
ADDENDUM TO THE PAPER ”HYPERBOLIC PLANE-GEOMETRY REVISITED”

ÁKOS G.HORVÁTH

Abstract. In the paper ”Hyperbolic plane-geometry revisited” [8] we stated several formulas without

proof. The purpose of this note is to give electronic source for the omitting proof.

1. Introduction

1.1. Well-known formulas on hyperbolic trigonometry. In this paper, we use the following nota-
tions. The points A,B,C denote the vertices of a triangle. The lengths of the edges opposite to these
vertices are a, b, c, respectively. The angles at A,B,C are denoted by α, β, γ, respectively. If the triangle
has a right angle, it is always at C. The symbol δ denotes half of the area of the triangle; more precisely,
we have 2δ = π − (α+ β + γ).

• Connections between the trigonometric and hyperbolic trigonometric functions:

sinh a =
1

i
sin(ia), cosh a = cos(ia), tanh a =

1

i
tan(ia)

• Law of sines:

(1) sinh a : sinh b : sinh c = sinα : sinβ : sin γ

• Law of cosines:

(2) cosh c = cosh a cosh b− sinh a sinh b cos γ

• Law of cosines on the angles:

(3) cos γ = − cosα cosβ + sinα sinβ cosh c

• The area of the triangle:

(4) T := 2δ = π − (α+ β + γ) or tan
T

2
=
(
tanh

a1
2

+ tanh
a1
2

)
tanh

ma

2

where ma is the height of the triangle corresponding to A and a1, a2 are the signed lengths of the
segments into which the foot point of the height divide the side BC.

• Heron’s formula:

(5) tan
T

4
=

√
tanh

s

2
tanh

s− a

2
tanh

s− b

2
tanh

s− c

2

• Formulas on Lambert’s quadrangle: The vertices of the quadrangle are A,B,C,D and the
lengths of the edges are AB = a,BC = b, CD = c and DA = d, respectively. The only angle
which is not right-angle is BCD] = φ. Then, for the sides, we have:

tanh b = tanh d cosh a, tanh c = tanh a cosh d,

and

sinh b = sinh d cosh c, sinh c = sinh a cosh b,

moreover, for the angles, we have:

cosφ = tanh b tanh c = sinh a sinh d sinφ =
cosh d

cosh b
=

cosh a

cosh c
,

and

tanφ =
1

tanh a sinh b
=

1

tanh d sinh c
.
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2. The distance of the points and on the lengths of the segments

2.1. The extracted hyperbolic theorem of sines.

Statement 1 (Statement 2.1. in [8]). Denote by a, b, c, d, e the edge lengths of the successive sides of a
pentagon with five right angles on the hyperbolic plane. Then we have the following formulas:

cosh d = sinh a sinh b sinh c =
cosh a√

sinh2 a sinh2 b− 1
sinh e =

cosh b√
sinh2 a sinh2 b− 1

.
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Figure 1. Hyperbolic theorem of sines with non-real vertices

We prove the statement using Weierstrass homogeneous coordinates of the hyperbolic plane. Before
the proof we recall the formula of (usual) distance of points with respect to such homogeneous coor-
dinates. Consider the hyperboloid model of the hyperbolic plane H embedded into a 3-dimensional
pseudo-Euclidean space with indefinite inner product with signature (−,−,+). The points of the plane
can be considered as the unit sphere of this space containing those elements which scalar square is equal
to 1 and last coordinates are positives, respectively. It can be seen that the distance between two points
X = (x, y, z)T and X ′ = (x′, y′, z′)T holds the following formula:

cosh |XX ′| = −xx′ − yy′ + zz′.

Consider now the projection of H into the plane z = 1 from the origin. Then we get a projective
(Cayley-Klein) model of H with the usual metric.

Proof. Assume that a pentagon 12345 with five right angles lies in this model as in Fig. 1 (bottom)
the vertex 1 is the origin and the edges 12 and 51 lies on the first two axes of the coordinate system.
Now we have to determine the length of the edge 34 using as parameter the respective lengths a and
b of the edges 12 and 51. To this we can determine the coordinates of the points III, IV of H which
mapped into the points 3,4, respectively. Consider the point X and its image 3. We have to determine
first the Euclidean distance ρ := |03| and the angle φ := (2O3)] and then the coordinates of X are
sinh ρ cosϕ, sinh ρ sinφ, cosh ρ, respectively. If the hyperbolic length of 12 and 51 are a and b, respectively,
then their Euclidean distances are tanh a and tanh b, respectively. Obvious that the line 34 intersects
the axes in such points 6 and 7, whose distances from the origin are 1/ tanh a and 1/ tanh b, respectively.
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From this we get that

cosh ρ =
cosh2 a tanh b√

cosh2 a tanh2 b− 1
sinh ρ =

√
sinh2 a cosh2 a tanh2 b+ 1√

cosh2 a tanh2 b− 1

and

cosφ =

√
sinh2 a cosh2 a tanh2 b√

sinh2 a cosh2 a tanh2 b+ 1
sinφ =

1√
sinh2 a cosh2 a tanh2 b+ 1

.

From these quantities we get

x =
sinh a cosh a tanh b√
cosh2 a tanh2 b− 1

, y =
1√

cosh2 a tanh2 b− 1
, z =

cosh2 a tanh b√
cosh2 a tanh2 b− 1

,

and similarly for the pre-image X ′ of the point 4 we get

x′ =
1√

cosh2 b tanh2 a− 1
y′ =

sinh b cosh b tanh a√
cosh2 b tanh2 a− 1

z′ =
cosh2 b tanh a√

cosh2 b tanh2 a− 1
.

Finally the inner product of these vectors gives the first required formula

cosh d = cosh |XX ′| = sinh a sinh b.

The other two formulas of the statement are simple consequences of this first one. 2

3. Power, inversion and centres of similitude

Lemma 1 (Lemma 3.1. in [8]). The product tanh(PA)/2 · tanh(PB)/2 is constant if P is a fixed (but
arbitrary) point (real, at infinity or ideal), P,A,B are collinear and A,B are on a cycle of the hyperbolic
plane (meaning that in the fixed projective model of the real projective plane it has a proper part).

Proof. To prove this we have to consider three cases with respect to the type of the cycle with the
necessary subcases with respect to the possible types of the points P,A,B.

