The exact noise and dynamical sensitivity of critical percolation, via the Fourier spectrum

Gábor Pete
http://www.math.toronto.edu/~gabor

Joint work with Christophe Garban (Université Paris-Sud and ENS) and Oded Schramm (Microsoft Research)

Plan of the talk

- Critical percolation: RSW, conformal invariance, $S L E_{6}$ exponents
- Noise sensitivity of critical percolation
- Dynamical percolation
- Why is the Fourier spectrum useful?
- The Fourier spectrum of critical percolation
- Strategy of proof
- Further results and questions

Bernoulli (p) site and bond percolation

Given an (infinite) graph $G=(V, E)$ and $p \in[0,1]$. Each site (or bond) is chosen open with probability p, closed with $1-p$, independently of each other. Consider the open connected clusters.

Site percolation on triangular grid Δ
$=$ face percolation on hexagonal grid:

Site percolation on triangular grid Δ
$=$ face percolation on hexagonal grid:

Site percolation on triangular grid Δ
$=$ face percolation on hexagonal grid:

Critical percolation

For any G there is a $p_{c} \in[0,1]$, s.t. $\mathbf{P}_{p}[\exists \infty$ cluster $]=0$ for $p<p_{c}$, but $\mathbf{P}_{p}[\exists \infty$ cluster $]=1$ for $p>p_{c}$, because of Kolmogorov's 0-1 law.

Simplest model of phase transition.
The case of planar lattices and trees is understood best. E.g.:
Theorem (Harris 1960 and Kesten 1980).
$p_{c}\left(\mathbb{Z}^{2}\right.$, bond $)=p_{c}(\Delta$, site $)=1 / 2$.
At $p=1 / 2$, there is a.s. no infinite cluster.
For $p>1 / 2$, there is a.s. exactly one infinite cluster.

Why is $p_{c}=1 / 2$? Duality!
\mathbb{Z}^{2} bond percolation at $p=1 / 2$: in an $(n+1) \times n$ rectangle, left-right crossing has probability exactly $1 / 2$.
For site percolation on Δ, same on an $n \times n$ rhombus.

Crossing probabilities and criticality

Theorem (Russo 1978 and Seymour-Welsh 1978). In critical percolation on almost any planar lattice, for $n, L>0$,

$$
0<a_{L}<\mathbf{P}[\text { left-right crossing in } n \times L n]<b_{L}<1
$$

Same holds for annulus-crossings.
By repeating this on all scales, and gluing the pieces by FKG:

$$
(r / R)^{\alpha}<\mathbf{P}\left[\partial B_{r} \longleftrightarrow \partial B_{R}\right]<(r / R)^{\beta}
$$

Conformal invariance on Δ

Theorem (Smirnov 2001). For $\mathrm{p}=1 / 2$ bond percolation on Δ_{ϵ}, and $D \subset \mathbb{R}$ simply connected domain with four boundary points $\{a, b, c, d\}$,

$$
\lim _{\epsilon \rightarrow 0} \mathbf{P}\left[a b \longleftrightarrow c d \text { inside the discrete approximation } D_{\epsilon}\right]
$$

exists, is strictly between 0 and 1 , and is conformally invariant.

$S L E_{6}$ exponents

Given the conformal invariance, the exploration path converges to the Stochastic Loewner Evolution with $\kappa=6$ (Schramm 2000).

Using the $S L E_{6}$ curve, several critical exponents can be computed (Lawler-Schramm-Werner, Smirnov-Werner 2001), e.g.:

$$
\alpha_{4}(r, R):=\mathbf{P}
$$

while $\alpha_{1}(r, R)=(r / R)^{5 / 48+o(1)}$ and $\mathbf{P}_{p_{c}+\epsilon}[0 \longleftrightarrow \infty]=\epsilon^{5 / 36+o(1)}$.

Percolation and noise

Take an ω critical percolation configuration. Let ω^{ϵ} be a new configuration, where each site (or bond) is resampled with probability ϵ, independently. (The ϵ-noised version of ω.)

