ADDENDUM TO THE PAPER "HYPERBOLIC PLANE-GEOMETRY REVISITED”
AKOS G.HORVATH

ABSTRACT. In the paper ”Hyperbolic plane-geometry revisited” [8] we stated several formulas without
proof. The purpose of this note is to give electronic source for the omitting proof.

1. INTRODUCTION

1.1. Well-known formulas on hyperbolic trigonometry. In this paper, we use the following nota-
tions. The points A, B,C denote the vertices of a triangle. The lengths of the edges opposite to these
vertices are a, b, ¢, respectively. The angles at A, B, C' are denoted by «, 3,7, respectively. If the triangle
has a right angle, it is always at C'. The symbol § denotes half of the area of the triangle; more precisely,
we have 20 =7 — (a+ 8+ 7).

e Connections between the trigonometric and hyperbolic trigonometric functions:
sinha = h sin(ia), cosha = cos(ia), tanha = % tan(ia)
e Law of sines:
(1) sinha : sinhb : sinhc =sina : sin 5 : sinvy
e Law of cosines:
(2) cosh ¢ = cosh a cosh b — sinh a sinh b cosy
e Law of cosines on the angles:
(3) cosy = — cos acos 3 + sin asin 5 cosh ¢

e The area of the triangle:
T a
(4) T:=20=n—(a+p+7)or tan§ = (tanh% +tanh%) tanh%

where m,, is the height of the triangle corresponding to A and a1, as are the signed lengths of the
segments into which the foot point of the height divide the side BC.
e Heron’s formula:

T - -b -
(5) tan — = \/tanh % tanh 22 tanh 2 tanh 5 ¢
4 2 2 2 2

e Formulas on Lambert’s quadrangle: The vertices of the quadrangle are A, B,C, D and the
lengths of the edges are AB = a, BC = b,CD = ¢ and DA = d, respectively. The only angle
which is not right-angle is BCDX = . Then, for the sides, we have:

tanh b = tanhdcosha, tanhc = tanhacoshd,

and
sinhb = sinh dcosh ¢, sinhc = sinha coshb,
moreover, for the angles, we have:

cosh d B cosha

cos ¢ = tanhbtanh ¢ = sinhasinhd singp = = ,
coshb  coshc

and
1 1

tanhasinhd  tanhdsinhc’

tan p =
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2 A. G.HORVATH

2. THE DISTANCE OF THE POINTS AND ON THE LENGTHS OF THE SEGMENTS

2.1. The extracted hyperbolic theorem of sines.

Statement 1 (Statement 2.1. in [8]). Denote by a,b,c,d, e the edge lengths of the successive sides of a
pentagon with five right angles on the hyperbolic plane. Then we have the following formulas:

h h
coshd = sinhasinhb sinhe = cosha sinhe = coshb

\/sinh2 asinh?b — 1 \/sinh2 asinh?b — 1 .

F1GURE 1. Hyperbolic theorem of sines with non-real vertices

We prove the statement using Weierstrass homogeneous coordinates of the hyperbolic plane. Before
the proof we recall the formula of (usual) distance of points with respect to such homogeneous coor-
dinates. Consider the hyperboloid model of the hyperbolic plane H embedded into a 3-dimensional
pseudo-Euclidean space with indefinite inner product with signature (—, —,4). The points of the plane
can be considered as the unit sphere of this space containing those elements which scalar square is equal
to 1 and last coordinates are positives, respectively. It can be seen that the distance between two points
X = (z,y,2)T and X’ = (2',%/,2")T holds the following formula:

cosh | X X'| = —xa’ —yy' + 22/

Consider now the projection of H into the plane z = 1 from the origin. Then we get a projective
(Cayley-Klein) model of H with the usual metric.

Proof. Assume that a pentagon 12345 with five right angles lies in this model as in Fig. 1 (bottom)
the vertex 1 is the origin and the edges 12 and 51 lies on the first two axes of the coordinate system.
Now we have to determine the length of the edge 34 using as parameter the respective lengths a and
b of the edges 12 and 51. To this we can determine the coordinates of the points I1I,IV of H which
mapped into the points 3,4, respectively. Consider the point X and its image 3. We have to determine
first the Euclidean distance p := |03] and the angle ¢ := (203), and then the coordinates of X are
sinh p cos ¢, sinh psin ¢, cosh p, respectively. If the hyperbolic length of 12 and 51 are a and b, respectively,
then their Euclidean distances are tanha and tanhb, respectively. Obvious that the line 34 intersects
the axes in such points 6 and 7, whose distances from the origin are 1/ tanh a and 1/ tanh b, respectively.



From this we get that

cosh? atanh b . \/sinh2 acosh? atanh®b + 1
coshp = sinh p =
\/cosh2 atanh?b — 1 \/cosh2 atanh?b — 1
and
Vsinh? a cosh? a tanh? b . 1
cosp = sinp = .
\/sinh2 acosh? atanh?b + 1 \/sinh2 acosh? atanh®b + 1
From these quantities we get
sinh a cosh a tanh b 1 cosh? atanh b

z

B \/cosh2atanh2 b— 17 v \/Cosh2ataunh2 b— 17 a \/coshzataunh2 b— 17
and similarly for the pre-image X’ of the point 4 we get
;o 1 , _ sinhbcoshbtanha ;o cosh? btanh a

a \/cosh2 btanh®a — 1 v \/cosh2 btanh®a — 1 ° T \/cosh2 btanh? a — 1.
Finally the inner product of these vectors gives the first required formula
coshd = cosh | X X'| = sinh asinh b.

The other two formulas of the statement are simple consequences of this first one. O

X

3. POWER, INVERSION AND CENTRES OF SIMILITUDE

Lemma 1 (Lemma 3.1. in [8]). The product tanh(PA)/2 - tanh(PB)/2 is constant if P is a fized (but
arbitrary) point (real, at infinity or ideal), P, A, B are collinear and A, B are on a cycle of the hyperbolic
plane (meaning that in the fixed projective model of the real projective plane it has a proper part).

