Road surveillance optimization - an asymmetric vehicle routing problem with visiting frequencies

<u>Bérczi Kristóf</u> Alpár Jüttner

Department of Operations Research, Eötvös Loránd University MTA-ELTE Egerváry Research Group on Combinatorial Optimization

Background

Input data

Math Formulation

Heuristic Solutions

MIP Formulation

Cutting Plane Approach

Background

Input data

Math Formulation

Heuristic Solutions

MIP Formulation

Cutting Plane Approach

- In Hungary, public road are maintained by the <u>Hungarian Public Road</u> Nonprot Private Limited Company
- They use special surveillance cars to regularly check the road network.
 - Each road must be checked in a law regulated frequency, depending its type, traffic etc.
- This is currently organized by hand (using a GIS system + spreadsheets)
- They want something better, thus initiated a pilot project to
 - evaluate the current situation and the effect of some changes in the organization
 - automatize the planning process at a later state

Goals

Task

The pilot project deals with a specific county (Bács-Kiskun) of Hungary.

- 6 cars with fixed centers/garages (two of them are co-located)
 - Each road is (currently) assigned to one of the centers.
- different speed when surveying or just traveling (given per road)
- daily full travel time is limited: max 9 hours
- visiting frequency depends on road type: 1, 2, 7, 14, 28 days
 - We need a periodic plan for 28 days

Goals

Task

The pilot project deals with a specific county (Bács-Kiskun) of Hungary.

- 6 cars with fixed centers/garages (two of them are co-located)
 - Each road is (currently) assigned to one of the centers.
- different speed when surveying or just traveling (given per road)
- daily full travel time is limited: max 9 hours
- visiting frequency depends on road type: 1, 2, 7, 14, 28 days
 - We need a periodic plan for 28 days

Questions: Optimize the daily routes

- 1. while keeping all the centers and the current road assignment ("borders")
- 2. with optimized road \rightarrow center assignment
 - the assignment may be static or dynamic
- 3. with using less cars

Background

Input data

Math Formulation

Heuristic Solutions

MIP Formulation

Cutting Plane Approach

Input data

- 8 files (.dbf, .shp, .shx, .txt formats)
- 1564 nodes, 3241 road segments
 - road length, speed limits, one-way/bidirectional, visiting frequency

Background

Input data

Math Formulation

Heuristic Solutions

MIP Formulation

Cutting Plane Approach

Given

- freq : $E \longrightarrow \mathbb{N}$. The maximum (or exact) number of days between two consecutive checks of the road segment.
- $time_{trv}: E \longrightarrow \mathbb{R}$ and $time_{srv}: E \longrightarrow \mathbb{R}$. The traveling and surveying time of the road segments
- *length* : $E \longrightarrow \mathbb{R}$. The physical length of the road segments.
- *bidir* : $E \longrightarrow \{0,1\}$. One-way/bidirectional indicator.
- centers : $E \longrightarrow 2^{C}$. The set of vehicles (i.e. centers) which are allowed to survey the road segment.
- $\mathcal{T} := 0, \ldots, \mathcal{T} 1$. The planning time frame.

W. Daily max working time.

Find

 $p_{c,d}$ (closed) paths and a set $S_{c,d} \subset p_{c,d}$ of surveyed roads ($\forall c \in C$ and $\forall d \in T$) so that

- $p_{c,d}$ starts from and ends at c,
- S_{c,d} ⊂ {e : c ∈ centers(e)}, i.e. each road is surveyed by one of its allowed vehicles,
- $\sum_{e \in S_{c,d}} time_{srv}(e) + \sum_{e \in p_{c,d} \setminus S_{c,d}} time_{trv}(e) \le W$, i.e. the total travel time of $p_{c,d}$ is at most W,
- $e \in \bigcup \{S_{c,k} : c \in \mathcal{C}, k \in \{d, (d+1)_{modT}, \dots, (d + freq(e) 1)_{modT}\}$ holds for each $e \in E$, freq(e) > 0, and $d \in [0, \dots, T 1]$.

