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When will we understand how the brain works?

Thousands of scientists have been investigating the nervous system for 
decades using a variety of approaches, but we still do not really understand 
how it works. Why?

Here are a few reasons why the problem is very hard:

• A large number of heterogeneous elements with high dimensional, 
nonlinear internal dynamics

• Many kinds of structured, state-dependent, delayed interactions

• Several different, but overlapping time scales

• Task-specific solutions which appeared through evolution, and form via 
interactions with the environment during development

Is it then hopeless to understand the brain?
I will argue that it is not…



Levels of organization and methods of investigation



Levels of organization and methods of investigation

Theories and models can link 
different levels, but they still capture 
only a few levels, so they must be 
tied together somehow:

“bottom-up”

and

“top-down” 

strategies



A purely bottom-up strategy

If we modeled all details accurately, we would probably get accurate 
predictions, but

• it is hopeless to measure all the parameters

• it is impossible to determine the precise initial conditions

• chaotic behavior is also possible

• besides, such a model would have limited utility:

• it could be used for “in silico” experimentation

• would such a full model lead to true understanding?

• depends on the definition of “understanding”…



A large number of elements: regions, neurons, synapses

In the human brain, there are ~1011 neurons and ~1014 synapses.



A large number of elements: common simplifications

• The nervous systems of simpler animals can be investigated

• C. elegans (a worm) has 302 neurons, ~6400 chemical and 
~900 electric synapses

• Slugs, insects (Drosophila, locust), fish, etc. are also used

• A single brain region or a few interacting brain regions, or in vitro 
brain slices can be investigated

• These contain ~104 – 109 neurons, ~107-1012 synapses

• In models: we can use the average activity of neuronal populations 
as our state variables



Complex elements: neurons and synapses

• Electric and chemical signals

• Complex, nonlinear processing within neurons

• Dendritic action potentials

• Synaptic transmission:

• Excitatory, inhibitory, modulatory

• State-dependent, delayed, plastic on several 
different timescales



Complex elements: common simplifications

• Morphologically and biophysically detailed, multi-
compartmental models -> simplified, spiking or 
rate-based neuronal models

• Synapses are also information-processing 
devices, which have their own state variables –
this is often neglected



Heterogeneous elements

Many cell types (up to ~100 within a single brain region), variability within these 
classes (also at a functional level).

Common simplifications: only a few cell types, fixed or at most a few independently 
varied random parameters.



Complex networks of interactions

Not regular, but not random, at several different scales.

Common simplifications: homogeneous / random / fixed structured anatomical and 
functional connections, or calculated / simulated using plasticity rules that depend on 
neuronal activity.



Some fundamental problems in computational neuroscience

• How is information encoded by action potential trains? How to decode 
information encoded by action potential trains? Why does a specific part of 
the brain use a specific type of coding?

• How do neurons as information processing units function; specifically, what 
is the relation between the temporal and spatial pattern of the input and 
the spatial and temporal pattern of the output?

• How do neurons communicate, and what collective behaviors emerge in 
networks? 

• How does cellular-level (synaptic) plasticity function? How can we 
understand behavioral-level learning? What is the connection between the 
two?
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Motivation

• Our long-term goal: understand the dynamics and computations in hippocampal 

cells and circuits by combining experiments and models

• Detailed (data-driven / bottom-up) models can be very useful

• Problem: building high-quality data-driven models is difficult and slow

• Building on earlier efforts, we are developing and applying software tools for

• parameter optimization

• algorithm benchmarking

• model validation

• These tools facilitate a more systematic and reproducible approach to modeling



Parameter optimization

• Detailed biophysical models typically contain several unknown parameters

• Older models were built using mostly ad hoc methods

• Automated parameter tuning has now become widespread

• Several different algorithms have been used

• Many other methods have been successfully applied in other domains

• Their performance (consistence, convergence speed etc.) has not been evaluated 

and compared systematically on neural problems

• We developed a neural optimization user interface (Neuroptimus) and a set of 

benchmarks to address these issues



Neuroptimus: a tool for the automated fitting of model parameters

Based on our earlier tool Optimizer (https://github.com/KaliLab/optimizer)

Features:

• GUI supporting a variety of common scenarios

• Batch processing / command line operation

• Internal (Neuron) or external (black box) simulator

• Includes ~30 different algorithms from four different optimization modules (Inspyred, Pygmo, 
BluePyOpt, Scipy)