Proof. To prove this we have to consider three cases with respect to the type of the cycle with the
necessary subcases with respect to the possible types of the points P, A, B.

(A): In the case of a circle we have more cases.

e P is a real point A, B are real points. In this case the center O of the circle is real and we
can consider the real line through O and perpendicular to the line AB. The intersection of
these lines is the real point C'. Consider the triangles ACO and PCO, respectively. These
have a common side OC' and a respective right angle at C'. For the pair of points choose such
segments from the pair of possible segments, that the relation AB = AC UCB be valid (see
Fig. 2). From the Pythagorean Theorem we have cosh AC/ cosh CP = cosh OA/ cosh PO.

FIGURE 2. Power of a point into a cycle

Hence

tanh g tanh ? = tanh AC —; cr tanh BC-—PC = tanh A _; or tanh (AC ; cp) =

B sin sinh ACECP _coshAC — coshCP  coshOA — cosh PO
~ cosh ACJQFCP cosh ACgCP " cosh AC + coshCP ~ coshOA + cosh PO

= tanh 04 J2r Po tanh 04 ; Po = constant = c.

AC+CP
h 2
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We note that the absolute value of ¢ is less or equal to 1 and the sign of ¢ depends only
on the fact that P is a point in the interior or a point of the exterior of the given circle.
Additionally it is equal to zero if and only if either P = A or P = B, holds.

e P is an infinite point A, B are real points. According to our agreements on the length of a
segment and using of the symbols oo the required product is either 1 or —1.

e Finally if P is an ideal point and A, B are real points, then using the enumeration above
originating from the extracted Pythagorean Theorem we get that

¢ = tanh 04 —; Po tanh OA — PO =t OA + d;_ (7-‘-/2)Z tanh OA — d2— (71'/2)2 _

_ coshOA —cosh(d + (7/2)i)  coshOA + sinhd
~ coshOA + cosh(d + (7/2)i)  coshOA —sinhd’
showing that the absolute value of ¢ is greater than 1, and the sign of ¢ depends on the ratio
of the radius of the circle and the distance d (between the polar of P and the center of the
circle).
(B): In the case of paracycle the point O is at infinite. In Fig.6 we can see that if P is real then
there is an unique paracycle through P with the same pencil of parallel lines. Now if C # P we
have the following calculation:

tanh ATP tanh ? = tanh AC —; cr tanh BC—PC = tanh Ac —; or tanh (AC ; cp) =

anh

AC+CP
h 2

: : AC—-CP y y cosh AC
sin sinh #=5 _coshAC —coshCP 555 —1

- cosh AC;CP cosh ACECP " cosh AC' + coshCP ggzﬂég +1
But using the equality on the diameter and height of a segment of a paracycle (see also eg. [7])

we get

coshAC  e“F

coshCP — eCD

showing that it is independent from the position of the secant AB. For C' = P this value is +1

and it is the result in that case, too, if P is at infinity. The absolute value of ¢ is less then 1 for
real P and greater than 1 for ideal P.

(C): In the case of hypercycle we have again more cases. First we assume that A, B and P are

real points, respectively. O is an ideal point and C' is the halving point of the segment AB

(AB = ACUCB = AP U PB as on Fig. 3). Let FG be the basic line of the hypercycle with

= OF=0D = PG — cosh EP

A 0 E B
P | C
b

FIGURE 3. Power of a point into a hypercycle

distance b. Then all of the radiuses are orthogonal to F'G. The minimal distance of a point of
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the segment AB from the line F'G attained at the radius through E (and C). As in the case of
paracycles we get that

AP Bp cehaAC
tanh 7 tanh T = %,
cosh CP +1

and from the quadrangle AFGC with three right-angle we get that

coshAC'  sinh AF  sinh PR sinhb

coshCP  sinhGC ~sinhGC'  sinhd’
where d is the distance of the point P from the basic line of the hypercycle. Thus the latter term
is independent from the choice of the points A, B on the hypercycle implying that the examined
value has the same property. Denote by ¢ this constant. Of course b 2 d implies that ¢ 2 0 and
the absolute value of ¢ is less than 1. If A, B are real points and P at infinity then ¢ = +1. The
result in the case when A, B, P are distinct, non-ideal points and at least one among is at infinity
can be gotten analogousy.

Finally, we have to consider all cases when at least one point is ideal (and by our assumption
at least one from A and B is real). Of course, from the definitions of the length of a general
segment we can use complex numbers as in (A) to prove our statement. For instance, assume
that P and O are ideal points such that the line PO is also ideal and A, B are a real points (see
Fig. 4). The examined expression is

BP  coshAC —coshCP  sinh AF —sinh PR sinhb — sinh iy

AP
= h— h— = = = =
¢=tan 2 tan 2 cosh AC' + coshCP  sinh AF +sinh PR sinh b+ sinh iy

1sinh b + sin ¢

" isinhb— sing’
where ¢ is the angle of the respective polars of P and R. This proves the statement, again. The

FIGURE 4. Power with ideal point P.

remaining cases can be proved analogously and we omit their proofs.
O
Lemma 2 (Lemma 3.4. in [8]). Two points S,S" which divide the segments OO" and O'O, joining the

centers of the two cycles in the hyperbolic ratio of the hyperbolic sines of the radii v,7’ are the centers of
similitude of the cycles. By formula, if

sinh OS : sinh SO’ = sinh O’ S’ : sinh $’O = sinhr : sinh 7’
then the points S, S’ are the centers of similitude of the given cycles.
Proof. Consider a line through the point S which intersects the cycles in M and M’. Counsider also

the triangles OM S and O'M’S, respectively. Since OSM 4 = O'SM'4 from our assumption (using the
general hyperbolic theorem of sines) follows the other equality OMSL = O'M’S«. This implies that a
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tangent from S to one of the cycles is also a tangent to the other one. This means that S (and analogously
S’) is a center of similitude of the cycles. O

We also have the following

Lemma 3 (Lemma 3.5. in [8]). If the secant through a centre of similitude S meets the cycles in the
corresponding points M, M' then tanh %SM and tanh %SM’ are in a given ratio.