For how large an ϵ can we still predict from ω whether there is a left-right crossing in ω^{ϵ} ?

Percolation and noise

Take an ω critical percolation configuration. Let ω^{ϵ} be a new configuration, where each site (or bond) is resampled with probability ϵ, independently. (The ϵ-noised version of ω.)

For how large an ϵ can we still predict from ω whether there is a left-right crossing in ω^{ϵ} ?

Noise sensitivity of percolation

Theorem (Benjamini, Kalai \& Schramm 1998). If $\epsilon>0$ is fixed, and f_{n} is the indicator function for a left-right percolation crossing in an $n \times n$ square, then as $n \rightarrow \infty$

$$
\mathbf{E}\left[f_{n}(\omega) f_{n}\left(\omega^{\epsilon}\right)\right]-\mathbf{E}\left[f_{n}(\omega)\right]^{2} \rightarrow 0 .
$$

This holds for all $\epsilon=\epsilon_{n}>c / \log n$.
Theorem (Steif \& Schramm 2005). Same if $\epsilon_{n}>n^{-a}$ for some positive $a>0$. If triangular lattice, may take any $a<1 / 8$.

Theorem (Garban, P \& Schramm 2008). Same holds if and only if $\epsilon_{n} \mathbf{E}[\mid$ pivotals $\mid] \rightarrow \infty$. For triangular lattice, this threshold is $\epsilon_{n}=$ $n^{-3 / 4+o(1)}$.

Naive idea: how many pivotals are there?

A site (or bond) is pivotal in ω, if flipping it changes the existence of a left-right crossing. $\mathbf{E}\left|\operatorname{Piv}_{n}\right| \asymp n^{2} \alpha_{4}(n) \quad\left(=n^{3 / 4+o(1)}\right)$.

Furthermore, $\mathbf{E}\left[\left|\operatorname{Piv}_{n}\right|^{2}\right] \leqslant C\left(\mathbf{E}\left|\operatorname{Piv}_{n}\right|\right)^{2}$. So, $\mathbf{P}\left[\left|\operatorname{Piv}_{n}\right|>\lambda \mathbf{E}\left|\operatorname{Piv}_{n}\right|\right]<C / \lambda^{2}$, any λ.

Concentration around mean also from below: $\mathbf{P}\left[0<\left|\operatorname{Piv}_{n}\right|<\lambda \mathbf{E}\left|\operatorname{Piv}_{n}\right|\right] \asymp \lambda^{11 / 9+o(1)}$, as $\lambda \rightarrow 0$ (exponent only for Δ).

Cannot have many pivotals. \Longrightarrow If $\epsilon_{n} \mathbf{E}\left[\left|\operatorname{Piv}_{n}\right|\right] \rightarrow 0$, then we don't hit any pivotals. \Longrightarrow Asymptotically full correlation.

Cannot have few pivotals (if there is any). \Longrightarrow If $\epsilon_{n} \mathbf{E}\left[\left|\operatorname{Piv}_{n}\right|\right] \rightarrow \infty$, then we do hit many pivotals. But this \nRightarrow asymptotic independence!

Dynamical percolation

Each variable is resampled according to an independent Poisson(1) clock. This is a Markov process $\{\omega(t): t \in[0, \infty)\}$, in which $\omega(t+s)$ is an ϵ-noised version of $\omega(t)$, with $\epsilon=1-\exp (-s)$.

An exceptional time is such a (random) t, at which an almost sure property of the static process fails for $\omega(t)$.

Main example: (Non-)existence of an infinite cluster in percolation.
Toy example: Brownian motion on the circle does sometimes hit a fix point, as opposed to its static version: a uniform random point.

In this toy example, the set of exceptional times is a random Cantor set of Lebesgue measure zero (because of Fubini) and Hausdorff-dimension 1/2.

Dynamical percolation results

Theorem (Häggström, Peres \& Steif 1997).

