NOI<IA Bell Labs

Path finding and dimensioning problems related to reliable telecommunication networks

Lajos Bajzik, Research Engineer
2022.10.18

IP Network
A commonly known transport network technology which is resilient by design

IP resiliency
Link state routing protocol

- Somehow each router knows the whole topology, plus the destinations behind others.
- They run Dijkstra's algorithm and set their routing table automatically.

IP resiliency
Link state routing protocol

One router's piece of the puzzle:
"Link State Advertisement"

Flooding:
Everyone receives everyone's puzzle pieces

IP resiliency

Link state routing protocol

- The two routers at the ends of the failed link start flooding their updated LSA - without the link
- Soon each router know the updated topology and recalculate their routing table

IP is not the only transport technology...

1+1 protection

1+1 protection

Operation

Failure-free operation:

- Information is transmitted on both paths
- Receiving end selects the data from the working path

In case of failure along the working path:

1. Receiving end gets notified technology specific mechanism
2. Switches over to receiving from the protection path

Fastest service recovery time possible (for a global, path-level mechanism), on the expense of dedicated protection resource reservation

Least cost path pair Link-disjoint problem

- Network model: directed weighted graph $G(V, E)$ with symmetrical, non-negative edge costs, $c(i, j)=c(j, i)$. A network link is represented by a pair of opposite directed edges.
- Find working path p_{1} and protection path p_{2} between source node s and destination node t, such that the two paths have no common edge and the total edge cost $C\left(p_{1}, p_{2}\right)=\sum_{(i, j) \in p_{1}} C(i, j)+\sum_{(i, j) \in p_{2}} C(i, j)$ is minimal.

Least cost path pair Link-disjoint: naive, two-step approach

Find p_{1} as the shortest path in G, then exclude the edges of p_{1} and find p_{2} as the shortest path in this modified graph G^{\prime}.

Even when it is not trapped, it doesn't guarantee optimal solution.

Least cost path pair
 Link-disjoint: Suurballe's algorithm

1) Find $p_{1}{ }^{\prime}$ shortest path in G :

2) Create residual graph G^{\prime}, find $p_{2}{ }^{\prime}$ shortest path in G^{\prime} :

3) Combine the noninterlacing edges of $p_{1}{ }^{\prime}$ and $p_{2}{ }^{\prime}$ into final the result $\left(p_{1}, p_{2}\right)$:

Least cost path pair
 Link-disjoint: Suurballe's algorithm

The residual graph contains some negative edge weights - how to deal with it?

- Node potentials: a way to modify edge weights without changing the shortest path:
- Assign some number $\mathrm{p}(\mathrm{v})$ to each node $\mathrm{v} \in V$
- Modify the edge weights: $c(i, j)=c(i, j)-(p(j)-p(i))$
- The length of all paths from s to t change by the same amount, decreased by $p(t)-p(s)$
- If we use $p(v)=d(s, v)$, the length of the shortest path from s to v in the original graph, then after modification the weights of the residual graph will be non-negative!

Least cost path pair
 Extending to other types of disjointedness

- Maximally link-disjoint:
- the network topology may not allow totally link-disjoint path pair
- instead of removing the directed edges in $p_{1}{ }^{\prime}$, just set a sufficiently large weight M for them
- Node-disjoint:
- with splitting the nodes on $p_{1}{ }^{\prime}$, it can be reduced back to the edge-disjoint constraint

Least cost path pair Shared Risk Link Group (SRLG)

Link disjoint is not enough

Least cost path pair
 SRLG diverse routing

- Directed weighted graph $G(V, E)$ as before, plus the set of SRLG-s R, each SRLG is a set of two or more network links i.e. two or more pairs of opposite directed edges.
- Find working path p_{1} and protection path p_{2} between source node s and destination node t, such that the two paths have no common edge, there is no SRLG in R which contains edge from both paths, and the total edge cost $C\left(p_{1}, p_{2}\right)=\sum_{(i, j) \in p_{1}} C(i, j)+$ $\sum_{(i, j) \in p_{2}} C(i, j)$ is minimal.
- The problem is NP-complete
- IMSH (Iterative Modified Suurballe's Heuristic)*

Least cost path pair IMSH

MSH (Modified Suurballe's Heuristic)

For a seed path p from s to t in G :

- Create residual graph G^{\prime} :
- Exclude the edges of p
- Set the $\mathbf{0}$ weight for the opposite edges along p (negative cost can result in negative cycle when p is not the shortest path)
- Set sufficiently large weight \boldsymbol{M} for all edges in SRLG conflict with p
- Calculate shortest path p^{\prime} in G^{\prime}
- Get (p_{1}, p_{2}) from the non-interlaced edges of $\left(\mathrm{p}, p^{\prime}\right)$
- Check whether $\left(p_{1}, p_{2}\right)$ is SRLG disjoint

Least cost path pair IMSH

Process:

- Generate seed paths of increasing length with Yen's algorithm
- Execute MSH for the next seed path p_{i}
- If the MSH result is SRLG disjoint, then compare it to the current best solution, update if better
- Terminate:
- after max Knumber of seed paths checked, or
- optimality verification criterion satisfied: $\operatorname{Cost}\left(p_{i}\right) \geq C_{\text {curr-opt }} / 2$

> Yen's algorithm: the Swiss Army knife of network planning...