Proof. First we have to prove the hyperbolic analogy of the formula known as “Napier’s analogy” (see in
[4]) in spherical trigonometry. Consider the identity

a+b B tanh g coth 5 + tanh g coth §

tanh coth € 5
2 1 + tanh § tanh 3

and substitute to this equality the equalities

tanh 4 coth € M tanh 9 coth € w,
2 2 sin(y+9) 2 2 sin(y+9)
where 2§ is the defect of the triangle defined by 26 = 7 — (e + 8 ++). (This equality can be shown in the
following way. Add to the hyperbolic theorem of cosine for angle cos a = — cos 8 cos~y + sin Ssin -y cosh a

the identity cos(8 + ) = cos B cosy — sin 8sin~y and use the formulas on the half of a distance then we
get sinh 4 = \/(sindsin(a + 6))/(sin Bsin C). Similarly, we get that

cosh % = /(sin(B + ) sin(y + 0))/(sin Bsin )

and the required equality follows.) Then we get

a0 copp € _ S +0) Fsin(5+6) _ cos 38
2 sin(y +6) + sin g cos 2F
or equivalently
b cos2f8
tanh = - a-zt,-ﬁ tanh —
cos —; 2

Using this formula we have that

1 1 1 1
tanh §SM : tanh §SM’ = tanh 5(50 + ) : tanh 5(50/ +1') = const.

O

Since using the extended concepts two points always determine a line and two lines always determine
a point, all concepts defined on the sphere also can be used on the hyperbolic plane. Thus we use the
concepts of "axis of similitude”, ”inverse and homothetic pair of points”, "homothetic to and inverse of
a curve v with respect to a fixed point S (which ”can be real point, a point at infinity, or an ideal point,

respectively”) as in the case of the sphere. More precisely we have:

Lemma 4 (Lemma 3.6. in [8]). The siz centers of similitude of three cycles taken in pairs lie three by
three on four lines, called axes of similitude of the cycles.

Proof. If A, B,C their centers and a,b, ¢ the corresponding radii of the cycles, A’, B’,C’ the internal
centers of similitude, and A”, B”, C" the externals; then we have by definitions (see [16] p.70 or [15])

(ABC") := sinh AC" : sinh C"” B = sinh a : sinh b,
and similarly
(BCA") =sinhb : sinhc, (CAB")=sinhc: sinha.
Hence
(ABC")(BCA"(CAB") = 1.

Now the convers of the Menelaos-theorem is also valid (see [15] p.169) implying that the points A”, B” C"
are collinear. Similarly, it may be shown that any two internal centers and an external center lie on a
line. O



4. APPLICATIONS OF THE THEORY

4.0.1. Construction of Gergonne. Gergonne’s construction (see e.g. [5] and see in Fig. 5) solve the
following problem in the Euclidean plane:

Construct a circle touching three given circles of the Euclidean plane.

A nice construction is the following:

e Draw the point P of power of the given circles ¢y, c2, c3 and an axis of similitude of certain three
centres of similitude.

e Join the poles Py, Py, P53 of this axis of similitude with respect to the circles c1, co, c3 with the
point P by straight lines. Then the lines PP; cut the circles ¢; in two points Q;1 and Q;».

e A suitable choice Q1;(1), Q2;(2), @3;(3) Will give the touching points of some sought circle and
c1, c2, c3. More exactly, there are two such choices Q1(1), Q2;(2), @3;(3) and Q1x(1), Q2k(2), @3k(3);
satisfying j(i) # k(i) for 1 <i <3, where |PP;;(;)| < [PPjl.

By the results of the preceding section we can say this construction on the hyperbolic plane too. We
note that in the paper [6] this construction was proved by the conformal model. In this section we can
give a proof without using any models.

FI1GURE 5. The construction of Gergonne

In Fig.5 the axis of similitude contains the three outer centers of similitude, in which case, choosing for
Qi;(#) the intersection points closer to P, we obtain the common outward touching cycle, and for choosing
the farther intersection points to P we obtain the common touching cycle that contains ci,ca,c3. We
denoted these circles in Fig.9 by ¢ and ¢, respectively.

Choosing, e.g., for ¢1,c3 and co, c3 the inner centers of similitude, and then for ¢;, co the outer center
of similitude, we obtain another axis of similitude (by permuting the indices we obtain still two more
similar cases). Then defining the points P; and P;;(;) analogously like above, if PQ1;1) < PQux),
PQ3j2) < PQak(2), and PQ3j(3) > PQ3p(3), then the circle Qy;(1)Q2;(2)@3;(3) touches c1, c2, 3, contains
c3 and touches ¢y, ¢y externally, while the circle Q1y(1)Q2x(2)@3k(3) touches c1, ca, c3, contains c1, ¢z, and
touches c3 externally.

Summing up: there are eight cycles touching each of ¢y, o, c3.

An Euclidean proof of the pertinence of this construction on circles can be rewritten also by hyperbolic
terminology.
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Gergonne’s construction. Consider the cycles ¢’ and ¢” touching ¢, ¢o and c3, in any of the four above
described cases; in Fig. 5 ¢’ touches each of c1, co, c3 externally, and ¢’ touches each of ¢y, o, c3 internally.
Then the line joining the touching points Q;;(;) and Q;(;) passes through one of the centers of similitude
P of ¢ and ¢’. Thus P is the point of power of ¢1, co and c3. On the other hand, two of the three given
cycles (say ¢; and ¢g) give a touching pair with respect to ¢ and ¢”, hence its outer center of similitude
S12 has the same power with respect to ¢’ and ¢”. So the three outer centers of similitude Si2, Si3 and
Sa3 are on the axis of power of ¢ and ¢’. (It is also (by definition) an axis of similitude with respect
to ¢1, co and c3, say s. For ¢,c” being another pair of touching circles, in the other three cases, the
respective changes have to be made in the choice.) Since the pole @Q; (with respect to the cycle ¢;) of the
line joining Q;;(;) and Q;x(;) is the intersection point of the common tangents of ¢’ and ¢; at Q;;(;), and
" and ¢; at Qik(i), respectively, it is also on s. By the theorem of pole-polar we get that the pole P; of
s with respect to ¢; lies on the line Q;;(;)Q@;x(;)- This proves the construction. O