(A): In the case of a circle we have more cases.
• P is a real point A,B are real points. In this case the center O of the circle is real and we
can consider the real line through O and perpendicular to the line AB. The intersection of
these lines is the real point C. Consider the triangles ACO and PCO, respectively. These
have a common side OC and a respective right angle at C. For the pair of points choose such
segments from the pair of possible segments, that the relation AB = AC ∪CB be valid (see
Fig. 2). From the Pythagorean Theorem we have coshAC/ coshCP = coshOA/ coshPO.

O

A BPC A B

C P

O

D

E F

G

Figure 2. Power of a point into a cycle

Hence

tanh
AP

2
tanh

BP

2
= tanh

AC + CP

2
tanh

BC − PC

2
= tanh

AC + CP

2
tanh

(AC − CP )

2
=

=
sinh AC+CP

2

cosh AC+CP
2

sinh AC−CP
2

cosh AC−CP
2

=
coshAC − coshCP

coshAC + coshCP
=

coshOA− coshPO

coshOA+ coshPO
=

= tanh
OA+ PO

2
tanh

OA− PO

2
= constant = c.
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We note that the absolute value of c is less or equal to 1 and the sign of c depends only
on the fact that P is a point in the interior or a point of the exterior of the given circle.
Additionally it is equal to zero if and only if either P = A or P = B, holds.

• P is an infinite point A,B are real points. According to our agreements on the length of a
segment and using of the symbols ±∞ the required product is either 1 or −1.

• Finally if P is an ideal point and A,B are real points, then using the enumeration above
originating from the extracted Pythagorean Theorem we get that

c = tanh
OA+ PO

2
tanh

OA− PO

2
= tanh

OA+ d+ (π/2)i

2
tanh

OA− d− (π/2)i

2
=

=
coshOA− cosh(d+ (π/2)i)

coshOA+ cosh(d+ (π/2)i)
=

coshOA+ sinh d

coshOA− sinh d
,

showing that the absolute value of c is greater than 1, and the sign of c depends on the ratio
of the radius of the circle and the distance d (between the polar of P and the center of the
circle).

(B): In the case of paracycle the point O is at infinite. In Fig.6 we can see that if P is real then
there is an unique paracycle through P with the same pencil of parallel lines. Now if C ̸= P we
have the following calculation:

tanh
AP

2
tanh

BP

2
= tanh

AC + CP

2
tanh

BC − PC

2
= tanh

AC + CP

2
tanh

(AC − CP )

2
=

=
sinh AC+CP

2

cosh AC+CP
2

sinh AC−CP
2

cosh AC−CP
2

=
coshAC − coshCP

coshAC + coshCP
=

coshAC
coshCP − 1
coshAC
coshCP + 1

.

But using the equality on the diameter and height of a segment of a paracycle (see also eg. [7])
we get

coshAC

coshCP
=

eCF

eCD
= eCF−CD = ePG = coshEP

showing that it is independent from the position of the secant AB. For C = P this value is ±1
and it is the result in that case, too, if P is at infinity. The absolute value of c is less then 1 for
real P and greater than 1 for ideal P .

(C): In the case of hypercycle we have again more cases. First we assume that A,B and P are
real points, respectively. O is an ideal point and C is the halving point of the segment AB
(AB = AC ∪ CB = AP ∪ PB as on Fig. 3). Let FG be the basic line of the hypercycle with

b d
b
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F G H

Q

R

Figure 3. Power of a point into a hypercycle

distance b. Then all of the radiuses are orthogonal to FG. The minimal distance of a point of
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the segment AB from the line FG attained at the radius through E (and C). As in the case of
paracycles we get that

tanh
AP

2
tanh

BP

2
=

coshAC
coshCP − 1
coshAC
coshCP + 1

,

and from the quadrangle AFGC with three right-angle we get that

coshAC

coshCP
=

sinhAF

sinhGC
:
sinhPR

sinhGC
=

sinh b

sinh d
,

where d is the distance of the point P from the basic line of the hypercycle. Thus the latter term
is independent from the choice of the points A,B on the hypercycle implying that the examined
value has the same property. Denote by c this constant. Of course b ≷ d implies that c ≷ 0 and
the absolute value of c is less than 1. If A,B are real points and P at infinity then c = ±1. The
result in the case when A,B, P are distinct, non-ideal points and at least one among is at infinity
can be gotten analogousy.

Finally, we have to consider all cases when at least one point is ideal (and by our assumption
at least one from A and B is real). Of course, from the definitions of the length of a general
segment we can use complex numbers as in (A) to prove our statement. For instance, assume
that P and O are ideal points such that the line PO is also ideal and A, B are a real points (see
Fig. 4). The examined expression is

c = tanh
AP

2
tanh

BP

2
=

coshAC − coshCP

coshAC + coshCP
=

sinhAF − sinhPR

sinhAF + sinhPR
=

sinh b− sinh iφ

sinh b+ sinh iφ
=

=
i sinh b+ sinφ

i sinh b− sinφ
.

where φ is the angle of the respective polars of P and R. This proves the statement, again. The

P
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O

p

R

b
S

FG

Figure 4. Power with ideal point P .

remaining cases can be proved analogously and we omit their proofs.

2

Lemma 2 (Lemma 3.4. in [8]). Two points S, S′ which divide the segments OO′ and O′O, joining the
centers of the two cycles in the hyperbolic ratio of the hyperbolic sines of the radii r, r′ are the centers of
similitude of the cycles. By formula, if

sinhOS : sinhSO′ = sinhO′S′ : sinhS′O = sinh r : sinh r′

then the points S, S′ are the centers of similitude of the given cycles.

Proof. Consider a line through the point S which intersects the cycles in M and M ′. Consider also
the triangles OMS and O′M ′S, respectively. Since OSM] = O′SM ′] from our assumption (using the
general hyperbolic theorem of sines) follows the other equality OMS] = O′M ′S]. This implies that a
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tangent from S to one of the cycles is also a tangent to the other one. This means that S (and analogously
S′) is a center of similitude of the cycles. 2

We also have the following

Lemma 3 (Lemma 3.5. in [8]). If the secant through a centre of similitude S meets the cycles in the
corresponding points M,M ′ then tanh 1

2SM and tanh 1
2SM

′ are in a given ratio.

