different algorithms from four different optimization modules (Inspyred, Pygmo,
BluePyOpt, Scipy)

Parallel execution enabled for many algorithms
Supports current and voltage clamp, multiple traces, time series and abstract (feature) data
Weighted combinations of various cost functions (eFEL + internal)

Modular structure - makes it possible to add new error functions and optimization algorithms



The Neuroptimus GUI 1: Target data

Neuroptimus
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The Neuroptimus GUI 2: Model

Meuroptimus

Menu
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The Neuroptimus GUI 3: Simulation settings

Menu

Target data = Model

Stimulation protocol
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The Neuroptimus GUI 4: Error functions

Neuroptimus

Menu

Target data  Model = Settings | Fitness | Run

Normalize
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The Neuroptimus GUI 5: Algorithms

MNeuroptimus

Menu

Target data = Model | Settings  Fitness ‘ Run |
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The Neuroptimus GUI 6: Results

MNeuroptimus

Menu

Targetdata = Model  Settings = Fitness = Run | Results | Statistics
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The Neuroptimus GUI 7: Statistics

Neuroptimus x

Menu
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Benchmarking optimization algorithms using Neuroptimus

* Use cases for benchmarking are set up using the Neuroptimus GUI

* Each use case is then run multiple (10) times for every algorithm with different
random seeds using the batch mode of Neuroptimus

* The evolution of the total error is extracted and evaluated automatically from each
run

* Statistics are computed across runs

* Algorithms are compared according to
* final error after 10,000 model evaluations
» convergence speed (area under the error curve)

e Algorithms tested include
* local and global methods
* single-objective and multi-objective algorithms
* gradient-based, random, evolutionary, swarm algorithms and other metaheuristics



Model fitting benchmark 4: Simplified active PC

Fitting the somatic conductance densities of a
simplified (6-compartmental) model to the
voltage response of a morphologically and
biophysically detailed CA1 pyramidal cell
model to a current step stimulus.

(9 parameters)

(A) Comparison of the original (simulated) data
(blue) and an example of a best-fitting trace
(red). (B) Evolution of the median error value
across generations in 22 different optimization
algorithms. (C) Distribution of the final error
scores across 10 independent repetitions for
each algorithm. (D) Comparison of convergence
speed based on the area under the median
error curve. Red bars represent multi-objective
algorithms.
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INg

Final rank

Model fitting benchmarks

Ranking-based total score of algorithms for multi-objective problems
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Parameter optimization: Conclusions

* Our software tool Neuroptimus supports a variety of neural model
optimization use cases

* Intuitive GUI for many basic tasks

» Additional capabilities for power users

* Benchmarking many algorithms in four packages across six different
use cases leads to some general recommendations:

* Local algorithms (e.g., PRAXIS) are not suitable for more complex tasks

* Generally well-performing algorithms include evolutionary strategies (CES,
CMA-ES), particle swarm, and some multi-objective methods (IBEA)



Parameter optimization: Extensions

The basic fitting approach can be improved and extended to meet
more specific requirements:

* For the reliable estimation of parameters of individual neurons, fitting
can be replaced by proper (Bayesian) statistical inference

* To produce populations of neuronal models for network simulations,
the variability of neurons needs to be modeled explicitly

 What (multivariate) distribution of model parameters will lead to the
appropriate (multivariate) distribution of physiological features?



Model validation - Motivation

* A large amount of experimental data are available for many cell types

* Many different models of the same cell type (136 CA1 PC models in
ModelDB)

* Most models have been custom-built for a particular purpose, use a very
limited set of constraints, and it is unknown how they behave outside their
original context

* Model re-use is limited, and often leads to (undiscovered) “regression”
* Testing the behavior of models manually is difficult and error-prone

 \We need automated validation suites!



Model validation framework: SciUnit
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HippoUnit: Aims and design

Electrophysiological validations for detailed hippocampal CA1 pyramidal cell models

Simulations that mimic reported experimental protocols

Tests implemented in Python, can be run from Jupyter Notebooks

Feature extraction:

* Own functions
* Electrophys Feature Extraction Library (eFEL) of the BBP (Van Geit et al. 2016)

Quantitative evaluation
» observation (experimental data) €2 prediction (model behavior)

* Feature-based error function (Druckmann et al. 2007).

