The exact noise and dynamical sensitivity of critical percolation, via the Fourier spectrum

Gábor Pete

http://www.math.toronto.edu/~gabor

Joint work with Christophe Garban (Université Paris-Sud and ENS) and Oded Schramm (Microsoft Research)

Plan of the talk

- Critical percolation: RSW, conformal invariance, SLE_6 exponents
- Noise sensitivity of critical percolation
- Dynamical percolation
- Why is the Fourier spectrum useful?
- The Fourier spectrum of critical percolation
- Strategy of proof
- Further results and questions

Bernoulli(p) site and bond percolation

Given an (infinite) graph G = (V, E) and $p \in [0, 1]$. Each site (or bond) is chosen open with probability p, closed with 1 - p, independently of each other. Consider the open connected clusters.

Site percolation on triangular grid Δ = face percolation on hexagonal grid:

Site percolation on triangular grid Δ = face percolation on hexagonal grid:

Site percolation on triangular grid Δ = face percolation on hexagonal grid:

Critical percolation

For any G there is a $p_c \in [0,1]$, s.t. $\mathbf{P}_p[\exists \infty \text{ cluster}] = 0$ for $p < p_c$, but $\mathbf{P}_p[\exists \infty \text{ cluster}] = 1$ for $p > p_c$, because of Kolmogorov's 0-1 law.

Simplest model of phase transition.

The case of planar lattices and trees is understood best. E.g.:

Theorem (Harris 1960 and Kesten 1980). $p_c(\mathbb{Z}^2, \text{bond}) = p_c(\Delta, \text{site}) = 1/2.$ At p = 1/2, there is a.s. no infinite cluster. For p > 1/2, there is a.s. exactly one infinite cluster.

Why is $p_c = 1/2$? Duality!

 \mathbb{Z}^2 bond percolation at p = 1/2: in an $(n + 1) \times n$ rectangle, left-right crossing has probability exactly 1/2.

For site percolation on Δ , same on an $n \times n$ rhombus.

Crossing probabilities and criticality

Theorem (Russo 1978 and Seymour-Welsh 1978). In critical percolation on almost any planar lattice, for n, L > 0,

 $0 < a_L < \mathbf{P}[$ left-right crossing in $n \times Ln] < b_L < 1.$

Same holds for annulus-crossings.

By repeating this on all scales, and gluing the pieces by FKG: $(r/R)^{\alpha} < \mathbf{P}[\partial B_r \longleftrightarrow \partial B_R] < (r/R)^{\beta}.$

Conformal invariance on Δ

Theorem (Smirnov 2001). For p=1/2 bond percolation on Δ_{ϵ} , and $D \subset \mathbb{R}$ simply connected domain with four boundary points $\{a, b, c, d\}$,

$$\lim_{\epsilon \to 0} \mathbf{P} \Big[ab \longleftrightarrow cd \text{ inside the discrete approximation } D_{\epsilon} \Big]$$

exists, is strictly between 0 and 1, and is conformally invariant.

SLE_6 exponents

Given the conformal invariance, the exploration path converges to the Stochastic Loewner Evolution with $\kappa = 6$ (Schramm 2000).

Using the SLE_6 curve, several critical exponents can be computed (Lawler-Schramm-Werner, Smirnov-Werner 2001), e.g.:

$$\alpha_4(r,R) := \mathbf{P}\left[\overbrace{r}^r (r/R)^{5/4 + o(1)}\right] = (r/R)^{5/4 + o(1)},$$

while $\alpha_1(r, R) = (r/R)^{5/48 + o(1)}$ and $\mathbf{P}_{p_c + \epsilon}[0 \longleftrightarrow \infty] = \epsilon^{5/36 + o(1)}$.

Percolation and noise

Take an ω critical percolation configuration. Let ω^{ϵ} be a new configuration, where each site (or bond) is resampled with probability ϵ , independently. (The ϵ -noised version of ω .)

For how large an ϵ can we still predict from ω whether there is a left-right crossing in ω^{ϵ} ?

Percolation and noise

Take an ω critical percolation configuration. Let ω^{ϵ} be a new configuration, where each site (or bond) is resampled with probability ϵ , independently. (The ϵ -noised version of ω .)

For how large an ϵ can we still predict from ω whether there is a left-right crossing in ω^{ϵ} ?