Proof. First we have to prove the hyperbolic analogy of the formula known as “Napier’s analogy” (see in
[4]) in spherical trigonometry. Consider the identity

tanh
a+ b

2
coth

c

2
=

tanh a
2 coth

c
2 + tanh b

2 coth
c
2

1 + tanh a
2 tanh

b
2

and substitute to this equality the equalities

tanh
a

2
coth

c

2
=

sin(α+ δ)

sin(γ + δ)
tanh

b

2
coth

c

2
=

sin(β + δ)

sin(γ + δ)
,

where 2δ is the defect of the triangle defined by 2δ = π− (α+β+ γ). (This equality can be shown in the
following way. Add to the hyperbolic theorem of cosine for angle cosα = − cosβ cos γ + sinβ sin γ cosh a
the identity cos(β + γ) = cosβ cos γ − sinβ sin γ and use the formulas on the half of a distance then we

get sinh a
2 =

√
(sin δ sin(α+ δ))/(sinβ sinC). Similarly, we get that

cosh
a

2
=
√
(sin(β + δ) sin(γ + δ))/(sinβ sin γ)

and the required equality follows.) Then we get

tanh
a+ b

2
coth

c

2
=

sin(α+ δ) + sin(β + δ)

sin(γ + δ) + sin δ
=

cos α−β
2

cos α+β
2

,

or equivalently

tanh
a+ b

2
=

cos α−β
2

cos α+β
2

tanh
c

2
.

Using this formula we have that

tanh
1

2
SM : tanh

1

2
SM ′ = tanh

1

2
(SO + r) : tanh

1

2
(SO′ + r′) = const.

2

Since using the extended concepts two points always determine a line and two lines always determine
a point, all concepts defined on the sphere also can be used on the hyperbolic plane. Thus we use the
concepts of ”axis of similitude”, ”inverse and homothetic pair of points”, ”homothetic to and inverse of
a curve γ with respect to a fixed point S (which ”can be real point, a point at infinity, or an ideal point,
respectively”) as in the case of the sphere. More precisely we have:

Lemma 4 (Lemma 3.6. in [8]). The six centers of similitude of three cycles taken in pairs lie three by
three on four lines, called axes of similitude of the cycles.

Proof. If A,B,C their centers and a, b, c the corresponding radii of the cycles, A′, B′, C ′ the internal
centers of similitude, and A′′, B′′, C ′′ the externals; then we have by definitions (see [16] p.70 or [15])

(ABC ′′) := sinhAC ′′ : sinhC ′′B = sinh a : sinh b,

and similarly

(BCA′′) = sinh b : sinh c, (CAB′′) = sinh c : sinh a.

Hence

(ABC ′′)(BCA′′)(CAB′′) = 1.

Now the convers of the Menelaos-theorem is also valid (see [15] p.169) implying that the points A′′, B′′, C ′′

are collinear. Similarly, it may be shown that any two internal centers and an external center lie on a
line. 2
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4. Applications of the theory

4.0.1. Construction of Gergonne. Gergonne’s construction (see e.g. [5] and see in Fig. 5) solve the
following problem in the Euclidean plane:

Construct a circle touching three given circles of the Euclidean plane.

A nice construction is the following:

• Draw the point P of power of the given circles c1, c2, c3 and an axis of similitude of certain three
centres of similitude.

• Join the poles P1, P2, P3 of this axis of similitude with respect to the circles c1, c2, c3 with the
point P by straight lines. Then the lines PPi cut the circles ci in two points Qi1 and Qi2.

• A suitable choice Q1j(1), Q2j(2), Q3j(3) will give the touching points of some sought circle and
c1, c2, c3. More exactly, there are two such choices Q1j(1), Q2j(2), Q3j(3) and Q1k(1), Q2k(2), Q3k(3),
satisfying j(i) ̸= k(i) for 1 ≤ i ≤ 3, where |PPij(i)| ≤ |PPik(i)|.

By the results of the preceding section we can say this construction on the hyperbolic plane too. We
note that in the paper [6] this construction was proved by the conformal model. In this section we can
give a proof without using any models.

s

P

c

1

1

1

1c

2

c3

c
,

c
,,

P

Q

Q
k(1)

Q
1j(1)

S12

S23
S13

P
2

P
3

Figure 5. The construction of Gergonne

In Fig.5 the axis of similitude contains the three outer centers of similitude, in which case, choosing for
Qij(i) the intersection points closer to P , we obtain the common outward touching cycle, and for choosing
the farther intersection points to P we obtain the common touching cycle that contains c1, c2, c3. We
denoted these circles in Fig.9 by c′ and c′′, respectively.

Choosing, e.g., for c1, c3 and c2, c3 the inner centers of similitude, and then for c1, c2 the outer center
of similitude, we obtain another axis of similitude (by permuting the indices we obtain still two more
similar cases). Then defining the points Pi and Pij(i) analogously like above, if PQ1j(1) ≤ PQ1k(1),
PQ2j(2) ≤ PQ2k(2), and PQ3j(3) ≥ PQ3k(3), then the circle Q1j(1)Q2j(2)Q3j(3) touches c1, c2, c3, contains
c3 and touches c1, c2 externally, while the circle Q1k(1)Q2k(2)Q3k(3) touches c1, c2, c3, contains c1, c2, and
touches c3 externally.

Summing up: there are eight cycles touching each of c1, c2, c3.

An Euclidean proof of the pertinence of this construction on circles can be rewritten also by hyperbolic
terminology.
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Gergonne’s construction. Consider the cycles c′ and c′′ touching c1, c2 and c3, in any of the four above
described cases; in Fig. 5 c′ touches each of c1, c2, c3 externally, and c′′ touches each of c1, c2, c3 internally.
Then the line joining the touching points Qij(i) and Qik(i) passes through one of the centers of similitude
P of c′ and c′′. Thus P is the point of power of c1, c2 and c3. On the other hand, two of the three given
cycles (say c1 and c2) give a touching pair with respect to c′ and c′′, hence its outer center of similitude
S12 has the same power with respect to c′ and c′′. So the three outer centers of similitude S12, S13 and
S23 are on the axis of power of c′ and c′′. (It is also (by definition) an axis of similitude with respect
to c1, c2 and c3, say s. For c′, c′′ being another pair of touching circles, in the other three cases, the
respective changes have to be made in the choice.) Since the pole Qi (with respect to the cycle ci) of the
line joining Qij(i) and Qik(i) is the intersection point of the common tangents of c′ and ci at Qij(i), and
c′′ and ci at Qik(i), respectively, it is also on s. By the theorem of pole-polar we get that the pole Pi of
s with respect to ci lies on the line Qij(i)Qik(i). This proves the construction. 2

4.1. Applications for triangle centers.

4.1.1. Staudtian and angular Staudtian of a hyperbolic triangle: Let

n = n(ABC) :=
√

sinh s sinh(s− a) sinh(s− b) sinh(s− c),

then we have

(6) sin
α

2
sin

β

2
sin

γ

2
=

n2

sinh s sinh a sinh b sinh c
.

