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Introduction

Introduction

Starting model: Density-dependent Markov population process
(1970s, Kurtz)

o finite population of identical components
@ each component in a local state s € S

@ each component performs Markovian (exponential) transitions
simultaneously on S

@ transition rates depend on the global state of the sytem, e.g.
the percentage of the population in each class



Introduction

Example 1: Virus epidemic

A virus is spreading in a population of size N. Each individual can
be in one of the following states:

@ susceptible: healthy, but subject to infection
@ incumbent: infectious, but no symptoms yet
@ sick: symptoms visible, under treatment

@ resistant: recovered, not susceptible to infection

Initially, a small percentage of the population is incumbent, the rest
are susceptible.
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Example 1: Virus epidemic

I I I
O——@0—0——@

susceptible  incumbent sick resistant

X1, X2, X3, X4 percentage of the population in each state.

r, r», r3 are the transition rates, which may depend on x, e.g.

ri(x) = c1x2 + cx3: the more individuals are infected in the
general population, the more likely it is for a single individual to get
infected. ry(x) = ¢3 and r3(x) = ¢4 are constants.
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The mean-field limit

What is the behaviour of the system when N is large?

The system is random locally, but, as N — oo, the global evolution
of the system converges to a deterministic limit called the
mean-field limit.

The limit is defined by a system of |S| ordinary differential
equations (ODE). The equations can be defined automatically.
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Back to the example:

r r r
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susceptible  incumbent sick resistant

The system of ODEs corresponding to this system:

v (t) = —n(v(t)w(t)

va(t) = ri(v(t))va(t) — ra(v(t))va(t)
v3(t) = ra(v(t))va(t) — r3(v(t))vs(t)
va(t) = r3(v(t))vs(t)
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Back to the example:

r r r
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susceptible  incumbent sick resistant

The system of ODEs corresponding to this system:

vi(t) = —(ava(t) + cva(t))vi(t)
Vz(t) (C1 Vz(t) + C2V3(t))V1(t') — C3V2(t)
)
)

V3(t 3V2(t)—C4V3(t)

va(t vs(t)
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Kurtz's theorem

Let xV(t) be the random Markovian population process with
population size N and let v(t) be the solution of the ODE. Assume
also that |[xN(0) — v(0)|| — 0 in probability and that r are
Lipschitz-continuous (which holds in Example 1).

Then for any fixed T > 0 and € > 0,

P ( sup [v(t) — xN(t)|| > €> —0

tel0,T]

as N — oo.
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Main goal

We want to extend the setup to include non-Markovian transitions
(generally-timed delays).

In many scenarios, exponential delays are not realistic. We are
interested in introducing generally timed delays into the model
described, and also to see how the mean field limit changes as a
result.
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History, related results

e Started in the 1970s (Kurtz)

@ Related work in biology and chemistry; however, the results are
very specific to their respective models
@ Results with Petri nets (German 2000)

@ Recent results with deterministic delays in a more general
framework (Hayden 2012, Bortolussi-Hillston 2012)
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Non-Markovian transitions

Introducing non-Markovian transitions (e.g. generally-timed delays)
into density-dependent Markov population processes:

@ some of the local states have an active generally-timed clock

@ a cumulative distribution function F. assigned to each active
clock e

@ when a component enters a state with an active clock, the
clock sets to a random time according to F.

@ when the clock goes off, the component makes a
(non-Markovian) transition
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Non-Markovian transitions

Introducing non-Markovian transitions (e.g. generally-timed delays)
into density-dependent Markov population processes:

@ some of the local states have an active generally-timed clock

@ a cumulative distribution function F. assigned to each active
clock e

@ when a component enters a state with an active clock, the
clock sets to a random time according to F.

@ when the clock goes off, the component makes a
(non-Markovian) transition

Main restrictions:

@ at most one active clock in each local state; however, globally,
any number of clocks may be active simultaneously

@ two active clocks may not follow each other immediately

@ an active clock can not be interrupted by Markovian transitions
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Example 1': Virus epidemic
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Assume the length of the incumbent period is not exponential, but
some general distribution with cumulative distribution function F
instead. How to change the system of equations?

t

—(ava(t) + covs(t))va(t)
(cava(t) + cavs(t))va(t)—7
7 — C4V3(t)

cavs(t)
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Example 1': Virus epidemic
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susceptible  incumbent sick resistant

Assume the length of the incumbent period is not exponential, but
some general distribution with cumulative distribution function F
instead. How to change the system of equations?

Vl(t) = —(C1V2(1.') + C2V3(t))V1(t)
Vz(t) = (Cl Vz(t) + C2V3(t))V1(t) — /0 (Cl V2(S) + C2V3(S))V1(S)dF(5)
\'/3(1') = /O‘t(Cl VQ(S) + C2V3(5))V1(S)dF(S) — C4V3(t)

V4(t) = C4V3(t)
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Purely Markov population process:
@ memoryless

@ approximated by the solution of a system of deterministic
ordinary differential equations (ODE)
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Comparison of Markov and generalised processes

Purely Markov population process:
@ memoryless

@ approximated by the solution of a system of deterministic
ordinary differential equations (ODE)

Markov population process with generally-timed delays (or
generalised semi-Markov process, GSMP):

e with memory (due to generally-timed delays)

@ approximated by the solution of a system of deterministic
delayed differential equations (DDE)
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Example 2: Peer-to-peer software update

Two types of nodes: old and updated.

