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Background

• In Hungary, public road are maintained by the Hungarian Public Road

Nonprot Private Limited Company

• They use special surveillance cars to regularly check the road network.

• Each road must be checked in a law regulated frequency, depending its

type, tra�c etc.

• This is currently organized by hand (using a GIS system + spreadsheets)

• They want something better, thus initiated a pilot project to

• evaluate the current situation and the e�ect of some changes in the

organization

• automatize the planning process at a later state



Goals

Task

The pilot project deals with a speci�c county (Bács-Kiskun) of Hungary.

• 6 cars with �xed centers/garages (two of them are co-located)

• Each road is (currently) assigned to one of the centers.

• di�erent speed when surveying or just traveling (given per road)

• daily full travel time is limited: max 9 hours

• visiting frequency depends on road type: 1, 2, 7, 14, 28 days

• We need a periodic plan for 28 days

Questions: Optimize the daily routes

1. while keeping all the centers and the current road assignment (�borders�)

2. with optimized road → center assignment

• the assignment may be static or dynamic

3. with using less cars
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Input data

• 8 �les (.dbf, .shp, .shx, .txt

formats)

• 1564 nodes, 3241 road

segments

• road length, speed limits,

one-way/bidirectional,

visiting frequency
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Math Formulation

Given

freq : E −→ N. The maximum (or exact) number of days between two

consecutive checks of the road segment.

timetrv : E −→ R and timesrv : E −→ R. The traveling and surveying time of

the road segments

length : E −→ R. The physical length of the road segments.

bidir : E −→ {0, 1}. One-way/bidirectional indicator.

centers : E −→ 2C. The set of vehicles (i.e. centers) which are allowed to

survey the road segment.

T := 0, . . . ,T − 1. The planning time frame.

W . Daily max working time.



Math Formulation

Find
pc,d (closed) paths and a set Sc,d ⊂ pc,d of surveyed roads (∀c ∈ C and

∀d ∈ T ) so that

• pc,d starts from and ends at c ,

• Sc,d ⊂ {e : c ∈ centers(e)}, i.e. each road is surveyed by one of its allowed

vehicles,

•
∑

e∈Sc,d
timesrv (e) +

∑
e∈pc,d\Sc,d

timetrv (e) ≤W , i.e. the total travel time

of pc,d is at most W ,

• e ∈
⋃
{Sc,k : c ∈ C, k ∈ {d , (d + 1)modT , . . . , (d + freq(e)− 1)modT} holds

for each e ∈ E , freq(e) > 0, and d ∈ [0, . . . ,T − 1].

Objective function
we seek to minimize the total length of all paths pc,d , i.e∑

c∈C,d∈[0,...,R−1]

length(pc,d). (1)



An example single day route plan



Exact or min. visiting frequency (day patterns)

1 7 14 21 28

-offset off

-offset on

1 7 14 21 28

Remark
According to our tests, it doesn't have much e�ect on the found solution.
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Insertion Heuristic

Algorithm

1. Start with empty routes pcd for each center c and day d

2. Choose and arbitrary unchecked road e,

3. Calculate the cost of its optimal insertion into each route routes pcd .

4. Choose the best center and survey day pattern

5. GOTO Step 2 if there are unchecked roads.

Solving Step 4

• It is done by solving a tiny set covering problem, or

• one may require that the visiting frequencies are strictly kept.

Remarks

• It is blazing fast (solves the full problem within 1sec)

• Results are surprisingly good.

• Working day limits can be enforced by penalty functions.
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Improved Heuristics

Reinsertion Algorithm

1. Create an initial solution

2. Try to remove and optimally reinsert each road until improvement is

possible

Simulated Annealing [sketch]

1. Create an initial solution

2. Repeat

• Choose a random road, and reinsert it optimally to a randomly chosen

center and day o�set.

