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Introduction

Starting model: Density-dependent Markov population process

(1970s, Kurtz)

�nite population of identical components

each component in a local state s ∈ S
each component performs Markovian (exponential) transitions

simultaneously on S
transition rates depend on the global state of the sytem, e.g.

the percentage of the population in each class
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Example 1: Virus epidemic

A virus is spreading in a population of size N. Each individual can

be in one of the following states:

susceptible: healthy, but subject to infection

incumbent: infectious, but no symptoms yet

sick: symptoms visible, under treatment

resistant: recovered, not susceptible to infection

Initially, a small percentage of the population is incumbent, the rest

are susceptible.
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Example 1: Virus epidemic

b
susceptible incumbent sick resistant

r1 rr2 3

x1, x2, x3, x4: percentage of the population in each state.

r1, r2, r3 are the transition rates, which may depend on x, e.g.

r1(x) = c1x2 + c2x3: the more individuals are infected in the

general population, the more likely it is for a single individual to get

infected. r2(x) = c3 and r3(x) = c4 are constants.
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The mean-�eld limit

What is the behaviour of the system when N is large?

The system is random locally, but, as N →∞, the global evolution

of the system converges to a deterministic limit called the

mean-�eld limit.

The limit is de�ned by a system of |S| ordinary di�erential

equations (ODE). The equations can be de�ned automatically.
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Example 1: Virus epidemic

Back to the example:

b
susceptible incumbent sick resistant

r1 rr2 3

The system of ODEs corresponding to this system:

v̇1(t) = −r1(v(t))v1(t)
v̇2(t) = r1(v(t))v1(t)− r2(v(t))v2(t)

v̇3(t) = r2(v(t))v2(t)− r3(v(t))v3(t)

v̇4(t) = r3(v(t))v3(t)
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Example 1: Virus epidemic

Back to the example:

b
susceptible incumbent sick resistant

r1 rr2 3

The system of ODEs corresponding to this system:

v̇1(t) = −(c1v2(t) + c2v3(t))v1(t)

v̇2(t) = (c1v2(t) + c2v3(t))v1(t)− c3v2(t)

v̇3(t) = c3v2(t)− c4v3(t)

v̇4(t) = c4v3(t)
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Kurtz's theorem

Let xN(t) be the random Markovian population process with

population size N and let v(t) be the solution of the ODE. Assume

also that ‖xN(0)− v(0)‖ → 0 in probability and that rc are

Lipschitz-continuous (which holds in Example 1).

Then for any �xed T > 0 and ε > 0,

P

(
sup

t∈[0,T ]
‖v(t)− x

N(t)‖ > ε

)
→ 0

as N →∞.
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Main goal

We want to extend the setup to include non-Markovian transitions

(generally-timed delays).

In many scenarios, exponential delays are not realistic. We are

interested in introducing generally timed delays into the model

described, and also to see how the mean �eld limit changes as a

result.
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History, related results

Started in the 1970s (Kurtz)

Related work in biology and chemistry; however, the results are

very speci�c to their respective models

Results with Petri nets (German 2000)

Recent results with deterministic delays in a more general

framework (Hayden 2012, Bortolussi�Hillston 2012)
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Non-Markovian transitions

Introducing non-Markovian transitions (e.g. generally-timed delays)

into density-dependent Markov population processes:

some of the local states have an active generally-timed clock

a cumulative distribution function Fe assigned to each active

clock e

when a component enters a state with an active clock, the

clock sets to a random time according to Fe

when the clock goes o�, the component makes a

(non-Markovian) transition

Main restrictions:

at most one active clock in each local state; however, globally,

any number of clocks may be active simultaneously

two active clocks may not follow each other immediately

an active clock can not be interrupted by Markovian transitions



Introduction Non-Markovian transitions General setup Further questions

Non-Markovian transitions

Introducing non-Markovian transitions (e.g. generally-timed delays)

into density-dependent Markov population processes:

some of the local states have an active generally-timed clock

a cumulative distribution function Fe assigned to each active

clock e

when a component enters a state with an active clock, the

clock sets to a random time according to Fe

when the clock goes o�, the component makes a

(non-Markovian) transition

Main restrictions:

at most one active clock in each local state; however, globally,

any number of clocks may be active simultaneously

two active clocks may not follow each other immediately

an active clock can not be interrupted by Markovian transitions



Introduction Non-Markovian transitions General setup Further questions

Example 1': Virus epidemic

b
susceptible incumbent sick resistant

r1 r3F

Assume the length of the incumbent period is not exponential, but

some general distribution with cumulative distribution function F
instead. How to change the system of equations?