4.1. Applications for triangle centers.

4.1.1. Staudtian and angular Staudtian of a hyperbolic triangle: Let
n =n(ABC) := \/sinh ssinh(s — a) sinh(s — b) sinh(s — c),

then we have
2

(6) La o fo oy n
sin — sin — sin = = .
2 2 2 sinh ssinhasinhbsinhc
The proof of this equality is the following. From (2) we get
cosh ¢ = cosh a cosh b — sinh a sinh b cosy = cosh(a — b) + sinh asinh b(1 — cos ),

implying first that

.57 1—cosy —cosh(a—b)+coshe sinh9=2+€sinh =adbte
sin® — = = =
2 2 2sinh asinhb sinh a sinh b

_ sinh(s — a) sinh(s — b)

)

sinh a sinh b
and the statement follows immediately. Similarly we also have that

cosh ¢ = cosh a cosh b — sinh a sinh b cosy = cosh(a — b) — sinh asinh b(1 + cos ),

implying that

5y 14cosy 1lcosh(a+b)—coshe sinhssinh(s —c)
cos” — = == =
2 2 2 sinh a sinh b sinh a sinh b

N = N(ABC) := +/sindsin(6 + a) sin(d + ) sin(J + 7).
On the angular Staudtian we have analogous formulas as on the Staudtian. Use now the law of cosines
on the angles. Then we have

cosy = —cosacos 3+ sinasin Fcosh ¢

and adding to this equation the addition formula of the cosine function we get that

a+6+'ycosoz+5—’y
2 2 '

sin asin B(cosh ¢ — 1) = cosy + cos(a + ) = 2 cos
From this we get that
o o — [0S 3)
2 sin asin 8
Analogously we get that

a—Bfty —atB+ty

sin asin B(cosh ¢ + 1) = cosy + cos(a — 8) = 2 cos 5 5

implying that
(8) cosh € — \/sin (64 8)sin (§ + @)

2 sin asin 8




From these we get

b N?
9) cosh a cosh = cosh - - - - —.
2 2 2  sinasin Ssinysind
Finally we also have that
2N 2N 2N
(10) Sinha = V0, Sinhb: -, SinhC = VY%,
sin B sin~y sin v sin vy sin acsin 8

and from the first equality of (13) we get that

(11) N = %sinhasinﬂsin'y = %sinhhc sin~,

where h¢ is the height of the triangle corresponding to the vertex C. The connection between the two
Staudtians gives by the formula

(12) 2n? = N sinh a sinh bsinh c.

In fact, from (7) and (13) we get that

AnN
sin B sin~ysinh bsinh ¢

sinasinha =
implying that
sin asin 8 sin -y sinh @ sinh bsinh ¢ = 4n V.
On the other hand from (7) we get immediately that
8n3

12 . 192, . 2
sinh” a sinh” bsinh” ¢

sinasin Bsiny =

and thus
2n? = sinh a sinh bsinh ¢N,

as we stated. The connection between the two types of the Staudtian can be understood if we dived to
the first equality of (7) by the analogous one in (19). Then we have

sin o n sinf sinvy

sinha N sinhbsinhc
which using the hyperbolic theorem of sines leads to the equality

(13) E _ sina

n sinha’

4.1.2. On the centroid (or median point) of a triangle.
Theorem 1 (Theorem 4.3. in [8]). We have the following formulas connected with the centroid:
e Property of equal Staudtians.

(14) na(M) =np(M) = nc(M)
e The ratio of section (AM4M) depends on the vertex.
sinh AM a sinh BM b sinh CM c
15 ——— =2cosh—-, ——— =2cosh—-, ———— =2cosh=
(15) smh MM, - smhMMp - MY simhmMe - SS9
e The ratio of section (AMM},) is independent from the vertex.
(16) sinhAMy  sinhBMp  sinhCM¢g ~ n

sinh MM, sinhMMp sinhMMg  na(M)
e The “center of gravity” property of M. Ify is any line of the plane then we have
sinh d’y + sinh d'y + sinh di,
\/1+2(1 + cosha + coshb + cosh c)

(17) sinhd), =

where dy, dg, d, dy; mean the signed distances of the points A,B,C, M to the line y, respec-

tively.
e The “minimality” property of M. IfY is any point of the plane then we have
(18) coshV M — coshY A + coleYB +coshYC  coshY A+ coshY B + coshYC

na (M) B \/1+2(1+cosha+coshb+coshc)'
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Proof. The property (17) is a simple consequence of (9). Thus the centroid is the unit point with respect
to the triangular coordinate system. Let the feet of the perpendiculars from M and the altitudes are
Xa,Xp,Xc, and Ha,Hp, He, respectively. (19) follows from (17) since

sinh AM 4 sinh AH 4 n n sinh BMpg

sinh MM, sinhMX, na(M) np(M) sinhMMg'

From (1) we get
sinhMM, sinMsCMAL sinh AM sin ACM £

sinh MO sinCMAAL ¢ sinh MC ~ sin CAM £

implying
sinh AM  sin ACM&sinCMaAL — sin ACMA sinhb
sinh MM, sin MyCMLsinCAMaL — sin MaCM4 sinh &
On the other hand the equalities
sin ACM £ _ sinh § an sin BCM £ _ sinh §
sinCMcA£  sinhb sin BMcA£  sinha

imply the equalities
sin ACM £ sin ACMA  sinha

sSin MACMA — sin BCMA ~ sinhb’

Hence we get

sinh AM sinh a sinh b a
- = — - = 2cosh —
sinh M M 4 sinh b sinh % 2

proving (18). To prove (21), observe that in the triangle ABC' holds the equality

(19) cosha + coshb = 2coshgcosh CMc¢.
In fact, the law of cosines (2) with respect to the triangles ACM¢c and BCM¢ gives the equalities
cosh a = cosh g cosh M Ms — sinh g sinh M Mg cosCMeB4£

and
cosh b = cosh % cosh M M — sinh % sinh M M¢c cosCMc AL =
= cosh g cosh M M¢ + sinh g sinh M M¢e cosCMeBX4.
Adding these equalities we give the required one. Hence we have

coshY A + coshY B = 2cosh g coshY Mc.