- No exceptional times when $p \neq p_{c}$.
- No exceptional times when $p=p_{c}$ for bond percolation on $\mathbb{Z}^{d}, d \geqslant 19$.

The second fact is essentially due to:

Theorem (Steif \& Schramm 2005).

- There are exceptional times (a.s.) for critical site percolation on the triangular lattice.
- They have Hausdorff dimension in $[1 / 6,31 / 36]$.

Theorem (Garban, P \& Schramm 2008).

- There are exceptional times also on \mathbb{Z}^{2}.
- On the triangular grid they have Hausdorff dimension 31/36.
- On the triangular grid, there are exceptional times with an infinite white and an infinite black cluster simultaneously. ($1 / 9 \leqslant \operatorname{dim} \leqslant 2 / 3$)

What is the Fourier spectrum and why is it useful?

$f_{n}:\{ \pm 1\}^{V_{n}} \longrightarrow\{ \pm 1\}$ indicator function of left-right crossing. Element of the space $L^{2}(\Omega, \mu)$, where $\Omega=\{ \pm 1\}^{V_{n}}, \mu$ uniform probability measure, inner product $\mathbf{E}[f g]$, having a nice orthonormal basis:

For $S \subset V_{n}$, let $\chi_{S}(\omega):=\prod_{v \in S} \omega(v)$, the parity inside S.
Any function $f \in L^{2}(\Omega, \mu)$ in this basis (Fourier-Walsh series):

$$
\hat{f}(S):=\mathbf{E}\left[f \chi_{S}\right] ; \quad f=\sum_{S \subset V} \hat{f}(S) \chi_{S}
$$

By Parseval, $\sum_{S} \hat{f}(S)^{2}=\mathbf{E}\left[f^{2}\right]$. So $\nu_{f}(S):=\hat{f}(S)^{2} / \mathbf{E}\left[f^{2}\right]$ is a probability measure, and may take a random sample from it: the spectral sample $\mathscr{S}_{f} \subset V_{n}$, a random set with law ν_{f}.
For the crossing function, $\mathbf{E}\left[f_{n}^{2}\right]=1$. Get \mathscr{S}_{n}, a strange random set of bits in the plane. $\mathbf{P}\left[x, y \in \operatorname{Piv}_{n}\right]=\nu\left[x, y \in \mathscr{S}_{n}\right]$, but not for more points.
$\mathbf{E}\left[\omega^{\epsilon}(v) \omega(v)\right]=1-\epsilon$, so $\mathbf{E}\left[\chi_{S}\left(\omega^{\epsilon}\right) \chi_{S}(\omega)\right]=(1-\epsilon)^{|S|}$. Therefore,

$$
\mathrm{E}\left[f\left(\omega^{\epsilon}\right) f(\omega)\right]=\sum_{S \subseteq V} \hat{f}(S)^{2}(1-\epsilon)^{|S|}=\mathbf{E}_{\nu}\left[(1-\epsilon)^{\left|\mathscr{S}_{f}\right|}\right] .
$$

(In other words: the χ_{S} are eigenfunctions of the noise operator $\left(N_{\epsilon} f\right)(\omega):=$ $\mathbf{E}\left[f\left(\omega^{\epsilon}\right) \mid \omega\right]$ with eigenvalues $(1-\epsilon)^{|S|}$, while $\mathbf{E}\left[f\left(\omega^{\epsilon}\right) f(\omega)\right]=\mathbf{E}\left[f N_{\epsilon} f\right]$.)

And the correlation is:
$\mathbf{E}\left[f\left(\omega^{\epsilon}\right) f(\omega)\right]-\mathbf{E}[f]^{2}=\sum_{\emptyset \neq S \subset V} \hat{f}(S)^{2}(1-\epsilon)^{|S|}=\sum_{k=1}^{\left|V_{n}\right|}(1-\epsilon)^{k} \sum_{|S|=k} \hat{f}(S)^{2}$.