The proof of this equality is the following. From (2) we get

cosh c = cosh a cosh b− sinh a sinh b cos γ = cosh(a− b) + sinh a sinh b(1− cos γ),

implying first that

sin2
γ

2
=

1− cos γ

2
=

− cosh(a− b) + cosh c

2 sinh a sinh b
=

sinh a−b+c
2 sinh −a+b+c

2

sinh a sinh b
=

=
sinh(s− a) sinh(s− b)

sinh a sinh b
,

and the statement follows immediately. Similarly we also have that

cosh c = cosh a cosh b− sinh a sinh b cos γ = cosh(a− b)− sinh a sinh b(1 + cos γ),

implying that

cos2
γ

2
=

1 + cos γ

2
=

1

2

cosh(a+ b)− cosh c

sinh a sinh b
=

sinh s sinh(s− c)

sinh a sinh b
.

N = N(ABC) :=
√
sin δ sin(δ + α) sin(δ + β) sin(δ + γ).

On the angular Staudtian we have analogous formulas as on the Staudtian. Use now the law of cosines
on the angles. Then we have

cos γ = − cosα cosβ + sinα sinβ cosh c

and adding to this equation the addition formula of the cosine function we get that

sinα sinβ(cosh c− 1) = cos γ + cos(α+ β) = 2 cos
α+ β + γ

2
cos

α+ β − γ

2
.

From this we get that

(7) sinh
c

2
=

√
sin δ sin (δ + γ)

sinα sinβ
.

Analogously we get that

sinα sinβ(cosh c+ 1) = cos γ + cos(α− β) = 2 cos
α− β + γ

2
cos

−α+ β + γ

2
,

implying that

(8) cosh
c

2
=

√
sin (δ + β) sin (δ + α)

sinα sinβ
.
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From these we get

(9) cosh
a

2
cosh

b

2
cosh

c

2
=

N2

sinα sinβ sin γ sin δ
.

Finally we also have that

(10) sinh a =
2N

sinβ sin γ
, sinh b =

2N

sinα sin γ
, sinh c =

2N

sinα sinβ
,

and from the first equality of (13) we get that

(11) N =
1

2
sinh a sinβ sin γ =

1

2
sinhhC sin γ,

where hC is the height of the triangle corresponding to the vertex C. The connection between the two
Staudtians gives by the formula

(12) 2n2 = N sinh a sinh b sinh c.

In fact, from (7) and (13) we get that

sinα sinh a =
4nN

sinβ sin γ sinh b sinh c

implying that

sinα sinβ sin γ sinh a sinh b sinh c = 4nN.

On the other hand from (7) we get immediately that

sinα sinβ sin γ =
8n3

sinh2 a sinh2 b sinh2 c

and thus

2n2 = sinh a sinh b sinh cN,

as we stated. The connection between the two types of the Staudtian can be understood if we dived to
the first equality of (7) by the analogous one in (19). Then we have

sinα

sinh a
=

n

N

sinβ

sinh b

sin γ

sinh c

which using the hyperbolic theorem of sines leads to the equality

(13)
N

n
=

sinα

sinh a
.

4.1.2. On the centroid (or median point) of a triangle.

Theorem 1 (Theorem 4.3. in [8]). We have the following formulas connected with the centroid:

• Property of equal Staudtians.

(14) nA(M) = nB(M) = nC(M)

• The ratio of section (AMAM) depends on the vertex.

(15)
sinhAM

sinhMMA
= 2 cosh

a

2
,

sinhBM

sinhMMB
= 2 cosh

b

2
,

sinhCM

sinhMMC
= 2 cosh

c

2

• The ratio of section (AMMA) is independent from the vertex.

(16)
sinhAMA

sinhMMA
=

sinhBMB

sinhMMB
=

sinhCMC

sinhMMC
=

n

nA(M)
.

• The “center of gravity” property of M . If y is any line of the plane then we have

(17) sinh d′M =
sinh d′A + sinh d′B + sinh d′C√

1 + 2(1 + cosh a+ cosh b+ cosh c)
.

where d′A, d
′
B, d

′
C , d

′
M mean the signed distances of the points A,B,C,M to the line y, respec-

tively.
• The “minimality” property of M . If Y is any point of the plane then we have

(18) coshYM =
coshY A+ coshY B + coshY C

n
nA(M)

=
coshY A+ coshY B + coshY C√
1 + 2(1 + cosh a+ cosh b+ cosh c)

.
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Proof. The property (17) is a simple consequence of (9). Thus the centroid is the unit point with respect
to the triangular coordinate system. Let the feet of the perpendiculars from M and the altitudes are
XA, XB , XC , and HA,HB , HC , respectively. (19) follows from (17) since

sinhAMA

sinhMMA
=

sinhAHA

sinhMXA
=

n

nA(M)
=

n

nB(M)
=

sinhBMB

sinhMMB
.

From (1) we get
sinhMMA

sinhMC
=

sinMACM]
sinCMAA]

and
sinhAM

sinhMC
=

sinACM]
sinCAMA]

implying
sinhAM

sinhMMA
=

sinACM] sinCMAA]
sinMACM] sinCAMA]

=
sinACM]
sinMACM]

sinh b

sinh a
2

.

On the other hand the equalities

sinACM]
sinCMCA]

=
sinh c

2

sinh b
and

sinBCM]
sinBMCA]

=
sinh c

2

sinh a

imply the equalities
sinACM]
sinMACM] =

sinACM]
sinBCM] =

sinh a

sinh b
.

Hence we get
sinhAM

sinhMMA
=

sinh a

sinh b

sinh b

sinh a
2

= 2 cosh
a

2

proving (18). To prove (21), observe that in the triangle ABC holds the equality

(19) cosh a+ cosh b = 2 cosh
c

2
coshCMC .