v̇1(t) = −(c1v2(t) + c2v3(t))v1(t)

v̇2(t) = (c1v2(t) + c2v3(t))v1(t)− ?

v̇3(t) = ?− c4v3(t)

v̇4(t) = c4v3(t)
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Example 1': Virus epidemic

b
susceptible incumbent sick resistant

r1 r3F

Assume the length of the incumbent period is not exponential, but

some general distribution with cumulative distribution function F
instead. How to change the system of equations?

v̇1(t) = −(c1v2(t) + c2v3(t))v1(t)

v̇2(t) = (c1v2(t) + c2v3(t))v1(t)−
∫ t

0

(c1v2(s) + c2v3(s))v1(s)dF (s)

v̇3(t) =

∫ t

0

(c1v2(s) + c2v3(s))v1(s)dF (s)− c4v3(t)

v̇4(t) = c4v3(t)
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Comparison of Markov and generalised processes

Purely Markov population process:

memoryless

approximated by the solution of a system of deterministic

ordinary di�erential equations (ODE)

Markov population process with generally-timed delays (or

generalised semi-Markov process, GSMP):

with memory (due to generally-timed delays)

approximated by the solution of a system of deterministic

delayed di�erential equations (DDE)
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Example 2: Peer-to-peer software update

Two types of nodes: old and updated.

old nodes search for updates in peer-to-peer fashion when

turned on

search is successful with a rate proportional to the number of

updated nodes that are currently turned on

if unsuccessful, the node gives up after a timeout and stays on

for some time

both updated and old nodes turn on and o�

We assume that the o� times are generally-distributed (in the

following simulations, Pareto), everything else is Markovian.
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Example 2: peer-to-peer software update

Local states.

Updated nodes:

c: updated node turned on

e: updated node turned o�

Old nodes:

d: old node turned on, searching for updates

a: old node turned on, no search for updates

b: old node turned o�
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Example 2: peer-to-peer software update

c
d

e

Old node

a b

Updated node

β

ρ

κ

vc

ρ
F

F

e

c

v̇d(t) = −κvd(t)− βvc(t)vd(t) + ρ

∫ t

0

va(t − s)dF (s)
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Example 2: peer-to-peer software update

c
d

e

Old node

a b

Updated node

β

ρ

κ

vc

ρ
F

F

e

c

v̇b(t) = ρva(t)− ρ
∫ t

0

va(t − s)dF (s)
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Example 2: peer-to-peer software update

v̇a(t) = κvd(t)− ρva(t)

v̇b(t) = ρva(t)− ρ
∫ t

0

va(t − s)dF (s)

v̇c(t) = βvd(t)vc(t)− ρvc(t) + +ρ

∫ t

0

vc(t − s)dF (s)

v̇d(t) = −κvd(t)− βvc(t)vd(t) + ρ

∫ t

0

va(t − s)dF (s)

v̇e(t) = ρvc(t)− ρ
∫ t

0

vc(t − s)dF (s)
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Example 2: peer-to-peer software update
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Example 2: peer-to-peer software update
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General setup

General setup:

set of local states S
set of Markovian transitions C ⊆ S × S
rc : aggregate rate of Markovian transition c ∈ C
set of generally-timed transitions E ⊆ S × S
Fe : CDF of general delay e ∈ E

Let xN be the random GSMP on N components.
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General setup

The general DDE:

v̇ s(t) =
∑
c∈C

lcs rc(v(t)) +
∑
e∈E

∑
c∈C

hc,es

∫ t

0

rc(v(t − u)) dFe(u)

(lcs and hc,es are ±1 or 0.)

Let v be the solution.
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General setup

Given the prior assumptions plus the following:

‖v(0)− x
N(0)‖ → 0 in probability

rc are Lipschitz-continuous

Theorem (Hayden�Telek�H., 2014)

For any �xed T > 0 and ε > 0,

P( sup
t∈[0,T ]

‖v(t)− x
N(t)‖ > ε)→ 0

as N →∞.