Objective function

we seek to minimize the total length of all paths $p_{c,d}$, i.e

$$\sum_{c \in \mathcal{C}, d \in [0, \dots, R-1]} length(p_{c,d}).$$
(1)

An example single day route plan

Exact or min. visiting frequency (day patterns)

Remark

According to our tests, it doesn't have much effect on the found solution.

Background

Input data

Math Formulation

Heuristic Solutions

MIP Formulation

Cutting Plane Approach

Algorithm

- 1. Start with empty routes p_{cd} for each center c and day d
- 2. Choose and arbitrary unchecked road e,
- 3. Calculate the cost of its optimal insertion into each route routes p_{cd} .
- 4. Choose the best center and survey day pattern
- 5. GOTO Step 2 if there are unchecked roads.

Algorithm

- 1. Start with empty routes p_{cd} for each center c and day d
- 2. Choose and arbitrary unchecked road e,
- 3. Calculate the cost of its optimal insertion into each route routes p_{cd} .
- 4. Choose the best center and survey day pattern
- 5. GOTO Step 2 if there are unchecked roads.

Solving Step 4

- It is done by solving a tiny set covering problem, or
- one may require that the visiting frequencies are strictly kept.

Algorithm

- 1. Start with empty routes p_{cd} for each center c and day d
- 2. Choose and arbitrary unchecked road e,
- 3. Calculate the cost of its optimal insertion into each route routes p_{cd} .
- 4. Choose the best center and survey day pattern
- 5. GOTO Step 2 if there are unchecked roads.

Solving Step 4

- It is done by solving a tiny set covering problem, or
- one may require that the visiting frequencies are strictly kept.

Remarks

- It is blazing fast (solves the full problem within 1sec)
- Results are surprisingly good.
- Working day limits can be enforced by penalty functions.

Improved Heuristics

Reinsertion Algorithm

- 1. Create an initial solution
- 2. Try to remove and optimally reinsert each road until improvement is possible

Simulated Annealing [sketch]

- 1. Create an initial solution
- 2. Repeat
 - Choose a random road, and reinsert it optimally to a randomly chosen center and day offset.
 - Accept the change with probability $P(accept) := max \left\{1, e^{\frac{cost_{prev} cost_{new}}{T}}\right\}$

Background

Input data

Math Formulation

Heuristic Solutions

MIP Formulation

Cutting Plane Approach

MIP Formulation

$$\begin{split} \min \sum_{cde} lenght(e)s_{cde} + \sum_{cde} lenght(e)t_{cde} \\ \end{split}$$
 where
$$\begin{aligned} s_{cde} \in \{0, 1\} & \forall c \in \mathcal{C}, d \in \mathcal{T}, e \in E_{c} \\ t_{cde} \in \mathbb{N} & \forall c \in \mathcal{C}, d \in \mathcal{T}, e \in E_{c} \\ t_{cde} \in \mathbb{N} & \forall c \in \mathcal{C}, d \in \mathcal{T}, e \in E_{c} \\ s_{cke} \geq 1 & \forall c \in \mathcal{C}, d \in \mathcal{T}, e \in E_{c} \\ \sum_{k \in \{d, \dots, (d+freq(e)-1)_{modT}\}} s_{cke} \geq 1 & \forall c \in \mathcal{C}, d \in \mathcal{T}, e \in E_{c} \\ \sum_{e \in \rho_{E_{c}}(v)} s_{cde} + \sum_{e \in \rho_{E}(v)} t_{cde} = \sum_{e \in \delta_{E_{c}}(v)} s_{cde} + \sum_{e \in \delta_{E}(v)} t_{cde} & \forall c \in \mathcal{C}, d \in \mathcal{T}, v \in V \\ \sum_{e \in E_{c}} time_{srv}(e)s_{cde} + \sum_{e \in E} time_{trv}(e)t_{cde} \leq W & \forall c \in \mathcal{C}, d \in \mathcal{T} \\ f_{cde} \geq 0 & \forall c \in \mathcal{C}, d \in \mathcal{T}, e \in E_{c} \\ f_{cde} \leq M(s_{cde} + t_{cde}) & \forall c \in \mathcal{C}, d \in \mathcal{T}, e \in E_{c} \\ \sum_{e \in \rho_{E}(v)} f_{cde} - \sum_{e \in \delta_{E}(v)} f_{cde} = \sum_{e \in \rho_{E_{c}}(v)} s_{cde} & \forall c \in \mathcal{C}, d \in \mathcal{T}, v \in V - c \end{split}$$