Consider now the triangles YCM and Y Mo M, respectively. Using the law of cosines as in the previous
formula we have that

coshY C = cosh MY cosh MC — sinh MY sinh MC cosYMCX

and
coshY Me = cosh MY cosh MM + sinh MY sinh MeM cosY MCA.

From these equations we get
sinh Mo M coshY C + sinh MC coshY Mo =
= cosh Y M (cosh M C sinh MM + cosh Mc M sinh MC) = cosh Y M sinh M C.

Now
¢ (coshY M sinh McC'  sinh Mo M coshY C'
hY A hY B = 2cosh = — =
cosh YA+ cos 59 ( sinh MC sinh MC )
sinh MC [ coshY M sinh McC' sinh Mo M coshY C' sinh M~C
= - =coshYM——— —coshYC
sinh Mo M ( sinh MC sinh MC ) o8 sinh MM~ SO0
proves the first equality of (21). The second equality in (21) can be gotten from the equations
sinh CM¢ n sinh(CM¢ — M M) c c
= = 2cosh = h hb = 2 cosh = cosh C' M,
Snh MMg — na(M)’ Sinh M Mo cosh, cosha + cos cosh 5 cos c,

eliminating CM¢c and M M¢ between these equations. We leave the calculation to the reader.

Finally, consider the minimality property (21) in the case when Y is an ideal point and A, B, C are real
ones, respectively. Now M is also a real point and we have to consider the polar of Y which is a real line
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y. Denote by the real (and positive) geometric distances of the points 4, B,C, M to y is da,dp,dc,d s,
respectively. (21) says that

cos: (dM N EMiz) cosh (da +£4i%) + cosh (dp +epi%) + cosh (dc + eciF)
\/1+2(1 + cosha + coshb + cosh c)

)

2

where ), is a sign depending on the positions of Y, M and Yj; := yNY M on its line YM. It is + if
the segment MYy C MY and — if this relation does not hold. (Similar definition are valid for €4,ep
and e¢, respectively.) It is clear that these signs give the same value if the corresponding points lie on
the same half-plane of the line y. Thus if we fixed the sign of one of the points (which distinct to zero)
then the other signs have to be determined uniquely, too. Hence we have the equality

casinhdg + epsinhdpg + e sinh dg

ey sinhdy =
M M \/1+2(1 + cosha + coshb + cosh c)
or equivalently
b — sinh d’y + sinh d'z + sinh d,
M v/1+2(1+ cosha + coshb + cosh c)
as we stated in (20). O

4.1.3. On the center of the circumscribed cycle.

Theorem 2 (Theorem 4.6. in [8]). The following formulas are valid on the circumradiuses R, Ra, Rp
and R¢, respectively.

e Formulas by the angular Staudtian of the triangle are:

_ sind _ sin(d +a) _sin(0 + ) _sin(d + )
(20) tanh R = T7 tanh RA = T, tanh RB = T7 tanhRC = T
e Formulas by the lengths of the edges are:
b 92sinh ¢ sinh & sinh €
(21) tanh R = tanh % tanh & tanh < cos 2 fty _ 2simhysinhysinhy
2 2 2 2 n
b _ 2sinh € cosh £ cosh £
tanh R4 = tanh a coth — coth ¢ cos ot Bty = 255 COSM 5 COSR Y
2 2 2 2 n
b — 2 cosh ¢ sinh £ cosh £
tanh Rg = coth 4 tanh — coth ¢ cos a= Bty = ZCOSn o SN COSRY
2 2 2 2 n
b - 2 cosh ¢ cosh & sinh §
tanh R = coth 4 coth — tanh ¢ cos at+ By _ ZC0SM,COSnpSMg
2 2 2 2 n
e The ratio of the triangular coordinates of the circumcenter O is:
(22) n4(0) : ng(0) : nc(0) = cos(d 4+ «) sinha : cos(d + B) sinh b : cos(d 4 ) sinh ¢

Proof. Assume that the radius CO divides the angle v at C into the angles v and 7, respectively (see
Fig. 6). Then we have OCAL = OACK = v, OCBL = OBCX = v, hence OABL = o — 1 and
OBAL = 3 — 7. Since OABA = OBAX we get that OABL = Y(a+ B —7) =7/2 — (6 + 7).

FIGURE 6. The circumcenter.
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From this we get
tanh g = tanh Rcos(m/2 — (6 + 7)) = tanh Rsin(é + 7).

From (10) and (11) we get

tanh & — sin 0 sin(d + )
iy = sin(d + ) sin(d + «)

implying

tanh R sin §

nh R = .

& sin(d + a) sin(d + B) sin(d + )

From this the first equality in (23) immediately follows. Substituting o’ = a, ' = -8+7, 7 = v+
into the first equation of (23) and using that 0’ = (71— (a—8—vy+27))/2 = (—a+B+y—7)/2 = —(§+ )
we get the formula of (23) on Ry:

tanh R — —sin(é + ) B sin(d + «) _ sin(d +a)
AT sin(—d)sin(r — 6 — B —a)sin(r —§ —y—a) |/ sindsin(d +7)sin(d +B) N
Analogously as of (16) or (17) we have the formulas
sinh & — smc?sm('5+a) and sinhé _ smésm(.5+5)7
2 sinysin 8 2 sin arsin 7y
and
cosh & — , /Bin (6 —|— B) sin 6+ and coshé _ [sin (6 —|— v) sin (6+ a).