@ old nodes search for updates in peer-to-peer fashion when
turned on

@ search is successful with a rate proportional to the number of
updated nodes that are currently turned on

@ if unsuccessful, the node gives up after a timeout and stays on
for some time

@ both updated and old nodes turn on and off

We assume that the off times are generally-distributed (in the
following simulations, Pareto), everything else is Markovian.
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Example 2: peer-to-peer software update

Local states.
Updated nodes:

@ c: updated node turned on
@ e: updated node turned off

Old nodes:
e d: old node turned on, searching for updates
@ a: old node turned on, no search for updates
@ b: old node turned off
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Example 2: peer-to-peer software update
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Example 2: peer-to-peer software update
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va(t) = —rvg(t) — Bve(t)vg(t) + p/ot va(t — s)dF(s)
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Example 2: peer-to-peer software update
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Ub(t) = pua(t) — p/ot vi(t — s)AF(s)



Example 2: peer-to-peer software update

Va(t) = de( ) pVa

U(t) = pua(t p/o (£ — s)dF(s)

Ue(£) = Bua(ee(t) = pue(®) ++ [ velt — )AF(S)
Ua(6) = =) = Bue()ua(®) + [l ~ SAF(S)
i(6) = ) = [ vele = )i (s
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Example 2: peer-to-peer software update

T T
— Nodes in state ¢ |
—— Nodes in state d
—— Nodes in state e

Rescaled component count

0 20 40 60 80 100
Time, ¢



Non-Markovian transitions

Example 2: peer-to-peer software update
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General setup

General setup:
@ set of local states S
@ set of Markovian transitions C C S x S
@ r.: aggregate rate of Markovian transition ¢ € C
@ set of generally-timed transitions £ C S x S
o F.: CDF of general delay e € £
Let xN' be the random GSMP on N components.
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General setup

The general DDE:

us(t) = 3 Er(v(e) +Zthe/ v(t — u)) dFa(u)

ceC ecf ceC

(IS and hg® are +1 or 0.)

Let v be the solution.
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General setup

Given the prior assumptions plus the following:
o |[v(0) — xN(0)|| — 0 in probability

@ r. are Lipschitz-continuous

Theorem (Hayden—Telek—-H., 2014)

For any fixed T > 0 and € > 0,

P( sup |v(t) — xN(t)|| >e)—0
te[0,T]

as N — oo.

Main elements of the proof: Gronwall's inequality,
Poisson-representation, probability concentration theorems (law of
large numbers, Azuma'’s inequality).
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Advantages

The main theoretical result is a rigorous mathematical proof of the
mean-field limit for a large class of random processes (GSMPs).
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General setup

Advantages

The main theoretical result is a rigorous mathematical proof of the
mean-field limit for a large class of random processes (GSMPs).
The main practical advantages of this approximation:

o generally-timed delays are often relevant in real-world
computer and communication systems

@ no state space explosion — the number of equations is
independent of N

@ the system of DDEs can be derived automatically from the
GSMP

@ the system of DDEs can be solved efficiently numerically



Further questions

Further questions | - the race case

What if we drop the assumption that non-Markovian transitions
can not be interrupted?

In this case, Markovian and non-Markovian transitions race — if a

Markovian transition occurs before an active clock would go off, the
clock is cancelled.
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The race case

Let v be the solution of the DDE (in integral form)

vs(t) = vs(0 +Z’C/ v(s))ds+ > > hoex

ceC eef ceC
/Z . /X exp ( / :X qS(V(T))dT> dFe(x)re(v(z))dz
where
gs(v) = ‘L Z re(v),

C

where the sum goes over all transitions ¢ which go out from local
state s. gs may be interpreted as the rate of risk for a component
in local state s to be interrupted by a Markovian transition.
Convergence not fully proven yet, work in progress.
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Other methods to handle non-Markovian transitions

Phase-type distributions: the vanishing time of a vanishing Markov
process. More general than exponential distributions, and can be
used to approximate general distributions.
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much larger state space, making this approach impractical to
examine population models.
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Other methods to handle non-Markovian transitions

Phase-type distributions: the vanishing time of a vanishing Markov
process. More general than exponential distributions, and can be
used to approximate general distributions.

By approximating generally distributed delays by phase-type
distributions, the obtained model is fully Markovian, albeit on a
much larger state space, making this approach impractical to
examine population models.

There is a direct analogue of this approach for differential
equations: a system of DDEs can be approximated by a larger
system of ODEs (Maset, 2003).
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@ Multiple generally-timed transitions racing — description by
PDEs? — would require completely different methods
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Further questions

@ Second-order approximation (fluctuation around the mean-field
limit)

@ Multiple generally-timed transitions racing — description by
PDEs? — would require completely different methods

Thank you for your attention!
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