• Accept the change with probability P(accept) := max
{
1, e

costprev−costnew
T

}
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MIP Formulation

min
∑
cde

lenght(e)scde +
∑
cde

lenght(e)tcde

where

scde ∈ {0, 1} ∀c ∈ C, d ∈ T , e ∈ Ec

tcde ∈ N ∀c ∈ C, d ∈ T , e ∈ Ec∑
k∈{d,...,(d+freq(e)−1)modT }

scke ≥ 1 ∀c ∈ C, d ∈ T , e ∈ Ec

∑
e∈ρEc (v)

scde +
∑

e∈ρE (v)
tcde =

∑
e∈δEc (v)

scde +
∑

e∈δE (v)
tcde ∀c ∈ C, d ∈ T , v ∈ V

∑
e∈Ec

timesrv (e)scde+
∑
e∈E

timetrv (e)tcde ≤W ∀c ∈ C, d ∈ T

fcde ≥ 0 ∀c ∈ C, d ∈ T , e ∈ Ec

fcde ≤ M(scde + tcde) ∀c ∈ C, d ∈ T , e ∈ Ec∑
e∈ρE (v)

fcde −
∑

e∈δE (v)
fcde =

∑
e∈ρEc (v)

scde ∀c ∈ C, d ∈ T , v ∈ V − c



Solution I

• Too big to be solved directly by a MIP solver

• Iterative rounding may help

1. Solve the LP relaxation

2. Choose a variable close to 1 (or 0)

3. Round it, then GOTO 1.

• This works but still very slow and usually doesn't give better results than

the heuristics.



Solution II. Cutting Plane Approach

Alternative connectivity constraints

Exact version∑
e∈δEc (U)

scde +
∑

e∈δE (U)

tcde ≥
1

M

∑
(uv)∈EC ;u,v∈U

scd(uv) ∀c ∈ C, d ∈ T ,U ⊂ V − c

Restricted version
Added only if unconnected integer solution is found∑

e∈δEc (U)

scde +
∑

e∈δE (U)

tcde ≥ 1

Where U is the vertex set of a disconnected cycle

• The subroutine �nding a violated constraint is passed to the MIP solver as

a callback function.



Solution II. Cutting Plane Approach

• It is still unable to solve the whole problem e�ciently

However

• Assume that surveying center and the day pattern are �xed for each road.

• Then, we can �nd an optimal solution to this sub-problem in a reasonable

time.

• So, it can be used to further improve the results calculated by the

heuristics.
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Results I: Insertion versus Simulated annealing

Center Survey km/day
Travel km/day

Insertion Simann Improvement

C0 87.8 82.4 83.3 -1.1%

C1 75.8 64.5 62.6 2.9%

C2 67.7 63.8 56.8 11.0%

C3 58.7 83.2 77.6 6.7%

C4 54.3 48.0 41.3 14.0%

C5 51.4 72.1 62.6 13.2%

Total 395.7 414.0 384.3 7.2%



Results II: Insertion method and MIP-impr.

Center Survey km/day
Travel km/day

Insertion +MIP-impr. Improvement

C0 87.8 82.4 79.3 3.8%

C1 75.8 64.5 62.2 3.6%

C2 67.7 63.8 62.0 2.8%

C3 58.7 83.2 80.6 3.1%

C4 54.3 48.0 43.7 9.0%

C5 51.4 72.1 70.1 2.8%

Total 395.7 414.0 397.9 3.9%



Results III: Simulated Annealing and MIP-impr.

Center Survey km/day
Travel km/day

Simann +MIP-impr. Improvement

C0 87.8 83.3 82.1 1.4%

C1 75.8 62.6 60.4 3.5%

C2 67.7 56.8 55.3 2.6%

C3 58.7 77.6 76.4 1.5%

C4 54.3 41.3 39.3 4.8%

C5 51.4 62.6 61.8 1.3%

Total 395.7 384.2 375.3 2.3%



Results IV: Insertion vs. SimAnn with MIP-impr.

Center Survey km/day
Travel km/day

Insertion

+MIP-impr.

Simann

+MIP-impr.
Improvement

C0 87.8 79.3 82.1 -3.5%

C1 75.8 62.2 60.4 2.9%

C2 67.7 62.0 55.3 10.8%

C3 58.7 80.6 76.4 5.2%

C4 54.3 43.7 39.3 10.0%

C5 51.4 70.1 61.8 11.8%

Total 395.7 397.9 375.3 5.7%



Thank you for the attention!
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