2 sinysin 3 2 sin a sin 7y

Thus we have
inh & .9 ins
81272 = - Sl_n s - = sinatanh R
cosh 3 cosh § sin(é 4 ) sin(d + «) sin(§ + B)

giving the formula
sinh §

(23) tanh R = — 7 -
sin o cosh 3 cosh 5

Similarly we get

c sin® § sin(0 4 o) sin(d 4 3) sin(d + 7) sin? § coth R
- asin? Bsin® vy sin asin Bsiny’

b
sinh g sinh 3 sinh 5 5 =

sin
and with the same manner we have

.2 2 2 . 2
cosh & cosh b cosh & = \/sm (6 4+ ) sin“(d + B) sin“(d + ) sind coth” R

sin? a sin? Bsin? v sin asin 3 sin 7y

Dividing by the two equalities we get the first equality of the first row in (24):
b
tanh R = tanh g tanh 5 tanh g sin 4.

Using (7) and (14) we also have that

8n? _ 8n3N?  2N?
sinh? a sinh? b sinh? ¢ 4nt n
giving immediately the second equality of the first row in (24)

..a . b ¢ sin? § coth R nsin®dcothR  ntanh R
sinh — sinh — sinh — = — - - = = .
2 2 2  sinasinfsiny 2N2 2
Substituting the complementary lengths and (the same) angles (if it is necessary) to these equations we
get the results of the remaining rows in (24).

By (8) we have that

(24) sin asin Ssiny =

1 _
n(AOB) = 3 sin %B’Y sinh Rsinh ¢
and

1. —a+p+7y

n(BOC) = 3 sin 5 sinh R sinh a.
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Hence

—a+ B+

n4(0) : ng(0) : nc(0) = sin sinha : sin sinh b : sin sinh ¢,

a—fB+y at+f—v
2 2

as we stated in (25). O

4.1.4. On the center of the inscribed and escribed cycles. We are aware that the bisectors of the interior
angles of a hyperbolic triangle are concurrent at a point I, called the incenter, which is equidistant from
the sides of the triangle. The radius of the incircle or inscribed circle, whose center is at the incenter and
touches the sides, shall be designated by r. Similarly the bisector of any interior angle and those of the
exterior angles at the other vertices, are concurrent at point outside the triangle; these three points are
called excenters, and the corresponding tangent cycles excycles or escribed cycles. The excenter lying on
AT is denoted ba 14, and the radius of the escribed cycle with center at I4 is r4. We denote by X4, X5,
X¢ the points where the interior bisectors meets BC, AC, AB, respectively. Similarly Y4, Y5 and Yo
denote the intersection of the exterior bisector at A, B and C' with BC', AC' and AB, respectively. We

FI1GURE 7. Incircles and excycles.

note that the excenters and the points of intersection of the sides with the bisectors of the corresponding
exterior angle could be points at infinity or also could be ideal points. Let denote the touching points
of the incircle Z,, Zp and Zg on the lines BC, AC and AB, respectively and the touching points
of the excycles with center I4, Ip and I are the triples {Va a,Vp a,Ve,a}t, {Va,s,Vs,B,Vo,p} and
{Va.c,Vs,c,Ve.c}, respectively (see in Fig. 13).

Theorem 3 (Theorem 4.10. in [8]). On the radiuses v, ra, rp or rc we have the following formulas .

e Formulas by Staudtian are:

n n
25 tanhr = tanhry = ——, tanhrp = ————, tanhrg = ———
(25) MR S A sinh(s — a)’ AnATE sinh(s — b)’ anire sinh(s — ¢)
e Formulas by angular Staudtian are
N
(26) tanhr = 3 ,
2cos § cos 5 cos 3
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sin(d + a) +sin(d + B) + sin(d + ) + sind

(27) cothr = 5N
(28) cothry, = = sin(d + «) + sin(d —12—]\5[) +sin(d + ) —sind
cothry — sin(d + a) — sin(d +2[]3\)[+ sin(d + ) —sind
cothre = sin(d + a) + sin(d —&—26\)[ sin(d + ) —sind
e Connections among the circumradiuses and inradiuses are:
(29) tanh R +tanh R4y = cothrg 4 cothrg
tanh Rg +tanh R = cothr + cothry
tanh R 4+ cothr = % (tanh R 4 tanh R4 + tanh Rp + tanh R¢)
e Triangular coordinates of the incenter and excenters are:
(30) na(l):np(I):nc(I) = sinha:sinhbd:sinhe
(31) na(la) :np(Ila) :nc(Ia) = —sinha:sinhb:sinhe
na(Ig):npg(Ip):nc(Ip) = sinha:—sinhbd:sinhe
na(lo) :ng(le) :nc(lc) = sinha:sinhb: —sinhe

Proof. The triangular coordinates of I by (8) holds
na(I):ng(l):nc(I) =sinha :sinhb: sinhe

proving (35). To (36) we observe that the excircle with center Ip can be considered as the incircle of
those triangle of the vertex set {A, B, C'} which edge-segment AC' is equal to that of the corresponding
edge-segment of the triangle ABC while the other two edge-segments are complementary to those of
ABC'. (In spherical geometry the above two triangle is called colunar because of their union is a lune.)
We also have that the sign of the measure of the radius in one of the cases is the negative as the sign of
the corresponding case of the incircle because of the side separates the two centers. Thus

na(Ig) :np(Ip) : nc(Ic) = sinh(—a + i) : —sinh b : sinh(—c + 7i) = sinha : —sinh b : sinhe,
implying (36).