• Parallel execution enabled for many algorithms

• Supports current and voltage clamp, multiple traces, time series and abstract (feature) data

• Weighted combinations of various cost functions (eFEL + internal)

• Modular structure - makes it possible to add new error functions and optimization algorithms



The Neuroptimus GUI 1: Target data



The Neuroptimus GUI 2: Model



The Neuroptimus GUI 3: Simulation settings



The Neuroptimus GUI 4: Error functions



The Neuroptimus GUI 5: Algorithms



The Neuroptimus GUI 6: Results



The Neuroptimus GUI 7: Statistics



Benchmarking optimization algorithms using Neuroptimus

• Use cases for benchmarking are set up using the Neuroptimus GUI

• Each use case is then run multiple (10) times for every algorithm with different 
random seeds using the batch mode of Neuroptimus

• The evolution of the total error is extracted and evaluated automatically from each 
run

• Statistics are computed across runs

• Algorithms are compared according to
• final error after 10,000 model evaluations

• convergence speed (area under the error curve)

• Algorithms tested include
• local and global methods

• single-objective and multi-objective algorithms

• gradient-based, random, evolutionary, swarm algorithms and other metaheuristics



Fitting the somatic conductance densities of a 
simplified (6-compartmental) model to the 
voltage response of a morphologically and 
biophysically detailed CA1 pyramidal cell 
model to a current step stimulus.

(9 parameters)

(A) Comparison of the original (simulated) data 
(blue) and an example of a best-fitting trace 
(red). (B) Evolution of the median error value 
across generations in 22 different optimization 
algorithms. (C) Distribution of the final error 
scores across 10 independent repetitions for 
each algorithm. (D) Comparison of convergence 
speed based on the area under the median 
error curve. Red bars represent multi-objective 
algorithms.

Model fitting benchmark 4: Simplified active PC



Model fitting benchmarks: Final ranking



Parameter optimization: Conclusions

• Our software tool Neuroptimus supports a variety of neural model 

optimization use cases

• Intuitive GUI for many basic tasks

• Additional capabilities for power users

• Benchmarking many algorithms in four packages across six different 

use cases leads to some general recommendations:

• Local algorithms (e.g., PRAXIS) are not suitable for more complex tasks

• Generally well-performing algorithms include evolutionary strategies (CES, 

CMA-ES), particle swarm, and some multi-objective methods (IBEA)



Parameter optimization: Extensions

The basic fitting approach can be improved and extended to meet 

more specific requirements:

• For the reliable estimation of parameters of individual neurons, fitting 

can be replaced by proper (Bayesian) statistical inference

• To produce populations of neuronal models for network simulations, 

the variability of neurons needs to be modeled explicitly

• What (multivariate) distribution of model parameters will lead to the 

appropriate (multivariate) distribution of physiological features?



Model validation - Motivation

• A large amount of experimental data are available for many cell types

• Many different models of the same cell type (136 CA1 PC models in 

ModelDB)

• Most models have been custom-built for a particular purpose, use a very 

limited set of constraints, and it is unknown how they behave outside their 

original context

• Model re-use is limited, and often leads to (undiscovered) “regression”

• Testing the behavior of models manually is difficult and error-prone

• We need automated validation suites!



Model validation framework: SciUnit

CapabilityModel Test

Score

implements requires



• Electrophysiological validations for detailed hippocampal CA1 pyramidal cell models

• Simulations that mimic reported experimental protocols

• Tests implemented in Python, can be run from Jupyter Notebooks

• Feature extraction: 

• Own functions

• Electrophys Feature Extraction Library (eFEL) of the BBP (Van Geit et al. 2016)

• Quantitative evaluation

• observation (experimental data) → prediction (model behavior)

• Feature-based error function (Druckmann et al. 2007).

• Output: 
• Feature and score (error) values extracted from the models
• Final score that is the sum of the errors of all the features tested by the given test
• figures which illustrate the model's behavior and the extracted feature values

HippoUnit: Aims and design



Tests of HippoUnit

• The Somatic Features Test evaluates (using eFEL) and compares to 
experimental data the features of the somatic membrane potential response 
to somatic current injections of varying amplitudes. 