Output:
* Feature and score (error) values extracted from the models
* Final score that is the sum of the errors of all the features tested by the given test
» figures which illustrate the model's behavior and the extracted feature values



Tests of HippoUnit

* The Somatic Features Test evaluates (using eFEL) and compares to
experimental data the features of the somatic membrane potential response
to somatic current injections of varying amplitudes.

* The PSP Attenuation Test evaluates how much the post synaptic potential
attenuates from the main apical dendrite to the soma. (experimental data
from Magee & Cook 2000)



CA1 pyramidal cells from the literature
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The Somatic Features Test evaluates (using eFEL) and compares to experimental data the
features of the somatic membrane potential response to somatic current injections of varying

amplitudes.
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The Somatic Features Test evaluates (using eFEL) and compares to experimental data the

features of the somatic membrane potential response to somatic current injections of varying

amplitudes.
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The PSP Attenuation Test
evaluates how much the post
synaptic potential (using a
synaptic current stimulus)
attenuates from the main apical
dendrite (different distances) to
the soma.

(data from Magee & Cook 2000)
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Overall characterization and model comparison based on all tests

of HippoUnit
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Normalized final scores achieved by
the different published models on
the various tests of HippoUnit. The
final scores of each test are
normalized by dividing the scores of
each model by the best achieved
score on the given test.

The last model on the right is the
current version of a new model
developed in our lab using a
systematic approach — automated
optimization with Neuroptimus, and
validation with HippoUnit.



Applications of HippoUnit

e Evaluation and comparison of existing models
* provides independent and standardized verification of the behavior of the models,
* allows researchers to learn more about models published by other groups,

* and to judge which existing models show a good match to the experimental data in
the domains that they care about, and thus to decide whether they could re-use one
of the existing models in their own research.

* During model development - allows researchers to easily evaluate models
in relation to the relevant experimental data after every iteration of model
adjustment

* avoid “regressions”

* Could enable the creation of “community models” through the iterative
refinement of models in an open collaboration of multiple research teams.



Validation — Interpretation and limitations

* A high error score on a particular test does not imply that the model is bad:

* Perhaps the data are noisy or biased

* Perhaps the test failed
* Perhaps the model was designed to mimic different experimental conditions (species, strain,
age, temperature, recording technique, etc.)

e Real neurons are diverse (they are not like a single “average” neuron) — even large scores
could match some real cells (especially with long-tailed distributions)

* The model could be great for other purposes

 Validations should not be used blindly
e Consider modeling goals (not all results may be relevant, or the test should be adapted)

* Check outputs other than the final score

* Models often need to be adapted to run the tests — well-designed, standardized
model formats could help



Multi-purpose models

* Good models allow us to make new predictions

* Generalization:
* Performance on untrained features
* Response to new inputs from the same class
e Performance in new paradigms

* Lessons from machine learning: how to build (train), validate, and select

models

* Validate (ideally, also train) in all domains where you want to make predictions
(interpolation is much easier than extrapolation)

* Do not use all the data for training — you also need data for validation (to avoid
overfitting and select models that make good predictions)



Our modeling workflow
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Introduction: understanding the brain

Systematic model construction and evaluation
Parameter optimization
Automated model validation

Neural modeling example

Model of network dynamics, coding, and
learning in the hippocampus



Long-term “declarative” memory

Spatial representation and navigation

Formation of complex representations

Temporal
lobe

Others...
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In 1953, patient H.M. underwent surgery affecting both
hippocampi, and developed a very severe memory deficit.

The hippocampus is critical for “declarative” (event, fact)
memory, but not for “procedural” (e.g., perceptual and motor
skill) memory.

Amnesia has an “anterograde” component (affecting new
learning) and a “retrograde” component (affecting earlier
memories).

Retrograde amnesia is often temporally graded (affects recent
memories more than old ones).

These observations led to the memory consolidation hypothesis.