The equalities in (30) follows from the observation that we have CZ4 = CZp = s—c¢, BZy = BZ¢ =
s—band AZg = AZc = s — a, respectively, and thus

¢ 0% tanh r
an—- = —— .
2 sinh(s —¢)

In fact, sin 4 and cos 3 was calculated before (7) and from these quantities we get that

(32) tan L — \/Sinh(s — a)sinh(s — b)

2 sinh s sinh(s — ¢)

Implying the first equality in (30). The other equalities follow from that the circumscribed triangles of
the excycles have two sides with the property that its measure is the measure of the corresponding side
of ABC' subtracting from mi. More precisely the lengths of the sides of the circumscribed triangle of the
excycle corresponding to the excenter Ig are a’ = —a + i, b’ = b, and ¢/ = —c + i, respectively. The
corresponding half-perimeter is s’ = (' + ¥ + ¢')/2 = (—a + b — ¢)/2 + mi. This implies that

tanh rg = \/Sinh(sl — a/) Sinh(s/ _ b/) Sinh(s’ — c/) B

sinh s’
_[sinh(s — ¢) sinh(—s + 7i) sinh(s —a) n
B sinh(—s + b+ i) ~ sinh(s — b)’

as we stated in (30).

Since we proved before (7) that
! \/sinh ssinh(s — a) B
2

= R

(33) cos 2 - sinhcsinhb ' cos

\/Sinhssinh(s —b) v \/sinhssinh(s —0)

" A Ccos = " A
sinhasinhe ’ 2 sinh a sinh b
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then we have by (15) and (30) that

a B~ \/sinh3 ssinh(s — a) sinh(s — b) sinh(s — ¢)
COS — COS = COS = =

2 2 2 sinh? a sinh? bsinh? ¢
_ nsinh s _ N sinh a _ N
" sinhasinhbsinhe 2n " 2tanhr

and (31) follows, too.

To prove (32) consider the equalities

sin(d + «) + sin(d 4 3) = cos —(a—zﬁ) i + cos (a—g) Y _ 2cosa;ﬁcos% =
= 2cos%cos§cos% +251n%sin§cos%,
and
sin(é—l—y)—siné:cosw —COSM :2coslcosa+ﬁ =
2 2 2 2
= QCOSZCOSQCOSE fQCoslsingsiné.
2 2 2 2 2 2
Thus we get the equality
4 cos % cos g cos % = sin(d 4+ ) + sin(d + B) + sin(d + ) + sin(0)

implying (32). The equations in (33) follow from (32) substituting two times (7 — ¢) into ¢ (¢ = «, 8 or
¢ =").
Finally, (23), (32) and (33)implies the equalities in (34). O

The following formulas connect the radiuses of the circles and the lengths of the edges of the triangle.

Theorem 4. Let a,b,c,s,74,78,7c,T, R be the values defined for a hyperbolic triangle above. Then we
have the following formulas:

(34) —cothry — cothrg — cothrg + cothr = 2tanh R
(35) cothr4 cothrp + cothr4 cothrg + cothrg cothrg =
1 1 1

sinh ssinh(s — a) + sinh s sinh(s — b) + sinh ssinh(s — ¢)
(36) tanhr4 tanh rg + tanhry tanhre + tanhrg tanhro =

1
=3 (cosh(a 4 b) + cosh(a + ¢) + cosh(b + ¢) — cosh a — cosh b — cosh ¢)

(37) cothr s + cothrp + cothrg =
= (cosha + cosh b + cosh ¢ — coth s (sinh a + sinh b + sinh ¢))
tanhr
(38) tanhry + tanhrp + tanhre =

~ 2tanhr (cosha + cosh b + cosh ¢ — cosh(b — a) — cosh(c — a) — cosh(c — b))

(39) 2(sinh @ sinh b + sinh a sinh ¢ 4 sinh bsinh ¢) =
+ tanhr (tanhr 4 + tanhrg + tanhre) + tanhr4 tanhrg + tanhr4 tanhre + tanh rp tanh re

Proof. From (32),(33) and (23) we get that

sin ¢

—cothry — cothrg — cothrg + cothr =2 = 2tanh R,

as we stated in (39).
To prove (40) consider the equalities in (30) from which
cothr 4 cothrpg 4 cothr g cothre + cothrp cothre =
_ sinh(s — a) sinh(s — b) 4 sinh(s — a) sinh(s — ¢) 4 sinh(s — ¢) sinh(s — b)
n2
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1 1 1
sinh ssinh(s —a) = sinhssinh(s —b) = sinh ssinh(s — ¢)

Similarly we also get (41):

tanhr4 tanhrp + tanhr4 tanhre + tanh rp tanh ro = sinh ssinh(s — a) 4 sinh s sinh(s — b)+

1
+ sinh ssinh(s — ¢) = B (cosh(a + b) + cosh(a + ¢) + cosh(b + ¢) — cosha — cosh b — cosh¢).

Since we have

inh(s — inh(s —b inh(s —
—2tanh R + cothr = cothr4 + cothrg + cothrg = sinh(s — a) + sinh(s ) + sinb(s — ¢) =

n
_ (sinh(s — a) +sinh(s — b) +sinh(s — ¢)) _ cosha + cosh b 4 cosh ¢ — coth s (sinh a + sinh b 4 sinh c)
N sinh s tanh r B tanhr

(42) is given. Furthermore we also have

tanhr4 4+ tanhrg + tanhre =
n (sinh(s — a) sinh(s — b) + sinh(s — a) sinh(s — ¢) + sinh(s — b) sinh(s — ¢))

sinh(s — a) sinh(s — b) sinh(s — ¢)

inh
— s (sinh(s — a) sinh(s — b) + sinh(s — a) sinh(s — ¢) + sinh(s — b) sinh(s — ¢)) =
n

_ (sinh(s — a)sinh(s — b) + sinh(s — a) sinh(s — ¢) + sinh(s — b) sinh(s — c))
B tanhr

- h h he — cosh(b— a) — cosh(c — a) — cosh(c —
2tanhr (cosha + coshb + cosh ¢ — cosh(b — a) — cosh(c — a) — cosh(c — b))

implying (43). From (41) and (43) we get
tanhr (tanhr4 4 tanhrp + tanhre) 4 tanhr 4 tanh rg 4+ tanh r 4 tanh ro + tanhrg tanhrg =
= cosh(a + b) + cosh(a + ¢) 4 cosh(b + ¢) — cosh(b — a) — cosh(c — a) — cosh(c — b) =
= 2(sinh a sinh b + sinh a sinh ¢ 4 sinh bsinh ¢)
which implies (44). O
The following theorem gives a connection among the distance of the incenter and circumcenter, the
radiuses 7, R and the side-lengths a, b, c .