In fact, the law of cosines (2) with respect to the triangles ACMC and BCMC gives the equalities

cosh a = cosh
c

2
coshMMC − sinh

c

2
sinhMMC cosCMCB]

and

cosh b = cosh
c

2
coshMMC − sinh

c

2
sinhMMC cosCMCA] =

= cosh
c

2
coshMMC + sinh

c

2
sinhMMC cosCMCB].

Adding these equalities we give the required one. Hence we have

coshY A+ coshY B = 2 cosh
c

2
coshYMC .

Consider now the triangles Y CM and YMCM , respectively. Using the law of cosines as in the previous
formula we have that

coshY C = coshMY coshMC − sinhMY sinhMC cosYMC]
and

coshYMC = coshMY coshMCM + sinhMY sinhMCM cosYMC].
From these equations we get

sinhMCM coshY C + sinhMC coshYMC =

= coshYM(coshMC sinhMCM + coshMCM sinhMC) = coshYM sinhMCC.

Now

coshY A+ coshY B = 2 cosh
c

2

(
coshYM sinhMCC

sinhMC
− sinhMCM coshY C

sinhMC

)
=

=
sinhMC

sinhMCM

(
coshYM sinhMCC

sinhMC
− sinhMCM coshY C

sinhMC

)
= coshYM

sinhMCC

sinhMCM
− coshY C,

proves the first equality of (21). The second equality in (21) can be gotten from the equations

sinhCMC

sinhMMC
=

n

nA(M)
,

sinh(CMC −MMC)

sinhMMC
= 2 cosh

c

2
, cosh a+ cosh b = 2 cosh

c

2
coshCMC ,

eliminating CMC and MMC between these equations. We leave the calculation to the reader.

Finally, consider the minimality property (21) in the case when Y is an ideal point and A,B,C are real
ones, respectively. Now M is also a real point and we have to consider the polar of Y which is a real line
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y. Denote by the real (and positive) geometric distances of the points A,B,C,M to y is dA, dB , dC , dM ,
respectively. (21) says that

cosh
(
dM + εM i

π

2

)
=

cosh
(
dA + εAi

π
2

)
+ cosh

(
dB + εBi

π
2

)
+ cosh

(
dC + εCi

π
2

)√
1 + 2(1 + cosh a+ cosh b+ cosh c)

,

where εM is a sign depending on the positions of Y , M and YM := y ∩ YM on its line YM . It is + if
the segment MYM ⊂ MY and − if this relation does not hold. (Similar definition are valid for εA, εB
and εC , respectively.) It is clear that these signs give the same value if the corresponding points lie on
the same half-plane of the line y. Thus if we fixed the sign of one of the points (which distinct to zero)
then the other signs have to be determined uniquely, too. Hence we have the equality

εM sinh dM =
εA sinh dA + εB sinh dB + εC sinh dC√

1 + 2(1 + cosh a+ cosh b+ cosh c)

or equivalently

sinh d′M =
sinh d′A + sinh d′B + sinh d′C√

1 + 2(1 + cosh a+ cosh b+ cosh c)

as we stated in (20). 2

4.1.3. On the center of the circumscribed cycle.

Theorem 2 (Theorem 4.6. in [8]). The following formulas are valid on the circumradiuses R, RA, RB

and RC , respectively.

• Formulas by the angular Staudtian of the triangle are:

(20) tanhR =
sin δ

N
, tanhRA =

sin(δ + α)

N
, tanhRB =

sin(δ + β)

N
, tanhRC =

sin(δ + γ)

N

• Formulas by the lengths of the edges are:

tanhR = tanh
a

2
tanh

b

2
tanh

c

2
cos

α+ β + γ

2
=

2 sinh a
2 sinh

b
2 sinh

c
2

n
(21)

tanhRA = tanh
a

2
coth

b

2
coth

c

2
cos

−α+ β + γ

2
=

2 sinh a
2 cosh

b
2 cosh

c
2

n

tanhRB = coth
a

2
tanh

b

2
coth

c

2
cos

α− β + γ

2
=

2 cosh a
2 sinh

b
2 cosh

c
2

n

tanhRC = coth
a

2
coth

b

2
tanh

c

2
cos

α+ β − γ

2
=

2 cosh a
2 cosh

b
2 sinh

c
2

n

• The ratio of the triangular coordinates of the circumcenter O is:

(22) nA(0) : nB(O) : nC(O) = cos(δ + α) sinh a : cos(δ + β) sinh b : cos(δ + γ) sinh c

Proof. Assume that the radius CO divides the angle γ at C into the angles γ1 and γ2, respectively (see
Fig. 6). Then we have OCA] = OAC] = γ1, OCB] = OBC] = γ2, hence OAB] = α − γ1 and
OBA] = β − γ2. Since OAB] = OBA] we get that OAB] = 1

2 (α+ β − γ) = π/2− (δ + γ).

A B

C

O

M
C

g
1

g
2

Figure 6. The circumcenter.
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From this we get

tanh
c

2
= tanhR cos(π/2− (δ + γ)) = tanhR sin(δ + γ).

From (10) and (11) we get

tanh
c

2
=

√
sin δ sin(δ + γ)

sin(δ + β) sin(δ + α)

implying

tanhR =

√
sin δ

sin(δ + α) sin(δ + β) sin(δ + γ)
.

From this the first equality in (23) immediately follows. Substituting α′ = α, β′ = −β + π, γ′ = −γ + π
into the first equation of (23) and using that δ′ = (π−(α−β−γ+2π))/2 = (−α+β+γ−π)/2 = −(δ+α)
we get the formula of (23) on RA:

tanhRA =

√
− sin(δ + α)

sin(−δ) sin(π − δ − β − α) sin(π − δ − γ − α)
=

√
sin(δ + α)

sin δ sin(δ + γ) sin(δ + β)
=

sin(δ + α)

N
.

Analogously as of (16) or (17) we have the formulas

sinh
a

2
=

√
sin δ sin (δ + α)

sin γ sinβ
and sinh

b

2
=

√
sin δ sin (δ + β)

sinα sin γ
,

and

cosh
a

2
=

√
sin (δ + β) sin (δ + γ)

sin γ sinβ
and cosh

b

2
=

√
sin (δ + γ) sin (δ + α)

sinα sin γ
.