• The PSP Attenuation Test evaluates how much the post synaptic potential 
attenuates from the main apical dendrite to the soma. (experimental data 
from Magee & Cook 2000)

• The Back-propagating AP Test Evaluates the mode and efficacy of back-
propagating action potentials at different locations on the apical trunk. 
(experimental data from Golding et al. 2001)

• The Depolarization Block Test aims to determine whether the model enters 
depolarization block in response to prolonged, high intensity somatic current 
stimuli. (experimental data from Bianchi et al. 2012)

• The Oblique Integration Test probes the integration properties of the radial 
oblique dendrites for increasing number of synchronous and asynchronous 
inputs. (experimental data from Losonczy, Magee 2006)



CA1 pyramidal cells from the literature



The Somatic Features Test evaluates (using eFEL) and compares to experimental data the 
features of the somatic membrane potential response to somatic current injections of varying 
amplitudes. 

model

experiment



The Somatic Features Test evaluates (using eFEL) and compares to experimental data the 
features of the somatic membrane potential response to somatic current injections of varying 
amplitudes.

(A) Mean feature scores (# sd) of the different models. Feature score
values are averaged over the different input step amplitudes.

(B) Number of experimental features 
attempted to be evaluated for the models 
(red), and number of successfully evaluated 
features (green).



The PSP Attenuation Test 
evaluates how much the post 
synaptic potential (using a 
synaptic current stimulus) 
attenuates from the main apical 
dendrite (different distances) to 
the soma. 

(data from Magee & Cook 2000)



Overall characterization and model comparison based on all tests 
of HippoUnit

Normalized final scores achieved by 

the different published models on 

the various tests of HippoUnit. The 

final scores of each test are 

normalized by dividing the scores of 

each model by the best achieved 

score on the given test.

The last model on the right is the 

current version of a new model 

developed in our lab using a 

systematic approach – automated 

optimization with Neuroptimus, and 

validation with HippoUnit.



Applications of HippoUnit

• Evaluation and comparison of existing models
• provides independent and standardized verification of the behavior of the models,

• allows researchers to learn more about models published by other groups, 

• and to judge which existing models show a good match to the experimental data in 
the domains that they care about, and thus to decide whether they could re-use one 
of the existing models in their own research.

• During model development - allows researchers to easily evaluate models 
in relation to the relevant experimental data after every iteration of model 
adjustment
• avoid “regressions”

• Could enable the creation of “community models” through the iterative 
refinement of models in an open collaboration of multiple research teams.



Validation – Interpretation and limitations

• A high error score on a particular test does not imply that the model is bad:
• Perhaps the data are noisy or biased

• Perhaps the test failed

• Perhaps the model was designed to mimic different experimental conditions (species, strain, 
age, temperature, recording technique, etc.)

• Real neurons are diverse (they are not like a single “average” neuron) – even large scores 
could match some real cells (especially with long-tailed distributions)

• The model could be great for other purposes

• Validations should not be used blindly
• Consider modeling goals (not all results may be relevant, or the test should be adapted)

• Check outputs other than the final score

• Models often need to be adapted to run the tests – well-designed, standardized 
model formats could help



Multi-purpose models

• Good models allow us to make new predictions

• Generalization:
• Performance on untrained features

• Response to new inputs from the same class

• Performance in new paradigms

• Lessons from machine learning: how to build (train), validate, and select 
models
• Validate (ideally, also train) in all domains where you want to make predictions 

(interpolation is much easier than extrapolation)

• Do not use all the data for training – you also need data for validation (to avoid 
overfitting and select models that make good predictions)

41



Our modeling workflow
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Functions of the hippocampus

❖ Long-term “declarative” memory

❖ Spatial representation and navigation

❖ Formation of complex representations

❖ Others…



The role of the hippocampus in memory

❖ In 1953, patient H.M. underwent surgery affecting both 
hippocampi, and developed a very severe memory deficit.

❖ The hippocampus is critical for “declarative” (event, fact) 
memory, but not for “procedural” (e.g., perceptual and motor 
skill) memory.

❖ Amnesia has an “anterograde”  component (affecting new 
learning) and a “retrograde” component (affecting earlier 
memories).

❖ Retrograde amnesia is often temporally graded (affects recent 
memories more than old ones).

These observations led to the memory consolidation hypothesis.



Memory consolidation

According to the memory consolidation hypothesis

❖ the hippocampus stores information only temporarily

❖ memory traces are eventually “transferred” to neocortex

❖ the mechanism may involve the “off-line" reactivation of 
hippocampal memory traces



Complementary memory systems

Different types of learning (e.g., general knowledge vs. events) 
may require different approaches.