Main elements of the proof: Gronwall's inequality,

Poisson-representation, probability concentration theorems (law of

large numbers, Azuma's inequality).
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Advantages

The main theoretical result is a rigorous mathematical proof of the

mean-�eld limit for a large class of random processes (GSMPs).

The main practical advantages of this approximation:

generally-timed delays are often relevant in real-world

computer and communication systems

no state space explosion � the number of equations is

independent of N

the system of DDEs can be derived automatically from the

GSMP

the system of DDEs can be solved e�ciently numerically



Introduction Non-Markovian transitions General setup Further questions

Advantages

The main theoretical result is a rigorous mathematical proof of the

mean-�eld limit for a large class of random processes (GSMPs).

The main practical advantages of this approximation:

generally-timed delays are often relevant in real-world

computer and communication systems

no state space explosion � the number of equations is

independent of N

the system of DDEs can be derived automatically from the

GSMP

the system of DDEs can be solved e�ciently numerically



Introduction Non-Markovian transitions General setup Further questions

Advantages

The main theoretical result is a rigorous mathematical proof of the

mean-�eld limit for a large class of random processes (GSMPs).

The main practical advantages of this approximation:

generally-timed delays are often relevant in real-world

computer and communication systems

no state space explosion � the number of equations is

independent of N

the system of DDEs can be derived automatically from the

GSMP

the system of DDEs can be solved e�ciently numerically



Introduction Non-Markovian transitions General setup Further questions

Advantages

The main theoretical result is a rigorous mathematical proof of the

mean-�eld limit for a large class of random processes (GSMPs).

The main practical advantages of this approximation:

generally-timed delays are often relevant in real-world

computer and communication systems

no state space explosion � the number of equations is

independent of N

the system of DDEs can be derived automatically from the

GSMP

the system of DDEs can be solved e�ciently numerically



Introduction Non-Markovian transitions General setup Further questions

Advantages

The main theoretical result is a rigorous mathematical proof of the

mean-�eld limit for a large class of random processes (GSMPs).

The main practical advantages of this approximation:

generally-timed delays are often relevant in real-world

computer and communication systems

no state space explosion � the number of equations is

independent of N

the system of DDEs can be derived automatically from the

GSMP

the system of DDEs can be solved e�ciently numerically



Introduction Non-Markovian transitions General setup Further questions

Advantages

The main theoretical result is a rigorous mathematical proof of the

mean-�eld limit for a large class of random processes (GSMPs).

The main practical advantages of this approximation:

generally-timed delays are often relevant in real-world

computer and communication systems

no state space explosion � the number of equations is

independent of N

the system of DDEs can be derived automatically from the

GSMP

the system of DDEs can be solved e�ciently numerically



Introduction Non-Markovian transitions General setup Further questions

Further questions I - the race case

What if we drop the assumption that non-Markovian transitions

can not be interrupted?

In this case, Markovian and non-Markovian transitions race � if a

Markovian transition occurs before an active clock would go o�, the

clock is cancelled.
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The race case

Let v be the solution of the DDE (in integral form)

vs(t) = vs(0) +
∑
c∈C

lcs

∫ t

0

rc(v(s)) ds +
∑
e∈E

∑
c∈C

hc,es ×

×
∫ t

z=0

∫ t−z

x=0

exp

(
−
∫ z+x

τ=z
qs(v(τ))dτ

)
dFe(x)rc(v(z))dz

where

qs(v) =
1

vs

∑
c

rc(v),

where the sum goes over all transitions c which go out from local

state s. qs may be interpreted as the rate of risk for a component

in local state s to be interrupted by a Markovian transition.

Convergence not fully proven yet, work in progress.
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Other methods to handle non-Markovian transitions

Phase-type distributions: the vanishing time of a vanishing Markov

process. More general than exponential distributions, and can be

used to approximate general distributions.

By approximating generally distributed delays by phase-type

distributions, the obtained model is fully Markovian, albeit on a

much larger state space, making this approach impractical to

examine population models.

There is a direct analogue of this approach for di�erential

equations: a system of DDEs can be approximated by a larger

system of ODEs (Maset, 2003).
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Further questions

Second-order approximation (�uctuation around the mean-�eld

limit)

Multiple generally-timed transitions racing � description by

PDEs? � would require completely di�erent methods

Thank you for your attention!
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