If, for some sequence k_{n}, we have $\nu\left[0<\left|\mathscr{S}_{n}\right|<t k_{n}\right] \rightarrow 0$ as $t \rightarrow 0$, uniformly in n, then $(1-\epsilon)^{k} \sim \exp (-\epsilon k)$ implies that for $\epsilon_{n} \gg 1 / k_{n}$ we have asymptotic independence.

But this concentration is much harder to prove than for $\operatorname{Piv}_{n} \ldots$

Proving existence of exceptional times

Second Moment Method:
Let $Q_{R}:=\{t \in[0,1]: 0 \longleftrightarrow R\}$ and $Z_{R}:=\operatorname{Leb}\left(Q_{R}\right)$.

$$
\mathbf{P}\left[Q_{R} \neq \emptyset\right]=\mathbf{P}\left[Z_{R}>0\right] \geqslant \frac{\mathbf{E}\left[Z_{R}\right]^{2}}{\mathbf{E}\left[Z_{R}^{2}\right]} .
$$

$\mathbf{E}\left[Z_{R}\right]=\int_{0}^{1} \mathbf{P}\left[0 \longleftrightarrow{ }_{t} R\right] d t=\mathbf{P}[0 \longleftrightarrow R]$.
$\mathbf{E}\left[Z_{R}^{2}\right]=\int_{0}^{1} \int_{0}^{1} \mathbf{P}\left[0 \longleftrightarrow{ }_{t} R, 0 \longleftrightarrow{ }_{s} R\right] d s d t \asymp \int_{0}^{1} \mathbf{E}\left[f_{R}\left(\omega_{0}\right) f_{R}\left(\omega_{s}\right)\right] d s$.
Thus we again want to estimate the correlation $\mathbf{E}\left[f_{R}\left(\omega_{0}\right) f_{R}\left(\omega_{s}\right)\right]=$ $\mathbf{E}\left[f_{R} T_{s} f_{R}\right]$ from above, where

$$
T_{s} f(\omega):=\mathbf{E}\left[f\left(\omega_{s}\right) \mid \omega_{0}=\omega\right]=N_{1-\exp (-s)} f(\omega) .
$$

Three very simple examples

$\operatorname{Dictator}_{n}\left(x_{1}, \ldots, x_{n}\right):=x_{1}$.
Here $\mathbf{E}\left[\operatorname{Dic}_{n} N_{\epsilon} \mathrm{Dic}_{n}\right]=1-\epsilon$, so noise-stable.
And $\nu\left[\mathscr{S}_{n}=\left\{x_{1}\right\}\right]=1$.
Majority $_{n}\left(x_{1}, \ldots, x_{n}\right):=\operatorname{sgn}\left(x_{1}+\cdots+x_{n}\right) \approx \frac{1}{\sqrt{n}}\left(x_{1}+\cdots+x_{n}\right)$.
Here $\mathbf{E}\left[\mathrm{Maj}_{n} N_{\epsilon} \mathrm{Maj}_{n}\right]=1-O(\epsilon)$, so noise-stable.
And $\nu\left[\mathscr{S}_{n}=\left\{x_{i}\right\}\right] \asymp 1 / n$, most of the weight is on singletons.
$\operatorname{Parity}_{n}\left(x_{1}, \ldots, x_{n}\right):=x_{1} \cdots x_{n}$
Here $\mathbf{E}\left[\operatorname{Par}_{n} N_{\epsilon} \operatorname{Par}_{n}\right]=(1-\epsilon)^{n}$, the most sensitive to noise.
And $\nu\left[\mathscr{S}_{n}=\left\{x_{1}, \ldots, x_{n}\right\}\right]=1$.