Noise sensitivity of percolation

Theorem (Benjamini, Kalai & Schramm 1998). If $\epsilon > 0$ is fixed, and f_n is the indicator function for a left-right percolation crossing in an $n \times n$ square, then as $n \to \infty$

$$\mathbf{E}\big[f_n(\omega)f_n(\omega^{\epsilon})\big] - \mathbf{E}\big[f_n(\omega)\big]^2 \to 0.$$

This holds for all $\epsilon = \epsilon_n > c/\log n$.

Theorem (Steif & Schramm 2005). Same if $\epsilon_n > n^{-a}$ for some positive a > 0. If triangular lattice, may take any a < 1/8.

Theorem (Garban, P & Schramm 2008). Same holds if and only if $\epsilon_n \mathbf{E}[|\text{pivotals}|] \to \infty$. For triangular lattice, this threshold is $\epsilon_n = n^{-3/4+o(1)}$.

Naive idea: how many pivotals are there?

A site (or bond) is pivotal in ω , if flipping it changes the existence of a left-right crossing. $\mathbf{E}|\operatorname{Piv}_n| \simeq n^2 \alpha_4(n) \quad (= n^{3/4+o(1)}).$

Furthermore, $\mathbf{E}[|\operatorname{Piv}_n|^2] \leq C (\mathbf{E}|\operatorname{Piv}_n|)^2$. So, $\mathbf{P}[|\operatorname{Piv}_n| > \lambda \mathbf{E}|\operatorname{Piv}_n|] < C/\lambda^2$, any λ .

Concentration around mean also from below: $\mathbf{P}[0 < |\operatorname{Piv}_n| < \lambda \mathbf{E} |\operatorname{Piv}_n|] \simeq \lambda^{11/9+o(1)}$, as $\lambda \to 0$ (exponent only for Δ).

Cannot have many pivotals. \implies If $\epsilon_n \mathbf{E}[|\operatorname{Piv}_n|] \to 0$, then we don't hit any pivotals. \implies Asymptotically full correlation.

Cannot have few pivotals (if there is any). \implies If $\epsilon_n \mathbf{E}[|\operatorname{Piv}_n|] \to \infty$, then we do hit many pivotals. But this \implies asymptotic independence!

Dynamical percolation

Each variable is resampled according to an independent Poisson(1) clock. This is a Markov process $\{\omega(t) : t \in [0,\infty)\}$, in which $\omega(t+s)$ is an ϵ -noised version of $\omega(t)$, with $\epsilon = 1 - \exp(-s)$.

An exceptional time is such a (random) t, at which an almost sure property of the static process fails for $\omega(t)$.

Main example: (Non-)existence of an infinite cluster in percolation.

Toy example: Brownian motion on the circle does sometimes hit a fix point, as opposed to its static version: a uniform random point.

In this toy example, the set of exceptional times is a random Cantor set of Lebesgue measure zero (because of Fubini) and Hausdorff-dimension 1/2.

Dynamical percolation results

Theorem (Häggström, Peres & Steif 1997).

- No exceptional times when $p \neq p_c$.
- No exceptional times when $p = p_c$ for bond percolation on \mathbb{Z}^d , $d \ge 19$.

The second fact is essentially due to:

Theorem (Steif & Schramm 2005).

- There are exceptional times (a.s.) for critical site percolation on the triangular lattice.
- They have Hausdorff dimension in [1/6, 31/36].

Theorem (Garban, P & Schramm 2008).

- There are exceptional times also on \mathbb{Z}^2 .
- On the triangular grid they have Hausdorff dimension 31/36.
- On the triangular grid, there are exceptional times with an infinite white and an infinite black cluster simultaneously. $(1/9 \le \dim \le 2/3)$

What is the Fourier spectrum and why is it useful?

 $f_n: \{\pm 1\}^{V_n} \longrightarrow \{\pm 1\}$ indicator function of left-right crossing. Element of the space $L^2(\Omega, \mu)$, where $\Omega = \{\pm 1\}^{V_n}$, μ uniform probability measure, inner product $\mathbf{E}[fg]$, having a nice orthonormal basis:

For $S \subset V_n$, let $\chi_S(\omega) := \prod_{v \in S} \omega(v)$, the parity inside S.