Thus we have

sinh a
2

cosh b
2 cosh

c
2

=

√
sin2 α sin δ

sin(δ + γ) sin(δ + α) sin(δ + β)
= sinα tanhR

giving the formula

(23) tanhR =
sinh a

2

sinα cosh b
2 cosh

c
2

.

Similarly we get

sinh
a

2
sinh

b

2
sinh

c

2
=

√
sin3 δ sin(δ + α) sin(δ + β) sin(δ + γ)

sin2 α sin2 β sin2 γ
=

sin2 δ cothR

sinα sinβ sin γ
,

and with the same manner we have

cosh
a

2
cosh

b

2
cosh

c

2
=

√
sin2(δ + α) sin2(δ + β) sin2(δ + γ)

sin2 α sin2 β sin2 γ
=

sin δ coth2 R

sinα sinβ sin γ
.

Dividing by the two equalities we get the first equality of the first row in (24):

tanhR = tanh
a

2
tanh

b

2
tanh

c

2
sin δ.

Using (7) and (14) we also have that

(24) sinα sinβ sin γ =
8n3

sinh2 a sinh2 b sinh2 c
=

8n3N2

4n4
=

2N2

n

giving immediately the second equality of the first row in (24)

sinh
a

2
sinh

b

2
sinh

c

2
=

sin2 δ cothR

sinα sinβ sin γ
=

n sin2 δ cothR

2N2
=

n tanhR

2
.

Substituting the complementary lengths and (the same) angles (if it is necessary) to these equations we
get the results of the remaining rows in (24).

By (8) we have that

n(AOB) =
1

2
sin

α+ β − γ

2
sinhR sinh c

and

n(BOC) =
1

2
sin

−α+ β + γ

2
sinhR sinh a.
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Hence

nA(0) : nB(O) : nC(O) = sin
−α+ β + γ

2
sinh a : sin

α− β + γ

2
sinh b : sin

α+ β − γ

2
sinh c,

as we stated in (25). 2

4.1.4. On the center of the inscribed and escribed cycles. We are aware that the bisectors of the interior
angles of a hyperbolic triangle are concurrent at a point I, called the incenter, which is equidistant from
the sides of the triangle. The radius of the incircle or inscribed circle, whose center is at the incenter and
touches the sides, shall be designated by r. Similarly the bisector of any interior angle and those of the
exterior angles at the other vertices, are concurrent at point outside the triangle; these three points are
called excenters, and the corresponding tangent cycles excycles or escribed cycles. The excenter lying on
AI is denoted ba IA, and the radius of the escribed cycle with center at IA is rA. We denote by XA, XB ,
XC the points where the interior bisectors meets BC, AC, AB, respectively. Similarly YA, YB and YC

denote the intersection of the exterior bisector at A, B and C with BC, AC and AB, respectively. We

I

ZA

A

AX

A
B

C

I

I
B

C

X
C C C

C C C
ZY V

X

B

B

B B

B

B

Z

V

V ,,

,

V ,

Figure 7. Incircles and excycles.

note that the excenters and the points of intersection of the sides with the bisectors of the corresponding
exterior angle could be points at infinity or also could be ideal points. Let denote the touching points
of the incircle ZA, ZB and ZC on the lines BC, AC and AB, respectively and the touching points
of the excycles with center IA, IB and IC are the triples {VA,A, VB,A, VC,A}, {VA,B , VB,B , VC,B} and
{VA,C , VB,C , VC,C}, respectively (see in Fig. 13).

Theorem 3 (Theorem 4.10. in [8]). On the radiuses r, rA, rB or rC we have the following formulas .

• Formulas by Staudtian are:

(25) tanh r =
n

sinh s
, tanh rA =

n

sinh(s− a)
, tanh rB =

n

sinh(s− b)
, tanh rC =

n

sinh(s− c)

• Formulas by angular Staudtian are

(26) tanh r =
N

2 cos α
2 cos β

2 cos γ
2

,
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coth r =
sin(δ + α) + sin(δ + β) + sin(δ + γ) + sin δ

2N
(27)

coth rA =
− sin(δ + α) + sin(δ + β) + sin(δ + γ)− sin δ

2N
(28)

coth rB =
sin(δ + α)− sin(δ + β) + sin(δ + γ)− sin δ

2N

coth rC =
sin(δ + α) + sin(δ + β)− sin(δ + γ)− sin δ

2N

• Connections among the circumradiuses and inradiuses are:

tanhR+ tanhRA = coth rB + coth rC(29)

tanhRB + tanhRC = coth r + coth rA

tanhR+ coth r =
1

2
(tanhR+ tanhRA + tanhRB + tanhRC)

• Triangular coordinates of the incenter and excenters are:

nA(I) : nB(I) : nC(I) = sinh a : sinh b : sinh c(30)

nA(IA) : nB(IA) : nC(IA) = − sinh a : sinh b : sinh c(31)

nA(IB) : nB(IB) : nC(IB) = sinh a : − sinh b : sinh c

nA(IC) : nB(IC) : nC(IC) = sinh a : sinh b : − sinh c

Proof. The triangular coordinates of I by (8) holds

nA(I) : nB(I) : nC(I) = sinh a : sinh b : sinh c

proving (35). To (36) we observe that the excircle with center IB can be considered as the incircle of
those triangle of the vertex set {A,B,C} which edge-segment AC is equal to that of the corresponding
edge-segment of the triangle ABC while the other two edge-segments are complementary to those of
ABC. (In spherical geometry the above two triangle is called colunar because of their union is a lune.)
We also have that the sign of the measure of the radius in one of the cases is the negative as the sign of
the corresponding case of the incircle because of the side separates the two centers. Thus

nA(IB) : nB(IB) : nC(IC) = sinh(−a+ πi) : − sinh b : sinh(−c+ πi) = sinh a : − sinh b : sinh c,

implying (36).

The equalities in (30) follows from the observation that we have CZA = CZB = s− c, BZA = BZC =
s− b and AZB = AZC = s− a, respectively, and thus

tan
γ

2
=

tanh r

sinh(s− c)
.