According to the theory of complementary memory systems

❖ neocortex is specialized in slow, incremental (statistical) 
learning of general information

❖ the hippocampus is responsible for the rapid (“one-shot”) 
learning of arbitrary combinations of stimuli

McClelland, McNaughton, and O’Reilly, 1995



The hippocampus as a long-term memory store

The recurrent collateral connections of area CA3 may 
implement an auto-associative memory network.



Associative (long-term) memory

Nonlinear recurrent networks often have 
activity patterns which behave as fixed 
point attractors – i.e., they are stable 
patterns of activity towards which other 
patterns converge.

These may also be considered as stored 
memory traces, provided that we can 
specify the fixed points (preferably via a 
plausible activity-based learning rule).

Auto-associative function: the dynamics 
of the network reconstructs the original 
pattern based on a fragment or a noisy 
version. This is also known as pattern 
completion.



The role of the hippocampus in spatial navigation

❖ 50 years ago, place cells were discovered in the 
hippocampus

❖ Since then, several other space-related 
representations (grid cells, head direction cells, 
boundary cells, etc.) have been discovered in 
neighboring, connected areas.

❖ Behaviorally relevant, non-spatial characteristics of 
the environment are also represented in the 
hippocampus.

❖ Hippocampal lesions cause severe deficits in spatial 
cognition, and specifically in map-based navigation.

These observations led to the cognitive map hypothesis 
of hippocampal function (O’Keefe and Nadel, 1978).



Sharp wave-ripples and sequence replay
Sharp wave-ripples (SWRs) are autonomously generated bursts of activity in 
the hippocampus, which are prevalent during awake immobility and slow-
wave sleep, and strongly implicated in the formation of long-term memory.

Place cell activation sequences are replayed during SWRs.



Goals

• Investigate, using experimental, theoretical and simulation tools, the 

mechanisms responsible for the generation of sharp wave-ripples (SWRs) 

and other dynamic states in area CA3 of the hippocampus in vitro

• See whether these mechanisms, combined with appropriate models of 

exploration and learning, might also explain the replay of place cell 

sequences observed during SWRs in vivo

• Understand the relationship between weight structure, the representation 

of sequences, and global characteristics of the dynamics such as mean 

rates and population oscillations



CA3 network model

According to in vitro data, pyramidal cells (PCs) and fast-
spiking basket cells (BCs) are the key players in SWR 
generation.

To model area CA3 in the slice, we built spiking networks 
of 8000 PCs and 150 BCs (some versions also contained 
100 "slow interneurons”), taking into account data from

• anatomy (connectivity)

• single cell physiology (response to step currents)

• synaptic physiology

We used our “Neuroptimus" software tool to fit 
adaptive exponential integrate-and fire (AdExpIF) 
models to current clamp recordings from PCs and BCs.



Learning of recurrent weight structure during exploration…

We model the activity of a population of 

place cells with overlapping place fields 

during exploration, using location and 

theta phase-modulated inhomogeneous 

Poisson processes (phase precession), 

and apply the symmetric STDP rule 

measured by Mishra et al. (2016).
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Learning of recurrent weight structure during exploration 
supports the replay of place cell sequences during SWRs

Replay can occur in both directions, and it can be cued to start from specific locations (not shown) – this may explain the 
prevalence of forward replay when planning a route, and backward replay at the goal location.



Replay events are accompanied by ripple oscillations



Conclusions (SWRs and replay)

• A simple network model of the CA3 area, where most parameters are based on in vitro data
but recurrent excitatory weights are learned using STDP during simulated exploration, produces 
sharp wave-like activity with ripple oscillations and spontaneous replay of learned sequences.

• Manipulations of the weight matrix demonstrate that the distribution of synaptic weights is 
neither necessary nor sufficient for the observed physiological population activity of the 
original network.

• Embedded convergent paths in the weight matrix enable robust sequential activity at high 
(physiological) rates, which in turn leads to the emergence of fast (ripple) oscillations.

• A symmetric learning rule (combined with cellular adaptation) can explain the bidirectional 
replay of activity sequences.

• The fine structure of recurrent excitation not only enables coding, but also has a major effect 
on global (average) network dynamics.

• Models constrained by data can reveal principles of dynamics and computation in the brain.
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Thank you for your attention!

Questions?