Basic properties of the spectral sample

Inclusion formula: $\nu_{f}[\mathscr{S} \subset U]=\mathbf{E}\left[\mathbf{E}[f \mid U]^{2}\right]$.
Proof:

$$
\mathbf{E}\left[\chi_{S} \mid U\right]= \begin{cases}\chi_{S} & S \subset U \\ 0 & S \not \subset U\end{cases}
$$

Thus $\quad \mathbf{E}\left[\mathbf{E}[f \mid U]^{2}\right]=\mathbf{E}\left[\left(\sum_{S \subset U} \hat{f}(S) \chi_{S}\right)^{2}\right]=\sum_{S \subset U} \hat{f}(S)^{2}$.
From this, for disjoint subsets A and B,

$$
\begin{aligned}
\nu[\mathscr{S} \cap B \neq \emptyset, \mathscr{S} \cap A=\emptyset] & =\nu\left[\mathscr{S} \subseteq A^{c}\right]-\nu\left[\mathscr{S} \subseteq(A \cup B)^{c}\right] \\
& =\mathbf{E}\left[\mathbf{E}\left[f \mid A^{c}\right]^{2}-\mathbf{E}\left[f \mid(A \cup B)^{c}\right]^{2}\right] \\
& =\mathbf{E}\left[\left(\mathbf{E}\left[f \mid A^{c}\right]-\mathbf{E}\left[f \mid(A \cup B)^{c}\right]\right)^{2}\right]
\end{aligned}
$$

For the spectral sample \mathscr{S}_{n} of the $n \times n$ crossing:

With $A:=\emptyset$ we get: $\nu\left[\mathscr{S}_{n} \cap B \neq \emptyset\right] \leqslant C \alpha_{4}\left(B, V_{n}\right)$;
with $A:=B^{c}$ we get: $\nu\left[\emptyset \neq \mathscr{S}_{n} \subseteq B\right] \leqslant C \alpha_{4}\left(B, V_{n}\right)^{2}$.
If $B=\{x\}$: equality in both cases, $\nu\left[x \in \mathscr{S}_{n}\right]=\mathbf{P}\left[x \in \operatorname{Piv}_{n}\right]$, and

$$
\mathbf{E}_{\nu}\left[\left|\mathscr{S}_{n}\right|\right]=\mathbf{E}\left[\left|\operatorname{Piv}_{\mathrm{n}}\right|\right]=: m_{n} \quad\left(=n^{3 / 4+o(1)}\right) .
$$

If B is a sub-square of side r, and $B^{\prime}=B / 3$, then

$$
\begin{aligned}
\mathbf{E}_{\nu}\left[\left|\mathscr{S} \cap B^{\prime}\right| \mid \mathscr{S} \cap B \neq \emptyset\right] & =\sum_{x \in B^{\prime}} \frac{\nu[x \in \mathscr{S}]}{\nu[\mathscr{S} \cap B \neq \emptyset]} \geqslant \sum_{x \in B^{\prime}} \frac{\alpha_{4}\left(x, V_{n}\right)}{C \alpha_{4}\left(B, V_{n}\right)} \\
& \asymp\left|B^{\prime}\right| \alpha_{4}(r) \asymp m_{r},
\end{aligned}
$$

as we would expect from a random fractal-like set. But we need something stronger: with good probability, and conditioned on other sub-squares.

Main results for the spectral sample (GPS)

If $r \in[1, n]$, then $\left\{\left|\mathscr{S}_{n}\right|<m_{r}\right\}$ is basically equivalent to being contained inside some $r \times r$ sub-square:

$$
\mathbf{P}\left[\left|\mathscr{S}_{n}\right|<m_{r}\right] \asymp \alpha_{4}(r, n)^{2}\left(\frac{n}{r}\right)^{2} .
$$

In particular, on the triangular lattice Δ,

$$
\mathbf{P}\left[\left|\mathscr{S}_{n}\right|<\lambda m_{n}\right] \asymp \lambda^{2 / 3+o(1)} .
$$

The scaling limit of \mathscr{S}_{n} is a conformally invariant Cantor-set with Hausdorffdimension $3 / 4$.

The existence of the scaling limit follows from Schramm \& Smirnov: Percolation is black noise, answering a question of Tsirelson.