- Too big to be solved directly by a MIP solver
- Iterative rounding may help
 - 1. Solve the LP relaxation
 - 2. Choose a variable close to 1 (or 0)
 - 3. Round it, then GOTO 1.
- This works but still very slow and usually doesn't give better results than the heuristics.

Solution II. Cutting Plane Approach

Alternative connectivity constraints

6

Exact version

$$\sum_{e \in \delta_{E_c}(U)} s_{cde} + \sum_{e \in \delta_E(U)} t_{cde} \ge \frac{1}{M} \sum_{uv) \in E_C; u, v \in U} s_{cd(uv)}$$

 $\forall c \in \mathcal{C}, d \in \mathcal{T}, U \subset V - c$

Restricted version

Added only if unconnected integer solution is found

$$\sum_{e \in \delta_{E_c}(U)} s_{cde} + \sum_{e \in \delta_E(U)} t_{cde} \ge 1$$

Where U is the vertex set of a disconnected cycle

• The subroutine finding a violated constraint is passed to the MIP solver as a callback function.

• It is still unable to solve the whole problem efficiently

• It is still unable to solve the whole problem efficiently

However

• It is still unable to solve the whole problem efficiently

However

- Assume that surveying center and the day pattern are fixed for each road.
- Then, we can find an optimal solution to this sub-problem in a reasonable time.
- So, it can be used to further improve the results calculated by the heuristics.

Background

Input data

Math Formulation

Heuristic Solutions

MIP Formulation

Cutting Plane Approach

Center	Survey km/day	Travel km/day			
		Insertion	Simann	Improvement	
C0	87.8	82.4	83.3	-1.1%	
C1	75.8	64.5	62.6	2.9%	
C2	67.7	63.8	56.8	11.0%	
C3	58.7	83.2	77.6	6.7%	
C4	54.3	48.0	41.3	14.0%	
C5	51.4	72.1	62.6	13.2%	
Total	395.7	414.0	384.3	7.2%	

Center	Survey km/day	Travel km/day			
		Insertion	+MIP-impr.	Improvement	
C0	87.8	82.4	79.3	3.8%	
C1	75.8	64.5	62.2	3.6%	
C2	67.7	63.8	62.0	2.8%	
C3	58.7	83.2	80.6	3.1%	
C4	54.3	48.0	43.7	9.0%	
C5	51.4	72.1	70.1	2.8%	
Total	395.7	414.0	397.9	3.9%	

Center	Survey km/day	Travel km/day			
		Simann	+MIP-impr.	Improvement	
C0	87.8	83.3	82.1	1.4%	
C1	75.8	62.6	60.4	3.5%	
C2	67.7	56.8	55.3	2.6%	
C3	58.7	77.6	76.4	1.5%	
C4	54.3	41.3	39.3	4.8%	
C5	51.4	62.6	61.8	1.3%	
Total	395.7	384.2	375.3	2.3%	

Center	Survey km/day	Travel km/day			
		Insertion	Simann	Improvement	
		+MIP-impr.	+MIP-impr.	Improvement	
C0	87.8	79.3	82.1	-3.5%	
C1	75.8	62.2	60.4	2.9%	
C2	67.7	62.0	55.3	10.8%	
C3	58.7	80.6	76.4	5.2%	
C4	54.3	43.7	39.3	10.0%	
C5	51.4	70.1	61.8	11.8%	
Total	395.7	397.9	375.3	5.7%	

Thank you for the attention!