Any function $f \in L^2(\Omega, \mu)$ in this basis (Fourier-Walsh series):

$$\hat{f}(S) := \mathbf{E}[f\chi_S]; \qquad f = \sum_{S \subset V} \hat{f}(S) \,\chi_S.$$

By Parseval, $\sum_{S} \hat{f}(S)^2 = \mathbf{E}[f^2]$. So $\nu_f(S) := \hat{f}(S)^2 / \mathbf{E}[f^2]$ is a probability measure, and may take a random sample from it:

the spectral sample $\mathscr{S}_f \subset V_n$, a random set with law ν_f .

For the crossing function, $\mathbf{E}[f_n^2] = 1$. Get \mathscr{S}_n , a strange random set of bits in the plane. $\mathbf{P}[x, y \in \operatorname{Piv}_n] = \nu[x, y \in \mathscr{S}_n]$, but not for more points.

$$\mathbf{E}[\omega^{\epsilon}(v)\omega(v)] = 1 - \epsilon, \text{ so } \mathbf{E}[\chi_{S}(\omega^{\epsilon})\chi_{S}(\omega)] = (1 - \epsilon)^{|S|}. \text{ Therefore,}$$
$$\mathbf{E}[f(\omega^{\epsilon})f(\omega)] = \sum_{S \subseteq V} \hat{f}(S)^{2}(1 - \epsilon)^{|S|} = \mathbf{E}_{\nu}[(1 - \epsilon)^{|\mathscr{S}_{f}|}].$$

(In other words: the χ_S are eigenfunctions of the noise operator $(N_{\epsilon}f)(\omega) := \mathbf{E}[f(\omega^{\epsilon}) \mid \omega]$ with eigenvalues $(1-\epsilon)^{|S|}$, while $\mathbf{E}[f(\omega^{\epsilon})f(\omega)] = \mathbf{E}[fN_{\epsilon}f]$.)

And the correlation is:

$$\mathbf{E}[f(\omega^{\epsilon})f(\omega)] - \mathbf{E}[f]^{2} = \sum_{\emptyset \neq S \subset V} \hat{f}(S)^{2} (1-\epsilon)^{|S|} = \sum_{k=1}^{|V_{n}|} (1-\epsilon)^{k} \sum_{|S|=k} \hat{f}(S)^{2}.$$

If, for some sequence k_n , we have $\nu [0 < |\mathscr{S}_n| < tk_n] \to 0$ as $t \to 0$, uniformly in n, then $(1 - \epsilon)^k \sim \exp(-\epsilon k)$ implies that for $\epsilon_n \gg 1/k_n$ we have asymptotic independence.

But this concentration is much harder to prove than for $Piv_n \dots$

Proving existence of exceptional times

Second Moment Method:

Let $Q_R := \{t \in [0,1] : 0 \longleftrightarrow R\}$ and $Z_R := Leb(Q_R)$.

$$\mathbf{P}\left[Q_R \neq \emptyset\right] = \mathbf{P}\left[Z_R > 0\right] \geqslant \frac{\mathbf{E}\left[Z_R\right]^2}{\mathbf{E}\left[Z_R^2\right]}.$$

$$\begin{split} \mathbf{E}[Z_R] &= \int_0^1 \mathbf{P}[0 \longleftrightarrow_t R] \, dt = \mathbf{P}[0 \longleftrightarrow R]. \\ \mathbf{E}[Z_R^2] &= \int_0^1 \int_0^1 \mathbf{P}[0 \longleftrightarrow_t R, 0 \longleftrightarrow_s R] \, ds \, dt \asymp \int_0^1 \mathbf{E}[f_R(\omega_0) f_R(\omega_s)] \, ds. \\ \text{Thus we again want to estimate the correlation } \mathbf{E}[f_R(\omega_0) f_R(\omega_s)] = \mathbf{E}[f_R T_s f_R] \text{from above, where} \end{split}$$

$$T_s f(\omega) := \mathbf{E} \left[f(\omega_s) \mid \omega_0 = \omega \right] = N_{1 - \exp(-s)} f(\omega).$$

Three very simple examples

Dictator_n(
$$x_1, \ldots, x_n$$
) := x_1 .
Here $\mathbf{E}[\operatorname{Dic}_n N_{\epsilon} \operatorname{Dic}_n] = 1 - \epsilon$, so noise-stable.
And $\nu[\mathscr{S}_n = \{x_1\}] = 1$.