The strategy of proof

Tile the $n \times n$ square with $(n / r)^{2}$ boxes of size r. Let $X=X_{r, n}$ be the number of boxes intersecting \mathscr{S}_{n}. We already know that

$$
\mathbf{E}[X] \geqslant \alpha_{4}(r, n)(n / r)^{2} \asymp(n / r)^{3 / 4+o(1)} .
$$

1st step: X is smaller than $C \log (n / r)$ with only very small probability.
2nd step: In a non-empty r-box, with positive probability $\left|\mathscr{S}_{n}\right| \geqslant c m_{r}$.
If we could repeat this step for each of the X nonempty boxes, \mathscr{S}_{n} would be large almost surely.

But we can prove Step 2 only in the presence of negative information about \mathscr{S}_{n} everywhere else! (Partial independence.)

3rd step: Using a sampling trick and a strange large deviation result, $1+2$ turns out to be enough.

Annulus structures

Proposition 1. $\nu[X \leqslant k] \leqslant k^{C \log k}(n / r)^{2} \alpha_{4}(r, n)^{2}$.

An annulus structure \mathcal{A} compatible with a set S :

Thus, we need to construct a family of annulus structures that has some member compatible with any k-element set, but $\sum_{\mathcal{A}} \prod_{A \in \mathcal{A}} \alpha_{4}(A)^{2}$ is still small. This is done recursively.

Partial independence

Proposition 2. If B is an r-box in $[0, n]^{2}$, and $W \cap(3 B)=\emptyset$, then $\mathbf{P}\left[|\mathscr{S} \cap B|>c r^{2} \alpha_{4}(r) \mid \mathscr{S} \cap W=\emptyset \neq \mathscr{S} \cap(2 B)\right] \geqslant c$.

Separation Lemma. If $\operatorname{dist}(B, \partial D)>\operatorname{diam}(B)$, then conditioned on the k-arm event in $D \backslash B$ with fixed endpoints on ∂D, then with a uniformly positive conditional probability the k arms are "well-separated" around B.

Large deviation lemma

Proposition 3. Suppose $X_{i}, Y_{i} \in\{0,1\}, i=1, \ldots, n$, and that $\forall J \subset[n]$ and $\forall i \in[n] \backslash J$

$$
\mathbf{P}\left[Y_{i}=1 \mid \forall_{j \in J} Y_{j}=0\right] \geqslant c \mathbf{P}\left[X_{i}=1 \mid \forall_{j \in J} Y_{j}=0\right] .
$$

Then

$$
\mathbf{P}\left[\forall_{i} Y_{i}=0\right] \leqslant c^{-1} \mathbf{E}\left[\exp \left(-(c / e) \sum_{i} X_{i}\right)\right] .
$$

We use this with $X_{j}:=1_{\mathscr{S} \cap B_{j} \neq \emptyset}$ and $Y_{j}:=1_{\mathscr{S} \cap B_{j} \cap Q \neq \emptyset}$ for a random Bernoulli set Q, independent from everything else, with density so that it meets with probability $1 / 2$ a fixed set of cardinality m_{r} in B_{j}.

Some related results and questions

Theorem (Hammond, P \& Schramm 2008). There is a natural local time measure μ on the set of exceptional times. At a μ-typical time, the configuration has the law of Kesten's Incipient Infinite Cluster (1986).

Theorem (Garban, P \& Schramm 2008). The scaling limits of the dynamical percolation process and near-critical percolation exist, are governed by macroscopic pivotals, and are conformally covariant. The scaling limit of the Minimal Spanning Tree exists and is translationally, rotationally, and scale invariant, but probably not conformally.

Question1: Can one build similar proofs for other Boolean functions?
Question2: What about crossing functions, but non-uniform measure, e.g., Random Cluster measures? Ising model is expected to be stable, because of non-existence of pivotals ($\kappa<4$ versus $\kappa>4$ in $S L E E_{\kappa}$).
Question3 (G. Kalai): Is the Universe noise sensitive? Current particle physics focuses on stable phenomena, low-eigenvalue representations. What about dark matter/energy?