Theorem 5 (Theorem 4.11. in [8]). Let O and I the center of the circumsrcibed and inscribed circles,
respectively. Then we have

b b
(40) cosh OI = 2 cosh g cosh B cosh g coshr cosh R + cosh w cosh(R —r).
Proof. Since
cosh(s — a) coshr = cosh AT and TAOL = % _of g —0 - _6;— 7

thus from (2) we get that

. . —b+
cosh OI = cosh AI cosh R — sinh A sinh R cos p 7
Hence holds the equality
cos =212
. . 2
cosh OI = cosh(s — a) coshr cosh R — sinhr sinh R——=—.
Ssin
2
Analogously to the proof of (6) we get that
B ¥ sinh s sinh(s—b) sinh s sinh(s—c) .
cos 2 €Oos 2 _ sinh a sinh ¢ sinh a sinh b Slnh S
sin & - sinh(s—b) sinh(s—c) " sinha
2 sinh bsinh ¢
and also we have
B - sinh(s—a) sinh(s—c) sinh(s—a) sinh(s—b) .
Sin 5 Sin % _ sinh a sinh ¢ sinh a sinh b _ SlIlh(S — CL)
sin % - sinh(s—b) sinh(s—c) - sinh a

sinh bsinh ¢
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Summing up we get that

sinh sinh(s —
cosh OT = cosh(s — a) coshr cosh R — sinh 7 sinh pIES + sinh(s — ) =

sinh a
. ) sinh b‘gc cosh 5
= cosh(s — a) coshr cosh R — 2sinh r sinh R———=———= =
sinh a
. b inh b+c
= cosh —atbte cosh r cosh R — sinh r sinh RSH_liQ,
2 sinh %
and also the similar formula
—b sinh ate<
cosh OI = cosh a-bte cosh r cosh R — sinh r sinh R— 12)
2 sinh 3
and "
b— sinh 42
cosh OI = cosh u cosh r cosh R — sinh r sinh RH,172.
2 sinh §

Adding now the latter three formulas we get that

— b -b b—
3coshOI = (cosh % + cosh GT-&-C + cosh CH_20> cosh r cosh R—

2 2

) ) sinh %€ sinh %€ ginh %22
—sinhrsinh R

sinh % sinh g sinh %
Since ; , .
—a+b+c +c a . +c . a
oshf— (cosh Coshg—smh 5 sinh 2) =
ha hb hc+ ha'hb'hc 'ha'hb hc .ha hb'hc
= — — — — sinh — sinh — — sinh — sinh — — —sinh — — sinh —
cos 2cos 2cos 5 Cos 2s 25 5 S 25 2005 5 S 2cos 25 5
thus . . )
osh 2 F0FE o n =0 C  n o
2 2 2
a b c a .. b . ¢ ..oa .. b c L .a b .. ¢
= 3 cosh = cosh = cosh = — cosh — sinh = sinh — — sinh — sinh — cosh = — sinh — cosh = sinh —.
2 2 2 2 2 2 2 2 2 2 2 2

We also have that
sinh % sinh “TJ“ sinh %” sinh b;—‘" sinh g sinh § + sinh “T'*'C sinh § sinh § + sinh ‘IT'H’ sinh § sinh g

- a - b " < = . a b o c
sinh 5 sinh 5 sinh 5 sinh 5 sinh 3 sinh 5

and since

. b+ . b . ¢ . ay .. b . ¢
sinh sinh 5 sinh 3= sinh (s — 5) sinh 5 sinh 3=
c

b b
= sinh s cosh % sinh 3 sinh < cosh s sinh g sinh 3 sinh 5

we get that

sinh b;c sinh % sinh % + sinh “‘2"C sinh % sinh % + sinh “T"'b sinh % sinh %

. @ : b .. c
sinh 5 sinh 5 sinh 5

b b b
= | sinh s cosh a sinh — sinh ¢ + sinh s sinh a cosh — sinh ¢ + sinh s sinh 4 sinh — cosh e
2 2 2 2 2 2 2 2 2

b 1
—3 cosh ssinh a4 sinh — sinh C) - — .
2 2 2/ sinh ¢ sinh g sinh §
Using (46) we get that
bfe  sinh %€  sinh %P

sinh

inh & sinh & inh £
sinh 3 sinh 5 sinh 5

2 (cosh 2 sinh 2 sinh £ + sinh £ cosh 2 sinh £ + sinh £ sinh £ cosh 5)
_ 2 2 2 2 2 2 2 2 2) _ 3coshs

tanh r tanh R

Thus we have

a b c a .. b . ¢
3coshOI =3 (cosh 3 cosh 3 cosh 3~ cosh 3 sinh 3 sinh 3~

b b
—sinh g sinh 3 cosh g — sinh % cosh 3 sinh ;) cosh r cosh R + 3 cosh ssinh 7 sinh R
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implying that

coshOI = (2 cosh % cosh g cosh % — cosh s) cosh r cosh R + cosh ssinh rsinh R =

b
= 2 cosh g cosh 3 cosh % coshr cosh R + cosh scosh(R — r) =

b b
= 2cosh g cosh 5 cosh g coshr cosh R + cosh # cosh(R —r),

as we stated in (45). O

Remark. The second order approximation of (45) leads to the equality

(10 5) (14 8) (14 5) (14 5) (14 5) - (0 ) (1 B,

From this we get that

a2+ 4+ ab+be+ca

2= R%4,2
O R+ + 1 5

+ 2Rr.

But for Euclidean triangles we have (see [1])
a? +b* + =25 — 2(4R+7r)r and ab + bc + ca = s> + (4R +r)r,
the equality above leads to the Euler’s formula:
OI’ = R*> - 2rR.
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