$$\begin{split} \mathsf{Majority}_n(x_1,\ldots,x_n) &:= \mathrm{sgn}\,(x_1+\cdots+x_n) \approx \frac{1}{\sqrt{n}}(x_1+\cdots+x_n) \,.\\ \mathsf{Here}\,\, \mathbf{E}[\,\mathsf{Maj}_n\,N_\epsilon\mathsf{Maj}_n\,] &= 1 - O(\epsilon), \, \mathsf{so} \,\, \mathsf{noise-stable}.\\ \mathsf{And}\,\, \nu[\mathscr{S}_n = \{x_i\}] \asymp 1/n, \, \mathsf{most} \,\, \mathsf{of} \,\, \mathsf{the} \,\, \mathsf{weight} \,\, \mathsf{is} \,\, \mathsf{on} \,\, \mathsf{singletons}. \end{split}$$

 $\begin{aligned} \mathsf{Parity}_n(x_1,\ldots,x_n) &:= x_1 \cdots x_n \\ \mathsf{Here} \ \mathbf{E}[\operatorname{\mathsf{Par}}_n N_\epsilon \mathsf{Par}_n] &= (1-\epsilon)^n, \text{ the most sensitive to noise.} \\ \mathsf{And} \ \nu[\mathscr{S}_n &= \{x_1,\ldots,x_n\}] = 1. \end{aligned}$

Basic properties of the spectral sample

Inclusion formula: $\nu_f [\mathscr{S} \subset U] = \mathbf{E} \Big[\mathbf{E} \Big[f \mid U \Big]^2 \Big].$

Proof:

$$\mathbf{E}\left[\chi_{S} \mid U\right] = \begin{cases} \chi_{S} & S \subset U, \\ 0 & S \not\subset U. \end{cases}$$

Thus $\mathbf{E}\left[\mathbf{E}\left[f \mid U\right]^{2}\right] = \mathbf{E}\left[\left(\sum_{S \subset U} \hat{f}(S) \chi_{S}\right)^{2}\right] = \sum_{S \subset U} \hat{f}(S)^{2}.$

From this, for disjoint subsets A and B,

$$\nu \left[\mathscr{S} \cap B \neq \emptyset, \ \mathscr{S} \cap A = \emptyset \right] = \nu \left[\mathscr{S} \subseteq A^c \right] - \nu \left[\mathscr{S} \subseteq (A \cup B)^c \right]^2 \right]$$
$$= \mathbf{E} \left[\mathbf{E} \left[f \mid A^c \right]^2 - \mathbf{E} \left[f \mid (A \cup B)^c \right]^2 \right]$$
$$= \mathbf{E} \left[\left(\mathbf{E} \left[f \mid A^c \right] - \mathbf{E} \left[f \mid (A \cup B)^c \right] \right)^2 \right]$$

For the spectral sample \mathscr{S}_n of the $n \times n$ crossing:

With $A := \emptyset$ we get: $\nu [\mathscr{S}_n \cap B \neq \emptyset] \leq C \alpha_4(B, V_n);$ with $A := B^c$ we get: $\nu [\emptyset \neq \mathscr{S}_n \subseteq B] \leq C \alpha_4(B, V_n)^2.$

If $B = \{x\}$: equality in both cases, $\nu[x \in \mathscr{S}_n] = \mathbf{P}[x \in \operatorname{Piv}_n]$, and

$$\mathbf{E}_{\nu}[|\mathscr{S}_{n}|] = \mathbf{E}[|\operatorname{Piv}_{n}|] =: m_{n} \quad (= n^{3/4 + o(1)}).$$

If B is a sub-square of side r, and B' = B/3, then

$$\mathbf{E}_{\nu}\Big[|\mathscr{S} \cap B'| \mid \mathscr{S} \cap B \neq \emptyset\Big] = \sum_{x \in B'} \frac{\nu[x \in \mathscr{S}]}{\nu[\mathscr{S} \cap B \neq \emptyset]} \geqslant \sum_{x \in B'} \frac{\alpha_4(x, V_n)}{C \alpha_4(B, V_n)}$$
$$\asymp |B'| \alpha_4(r) \asymp m_r,$$

as we would expect from a random fractal-like set. But we need something stronger: with good probability, and conditioned on other sub-squares.