Shared mesh restoration

Shared mesh restoration

Basic idea

Two service demands of size d_{1} and d_{2}.
We want our services to be resilient to single link failures.

If traffic is sent on the alternative path only when the working path fails, then we need only $\max \left(d_{1}, d_{2}\right)$ bandwidth reservation on link $6-5$ and $5-9$, not $d_{2}+d_{2}$, because there is no link failure what effects both working paths.

Trade-off between resource requirement and recovery time: the restoration path need to be activated before traffic can be sent on it.
It is a distributed control procedure between the transport nodes along the restoration path what takes time.

Shared mesh restoration
 Dimensioning problem

Given:

- undirected weighted link topology, linear link cost model:
- link weight $c(l), l=1 \ldots$... gives the cost of using the link for 1 unit of bandwidth
- set of demands: $\{(s(r), t(r), m(r))\}, r=1 \ldots R$
- failure scenarios to protect against, indexed with $k=1 \ldots K$ ($K=L$ in case of all single link failures)
- protect the demands with shared restoration

Find:

The p_{r} and q_{r} working and restoration paths for each demand r

Such that:

The total link cost, $\quad \sum_{l=1}^{L}\left(\sum_{r \mid \operatorname{link}(l) \in p_{r}} m_{r}+s_{l}\right) c(l)$ is minimal, where s_{l} denotes the minimum spare capacity required on the link.

Shared mesh restoration Dimensioning problem

- If the demands were $1+1$ protected, then the problem is easy - single-demand minimal cost path-pairs will be optimal
- In case of shared mesh restoration the problem is NP-complete (multi-commodity flow problem)
- Successive Survivable Routing * heuristic (SSR)
- SSR requires that the working paths already specified - use working path from the single-demand minimal cost disjoint path-pair
*Yu Liu, David Tipper, Peerapon Siripongwutikorn, Approximating optimal spare capacity allocation by successive survivable routing, IEEE/ACM Transactions on Networking, Vol. 13, No. 1, February 2005

Shared mesh restoration

SSR

- Spare provision matrix $G=\left\{g_{l k}\right\}, L \times K$, minimum spare capacity needed on link l in case of failure k
- $Q^{T}=\left\{q_{l r}^{T}\right\}, L \times R$ transpose of the restoration path link incidence matrix, column r describes the restoration path of demand r
- $U=\left\{u_{r k}\right\}, R \times K$, demand failure incidence matrix, 1 if failure k breaks the working path of demand r (or more generally: causes the activation of the restoration path maximally disjoint cases...)
- $M=\operatorname{Diag}\left(\left\{m_{r}\right\}\right)$

$$
G=Q^{T} M U \quad \square \quad \max (G)
$$

The column vector of row maximums, the min. spare capacity per link.
We are improving this sequentially demand by Fixed demand

Shared mesh restoration
 SSR: per-demand restoration path improvement step

- G^{-r}, G matrix as if demand r wouldn't have restoration path
- $G^{r *}$, the G matrix if we included all 'non-tabu' edges in q_{r} (it is not really a path). Tabu edges are in disjointedness conflict with w_{r}
- The key step: calculate link weight vector $v_{r}=\max \left(G^{r *}\right)-\max \left(G^{-r}\right)$ and...

"What would be the minimum spare capacity increment on link l, if it would be part of q_{r} ?"
... find $q_{r}^{\text {new }}$ as shortest path with these weights.
- Accept new path if it is improving: $q_{r}=q_{r}^{\text {new }}$, when $v_{r}^{T} q_{r}>v_{r}^{T} q_{r}^{\text {new }}$

Shared mesh restoration
 Using SSR per-demand restoration path improvement for dimensioning

- Start with empty Q
- repeat N times:

1) Draw random order of the R demands
2) Run restoration path improvement for each demand in this order
3) break if there was no improvement for any of the demands

Repeat the whole process M times with different random seed

Haven't talked about ...

- ILP
- Bin packing: real link capacity is modular
- Closely related: optimal equipment configuration
- Multi-layer
- Dual-homing, multi-domain
- Local protection
- Etc ...

Summary

- Just a glimpse to some selected problems, hopefully interesting ones...
- Refer to Pióro's book*
- Real-life requirements \rightarrow complex constrains \rightarrow heuristics instead of exact methods
- Running time is also important due to human planner involvement - every algorithm is just a tool...