In fact, sin γ
2 and cos γ

2 was calculated before (7) and from these quantities we get that

(32) tan
γ

2
=

√
sinh(s− a) sinh(s− b)

sinh s sinh(s− c)

Implying the first equality in (30). The other equalities follow from that the circumscribed triangles of
the excycles have two sides with the property that its measure is the measure of the corresponding side
of ABC subtracting from πi. More precisely the lengths of the sides of the circumscribed triangle of the
excycle corresponding to the excenter IB are a′ = −a + πi, b′ = b, and c′ = −c + πi, respectively. The
corresponding half-perimeter is s′ = (a′ + b′ + c′)/2 = (−a+ b− c)/2 + πi. This implies that

tanh rB =

√
sinh(s′ − a′) sinh(s′ − b′) sinh(s′ − c′)

sinh s′
=

=

√
sinh(s− c) sinh(−s+ πi) sinh(s− a)

sinh(−s+ b+ πi)
=

n

sinh(s− b)
,

as we stated in (30).

Since we proved before (7) that

(33) cos
α

2
=

√
sinh s sinh(s− a)

sinh c sinh b
, cos

β

2
=

√
sinh s sinh(s− b)

sinh a sinh c
, cos

γ

2
=

√
sinh s sinh(s− c)

sinh a sinh b
,
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then we have by (15) and (30) that

cos
α

2
cos

β

2
cos

γ

2
=

√
sinh3 s sinh(s− a) sinh(s− b) sinh(s− c)

sinh2 a sinh2 b sinh2 c
=

=
n sinh s

sinh a sinh b sinh c
=

N sinh a

2n
=

N

2 tanh r
and (31) follows, too.

To prove (32) consider the equalities

sin(δ + α) + sin(δ + β) = cos
−(α− β) + γ

2
+ cos

(α− β) + γ

2
= 2 cos

α− β

2
cos

γ

2
=

= 2 cos
α

2
cos

β

2
cos

γ

2
+ 2 sin

α

2
sin

β

2
cos

γ

2
,

and

sin(δ + γ)− sin δ = cos
(α+ β)− γ

2
− cos

(α+ β) + γ

2
= 2 cos

γ

2
cos

α+ β

2
=

= 2 cos
γ

2
cos

α

2
cos

β

2
− 2 cos

γ

2
sin

α

2
sin

β

2
.

Thus we get the equality

4 cos
α

2
cos

β

2
cos

γ

2
= sin(δ + α) + sin(δ + β) + sin(δ + γ) + sin(δ)

implying (32). The equations in (33) follow from (32) substituting two times (π − ϕ) into ϕ (ϕ = α, β or
ϕ = γ).

Finally, (23), (32) and (33)implies the equalities in (34). 2

The following formulas connect the radiuses of the circles and the lengths of the edges of the triangle.

Theorem 4. Let a, b, c, s, rA, rB, rC , r, R be the values defined for a hyperbolic triangle above. Then we
have the following formulas:

(34) − coth rA − coth rB − coth rC + coth r = 2 tanhR

coth rA coth rB + coth rA coth rC + coth rB coth rC =(35)

=
1

sinh s sinh(s− a)
+

1

sinh s sinh(s− b)
+

1

sinh s sinh(s− c)

tanh rA tanh rB + tanh rA tanh rC + tanh rB tanh rC =(36)

=
1

2
(cosh(a+ b) + cosh(a+ c) + cosh(b+ c)− cosh a− cosh b− cosh c)

coth rA + coth rB + coth rC =(37)

=
1

tanh r
(cosh a+ cosh b+ cosh c− coth s (sinh a+ sinh b+ sinh c))

tanh rA + tanh rB + tanh rC =(38)

=
1

2 tanh r
(cosh a+ cosh b+ cosh c− cosh(b− a)− cosh(c− a)− cosh(c− b))

2(sinh a sinh b+ sinh a sinh c+ sinh b sinh c) =(39)

+ tanh r (tanh rA + tanh rB + tanh rC) + tanh rA tanh rB + tanh rA tanh rC + tanh rB tanh rC

Proof. From (32),(33) and (23) we get that

− coth rA − coth rB − coth rC + coth r = 2
sin δ

N
= 2 tanhR,

as we stated in (39).

To prove (40) consider the equalities in (30) from which

coth rA coth rB + coth rA coth rC + coth rB coth rC =

=
sinh(s− a) sinh(s− b) + sinh(s− a) sinh(s− c) + sinh(s− c) sinh(s− b)

n2
=
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1

sinh s sinh(s− a)
+

1

sinh s sinh(s− b)
+

1

sinh s sinh(s− c)

Similarly we also get (41):

tanh rA tanh rB + tanh rA tanh rC + tanh rB tanh rC = sinh s sinh(s− a) + sinh s sinh(s− b)+

+ sinh s sinh(s− c) =
1

2
(cosh(a+ b) + cosh(a+ c) + cosh(b+ c)− cosh a− cosh b− cosh c) .

Since we have

−2 tanhR+ coth r = coth rA + coth rB + coth rC =
sinh(s− a) + sinh(s− b) + sinh(s− c)

n
=

=
(sinh(s− a) + sinh(s− b) + sinh(s− c))

sinh s tanh r
=

cosh a+ cosh b+ cosh c− coth s (sinh a+ sinh b+ sinh c)

tanh r
(42) is given. Furthermore we also have

tanh rA + tanh rB + tanh rC =

=
n (sinh(s− a) sinh(s− b) + sinh(s− a) sinh(s− c) + sinh(s− b) sinh(s− c))

sinh(s− a) sinh(s− b) sinh(s− c)
=

=
sinh s

n
(sinh(s− a) sinh(s− b) + sinh(s− a) sinh(s− c) + sinh(s− b) sinh(s− c)) =

=
(sinh(s− a) sinh(s− b) + sinh(s− a) sinh(s− c) + sinh(s− b) sinh(s− c))

tanh r
=

=
1

2 tanh r
(cosh a+ cosh b+ cosh c− cosh(b− a)− cosh(c− a)− cosh(c− b))

implying (43). From (41) and (43) we get

tanh r (tanh rA + tanh rB + tanh rC) + tanh rA tanh rB + tanh rA tanh rC + tanh rB tanh rC =

= cosh(a+ b) + cosh(a+ c) + cosh(b+ c)− cosh(b− a)− cosh(c− a)− cosh(c− b) =

= 2(sinh a sinh b+ sinh a sinh c+ sinh b sinh c)

which implies (44). 2

The following theorem gives a connection among the distance of the incenter and circumcenter, the
radiuses r,R and the side-lengths a, b, c .

Theorem 5 (Theorem 4.11. in [8]). Let O and I the center of the circumsrcibed and inscribed circles,
respectively. Then we have

(40) coshOI = 2 cosh
a

2
cosh

b

2
cosh

c

2
cosh r coshR+ cosh

a+ b+ c

2
cosh(R− r).