Main results for the spectral sample (GPS)

If $r \in [1, n]$, then $\{|\mathscr{S}_n| < m_r\}$ is basically equivalent to being contained inside some $r \times r$ sub-square:

$$\mathbf{P}\big[\left|\mathscr{S}_{n}\right| < m_{r}\big] \asymp \alpha_{4}(r,n)^{2} \left(\frac{n}{r}\right)^{2}.$$

In particular, on the triangular lattice Δ ,

$$\mathbf{P}\big[\left|\mathscr{S}_n\right| < \lambda \, m_n\big] \asymp \lambda^{2/3 + o(1)}.$$

The *scaling limit* of \mathscr{S}_n is a conformally invariant Cantor-set with Hausdorffdimension 3/4.

The existence of the scaling limit follows from Schramm & Smirnov: *Percolation is black noise*, answering a question of Tsirelson.

The strategy of proof

Tile the $n \times n$ square with $(n/r)^2$ boxes of size r. Let $X = X_{r,n}$ be the number of boxes intersecting \mathscr{S}_n . We already know that

$$\mathbf{E}[X] \ge \alpha_4(r,n)(n/r)^2 \asymp (n/r)^{3/4 + o(1)}.$$

1st step: X is smaller than $C \log(n/r)$ with only very small probability.

2nd step: In a non-empty *r*-box, with positive probability $|\mathscr{S}_n| \ge c m_r$.

If we could repeat this step for each of the X nonempty boxes, \mathscr{S}_n would be large almost surely.

But we can prove Step 2 only in the presence of negative information about \mathscr{S}_n everywhere else! (Partial independence.)

3rd step: Using a sampling trick and a strange large deviation result, 1+2 turns out to be enough.

Annulus structures

Proposition 1. $\nu[X \leq k] \leq k^{C \log k} (n/r)^2 \alpha_4(r, n)^2$.

Thus, we need to construct a family of annulus structures that has some member compatible with any k-element set, but $\sum_{\mathcal{A}} \prod_{A \in \mathcal{A}} \alpha_4(A)^2$ is still small. This is done recursively.

Partial independence

Proposition 2. If *B* is an *r*-box in $[0,n]^2$, and $W \cap (3B) = \emptyset$, then $\mathbf{P}\Big[|\mathscr{S} \cap B| > c r^2 \alpha_4(r) \mid \mathscr{S} \cap W = \emptyset \neq \mathscr{S} \cap (2B)\Big] \ge c$.

Separation Lemma. If $dist(B, \partial D) > diam(B)$, then conditioned on the k-arm event in $D \setminus B$ with fixed endpoints on ∂D , then with a uniformly positive conditional probability the k arms are "well-separated" around B.

Large deviation lemma

Proposition 3. Suppose $X_i, Y_i \in \{0, 1\}$, i = 1, ..., n, and that $\forall J \subset [n]$ and $\forall i \in [n] \setminus J$

$$\mathbf{P}\left[Y_i=1 \mid \forall_{j\in J}Y_j=0\right] \geqslant c \mathbf{P}\left[X_i=1 \mid \forall_{j\in J}Y_j=0\right].$$

Then

$$\mathbf{P}\Big[\forall_i Y_i = 0\Big] \leqslant c^{-1} \mathbf{E}\Big[\exp\Big(-(c/e)\sum_i X_i\Big)\Big].$$

We use this with $X_j := 1_{\mathscr{S} \cap B_j \neq \emptyset}$ and $Y_j := 1_{\mathscr{S} \cap B_j \cap Q \neq \emptyset}$ for a random Bernoulli set Q, independent from everything else, with density so that it meets with probability 1/2 a fixed set of cardinality m_r in B_j .

Some related results and questions

Theorem (Hammond, P & Schramm 2008). There is a natural local time measure μ on the set of exceptional times. At a μ -typical time, the configuration has the law of Kesten's Incipient Infinite Cluster (1986).

Theorem (Garban, P & Schramm 2008). The *scaling limits* of the dynamical percolation process and near-critical percolation exist, are governed by macroscopic pivotals, and are *conformally covariant*. The scaling limit of the Minimal Spanning Tree exists and is translationally, rotationally, and scale invariant, but *probably not* conformally.

Question1: Can one build similar proofs for other Boolean functions? Question2: What about crossing functions, but non-uniform measure, e.g., Random Cluster measures? Ising model is expected to be stable, because of non-existence of pivotals ($\kappa < 4$ versus $\kappa > 4$ in SLE_{κ}). Question3 (G. Kalai): Is the Universe noise sensitive? Current particle physics focuses on stable phenomena, low-eigenvalue representations. What about dark matter/energy?