According to the memory consolidation hypothesis

the hippocampus stores information only temporarily
memory traces are eventually “transferred” to neocortex

the mechanism may involve the “off-line" reactivation of
hippocampal memory traces



Different types of learning (e.g., general knowledge vs. events)
may require different approaches.

According to the theory of complementary memory systems

neocortex is specialized in slow, incremental (statistical)
learning of general information

the hippocampus is responsible for the rapid (“one-shot”)
learning of arbitrary combinations of stimuli

McClelland, McNaughton, and O’Reilly, 1995
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The recurrent collateral connections of area CA3 may
implement an auto-associative memory network.



Nonlinear recurrent networks often have
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activity patterns which behave as fixed
point attractors —i.e., they are stable
patterns of activity towards which other
patterns converge.

These may also be considered as stored
memory traces, provided that we can
specity the fixed points (preferably via a
plausible activity-based learning rule).

Auto-associative function: the dynamics
of the network reconstructs the original
pattern based on a fragment or a noisy
version. This is also known as pattern
completion.
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50 years ago, place cells were discovered in the
hippocampus

Since then, several other space-related
representations (grid cells, head direction cells,
boundary cells, etc.) have been discovered in
neighboring, connected areas.

Behaviorally relevant, non-spatial characteristics of
the environment are also represented in the
hippocampus.

Hippocampal lesions cause severe deficits in spatial
cognition, and specifically in map-based navigation.

These observations led to the cognitive map hypothesis
of hippocampal function (O’Keefe and Nadel, 1978).



Sharp wave-ripples and sequence replay

Sharp wave-ripples (SWRs) are autonomously generated bursts of activity in
the hippocampus, which are prevalent during awake immobility and slow-
wave sleep, and strongly implicated in the formation of long-term memory.
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Place cell activation sequences are replayed during SWRs.



Goals

* Investigate, using experimental, theoretical and simulation tools, the
mechanisms responsible for the generation of sharp wave-ripples (SWRs)
and other dynamic states in area CA3 of the hippocampus in vitro

* See whether these mechanisms, combined with appropriate models of
exploration and learning, might also explain the replay of place cell
sequences observed during SWRs in vivo

* Understand the relationship between weight structure, the representation
of sequences, and global characteristics of the dynamics such as mean

rates and population oscillations



CA3 network model M)
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Learning of recurrent weight structure during exploration...
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We model the activity of a population of
place cells with overlapping place fields
during exploration, using location and
theta phase-modulated inhomogeneous
Poisson processes (phase precession),
and apply the symmetric STDP rule
measured by Mishra et al. (2016).
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Learning of recurrent weight structure during exploration...
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We model the activity of a population of
place cells with overlapping place fields
during exploration, using location and
theta phase-modulated inhomogeneous
Poisson processes (phase precession),
and apply the symmetric STDP rule
measured by Mishra et al. (2016).

150 — — —— — - — — - —

100+ | P

50 | °

D L 1 1 | | 1 1 | 1
—-200 —-150 -100 =50 0 50 100 150 200




Learning of recurrent weight structure during exploration
supports the replay of place cell sequences during SWRs
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Replay can occur in both directions, and it can be cued to start from specific locations (not shown) — this may explain the
prevalence of forward replay when planning a route, and backward replay at the goal location.



Replay events are accompanied by ripple oscillations
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Conclusions (SWRs and replay)

* A simple network model of the CA3 area, where most parameters are based on in vitro data
but recurrent excitatory weights are learned using STDP during simulated exploration, produces
sharp wave-like activity with ripple oscillations and spontaneous replay of learned sequences.

* Manipulations of the weight matrix demonstrate that the distribution of synaptic weights is
neither necessary nor sufficient for the observed physiological population activity of the
original network.

* Embedded convergent paths in the weight matrix enable robust sequential activity at high
(physiological) rates, which in turn leads to the emergence of fast (ripple) oscillations.

* A symmetric learning rule (combined with cellular adaptation) can explain the bidirectional
replay of activity sequences.

* The fine structure of recurrent excitation not only enables coding, but also has a major effect
on global (average) network dynamics.

* Models constrained by data can reveal principles of dynamics and computation in the brain.
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