Proof. Since

cosh(s− a) cosh r = coshAI and IAO] =
α

2
− α+ β − γ

2
=

−β + γ

2
thus from (2) we get that

coshOI = coshAI coshR− sinhAI sinhR cos
−β + γ

2
.

Hence holds the equality

coshOI = cosh(s− a) cosh r coshR− sinh r sinhR
cos −β+γ

2

sin α
2

.

Analogously to the proof of (6) we get that

cos β
2 cos γ

2

sin α
2

=

√√√√ sinh s sinh(s−b)
sinh a sinh c

sinh s sinh(s−c)
sinh a sinh b

sinh(s−b) sinh(s−c)
sinh b sinh c

=
sinh s

sinh a

and also we have

sin β
2 sin γ

2

sin α
2

=

√√√√ sinh(s−a) sinh(s−c)
sinh a sinh c

sinh(s−a) sinh(s−b)
sinh a sinh b

sinh(s−b) sinh(s−c)
sinh b sinh c

=
sinh(s− a)

sinh a
.
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Summing up we get that

coshOI = cosh(s− a) cosh r coshR− sinh r sinhR
sinh s+ sinh(s− a)

sinh a
=

= cosh(s− a) cosh r coshR− 2 sinh r sinhR
sinh b+c

2 cosh a
2

sinh a
=

= cosh
−a+ b+ c

2
cosh r coshR− sinh r sinhR

sinh b+c
2

sinh a
2

,

and also the similar formula

coshOI = cosh
a− b+ c

2
cosh r coshR− sinh r sinhR

sinh a+c
2

sinh b
2

and

coshOI = cosh
a+ b− c

2
cosh r coshR− sinh r sinhR

sinh a+b
2

sinh c
2

.

Adding now the latter three formulas we get that

3 coshOI =

(
cosh

−a+ b+ c

2
+ cosh

a− b+ c

2
+ cosh

a+ b− c

2

)
cosh r coshR−

− sinh r sinhR

(
sinh b+c

2

sinh a
2

+
sinh a+c

2

sinh b
2

+
sinh a+b

2

sinh c
2

)
.

Since

cosh
−a+ b+ c

2
=

(
cosh

b+ c

2
cosh

a

2
− sinh

b+ c

2
sinh

a

2

)
=

= cosh
a

2
cosh

b

2
cosh

c

2
+ cosh

a

2
sinh

b

2
sinh

c

2
− sinh

a

2
sinh

b

2
cosh

c

2
− sinh

a

2
cosh

b

2
sinh

c

2
,

thus

cosh
−a+ b+ c

2
+ cosh

a− b+ c

2
+ cosh

a+ b− c

2
=

= 3 cosh
a

2
cosh

b

2
cosh

c

2
− cosh

a

2
sinh

b

2
sinh

c

2
− sinh

a

2
sinh

b

2
cosh

c

2
− sinh

a

2
cosh

b

2
sinh

c

2
.

We also have that

sinh b+c
2

sinh a
2

+
sinh a+c

2

sinh b
2

+
sinh a+b

2

sinh c
2

=
sinh b+c

2 sinh b
2 sinh

c
2 + sinh a+c

2 sinh a
2 sinh

c
2 + sinh a+b

2 sinh a
2 sinh

b
2

sinh a
2 sinh

b
2 sinh

c
2

and since

sinh
b+ c

2
sinh

b

2
sinh

c

2
= sinh

(
s− a

2

)
sinh

b

2
sinh

c

2
=

= sinh s cosh
a

2
sinh

b

2
sinh

c

2
− cosh s sinh

a

2
sinh

b

2
sinh

c

2
we get that

sinh b+c
2 sinh b

2 sinh
c
2 + sinh a+c

2 sinh a
2 sinh

c
2 + sinh a+b

2 sinh a
2 sinh

b
2

sinh a
2 sinh

b
2 sinh

c
2

=

=

(
sinh s cosh

a

2
sinh

b

2
sinh

c

2
+ sinh s sinh

a

2
cosh

b

2
sinh

c

2
+ sinh s sinh

a

2
sinh

b

2
cosh

c

2
−

−3 cosh s sinh
a

2
sinh

b

2
sinh

c

2

)
1

sinh a
2 sinh

b
2 sinh

c
2

.

Using (46) we get that
sinh b+c

2

sinh a
2

+
sinh a+c

2

sinh b
2

+
sinh a+b

2

sinh c
2

=

=
2
(
cosh a

2 sinh
b
2 sinh

c
2 + sinh a

2 cosh
b
2 sinh

c
2 + sinh a

2 sinh
b
2 cosh

c
2

)
tanh r tanhR

− 3 cosh s.

Thus we have

3 coshOI = 3

(
cosh

a

2
cosh

b

2
cosh

c

2
− cosh

a

2
sinh

b

2
sinh

c

2
−

− sinh
a

2
sinh

b

2
cosh

c

2
− sinh

a

2
cosh

b

2
sinh

c

2

)
cosh r coshR+ 3 cosh s sinh r sinhR
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implying that

coshOI =

(
2 cosh

a

2
cosh

b

2
cosh

c

2
− cosh s

)
cosh r coshR+ cosh s sinh r sinhR =

= 2 cosh
a

2
cosh

b

2
cosh

c

2
cosh r coshR+ cosh s cosh(R− r) =

= 2 cosh
a

2
cosh

b

2
cosh

c

2
cosh r coshR+ cosh

a+ b+ c

2
cosh(R− r),

as we stated in (45). 2

Remark. The second order approximation of (45) leads to the equality

1+
OI2

2
= 2

(
1 +

r2

2

)(
1 +

R2

2

)(
1 +

a2

8

)(
1 +

b2

8

)(
1 +

c2

8

)
−
(
1 +

(a+ b+ c)2

8

)(
1 +

(R− r)2

2

)
.

From this we get that

OI2 = R2 + r2 +
a2 + b2 + c2

4
− ab+ bc+ ca

2
+ 2Rr.

But for Euclidean triangles we have (see [1])

a2 + b2 + c2 = 2s2 − 2(4R+ r)r and ab+ bc+ ca = s2 + (4R+ r)r,

the equality above leads to the Euler’s formula:

OI2 = R2 − 2rR.
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