Stochastic Models — Third HW problem set

Gábor Pete

http://www.math.bme.hu/~gabor

May 24, 2023

The number of dots • is the value of an exercise. Hand in solutions for 12 points by June 8 Thu 4:15 pm. If you have seriously tried to solve some problem, but got stuck, I will be happy to help. Also, if your final solution to a problem has some mistake but has some potential to work, then I will give it back and you can try and correct the mistake.

Recall the following definition. Let G_n be a sequence of finite graphs. Pick a uniform random root ρ_n from $V(G_n)$, and take the ball $B_{G_n,\rho_n}(r)$ around it in the graph metric, with some fixed radius $r \in \mathbb{Z}_+$. We get a distribution $\mu_{n,r}$ on finite rooted graphs. We say that the sequence $\{G_n\}$ converges in the **Benjamini-Schramm sense** (also called **local weak convergence**) to a random rooted graph (G, ρ) , if, for every r, the distributions $\mu_{n,r}$ converge weakly as $n \to \infty$ to the distribution of $B_{G,\rho}(r)$. The simplest case is when the limit is a transitive infinite graph G: the measures $\mu_{n,r}$ converge to the Dirac measure on a single graph, the r-ball of G. The following exercise generalizes the examples of boxes in \mathbb{Z}^d and balls in the d-regular tree \mathbb{T}_d that we saw on class:

- \triangleright Exercise 1. •• Show that a transitive graph G has a sequence G_n of subgraphs converging to it in the Benjamini-Schramm (local weak) sense if and only if it is amenable.
- ▷ Exercise 2. Assuming Exercise 21 from HW2, show that our random *d*-regular bipartite multi-graph $M_{n,n,d}$ converges to the *d*-regular tree \mathbb{T}_d in the Benjamini-Schramm sense. (Here the randomness for the measure $\mu_{n,r}$ comes from two sources: we take a random root ρ_n in the random graph G_n , and want to show convergence in this joint probability space.)
- ▷ Exercise 3.** Let G_n be the Erdős-Rényi random graph $G(n, \lambda/n)$, with any $\lambda \in \mathbb{R}_+$ fixed. Show that the Benjamini-Schramm limit of G_n is the PGW(λ) tree, the Galton-Watson tree with offpsring Poisson(λ), rooted as normally. (As in the previous exercise, convergence in the joint probability space of choosing the random graph and the random root.)
- \triangleright **Exercise 4.** Show that the functions $v_k(t) := \frac{k^{k-1}}{k!}e^{-kt}t^{k-1}$ for k = 1, 2, ... indeed satisfy the Smoluchowski coagulation equations

$$\frac{d}{dt}v_k(t) = -kv_k(t) + \frac{k}{2}\sum_{\ell=1}^{k-1}v_\ell(t)v_{k-\ell}(t)\,.$$

- ▷ Exercise 5. Can it happen for some iid sequence $X_1, X_2, ...$ that $(X_1 + \cdots + X_n)/a_n$ almost surely converges, for some sequence $a_n \to \infty$ (e.g., $a_n = n$ or $a_n = \sqrt{n}$) to a random variable that is not an almost sure constant? (Hint: think of Kolmogorov's 0/1 law.)
- ▷ **Exercise 6.** •• Give an example of a random sequence $(M_n)_{n=0}^{\infty}$ such that $\mathbf{E}[M_{n+1} | M_n] = M_n$ for all $n \ge 0$, but which is not a martingale (in its natural filtration $\mathcal{F}_n = \sigma\{M_0, \ldots, M_n\}$).
- \triangleright Exercise 7. Consider a Galton-Watson tree with offspring distribution ξ , with $\mathbf{E}\xi = \mu$. Let Z_n be the size of the *n*th level, with $Z_0 = 1$, the root.

(a) • Find $\mathbf{E}[Z_n]$, and using this show that $\mu < 1$ implies that the GW tree is finite almost surely.

- (b) •• Extending the previous part, show that Z_n/μ^n is a martingale, and using a Martingale Convergence Theorem (non-negative martingales converge almost surely to some almost surely finite variable), show that $\mu = 1$ with $\mathbf{P}[\xi = 1] \neq 1$ also implies that the GW tree is finite almost surely.
- (c) •• If $\mu > 1$ and $\mathbf{E}[\xi^2] < \infty$, show that $\mathbf{E}[Z_n^2] \le C(\mathbf{E}Z_n)^2$ with a constant $C < \infty$ that does not depend on *n*. (Hint: use the conditional variance formula $\mathbf{D}^2[Z_n] = \mathbf{E}[\mathbf{D}^2[Z_n \mid Z_{n-1}]] + \mathbf{D}^2[\mathbf{E}[Z_n \mid Z_{n-1}]]$.) Using this and the **Second Moment Method**, namely, if $X \ge 0$ a.s., then $\mathbf{P}[X > 0] \ge (\mathbf{E}X)^2/\mathbf{E}[X^2]$ (you can look this up, e.g., in PGG Section 12.3), deduce that the GW tree is infinite with positive probability.
- (d) Extend the previous part to the case $\mathbf{E}\xi = \infty$ or $\mathbf{D}\xi = \infty$ by a truncation $\xi \mathbf{1}_{\xi < K}$ for K large enough.
- ▷ **Exercise 8.** What is the critical bond percolation density for the infinite triangular ladder?

- \triangleright Exercise 9. We saw in class for the binary tree T that $p_c(\mathbb{T}) = 1/2$. Using this, show that the 3-regular tree has $p_c(\mathbb{T}_3) = 1/2$, as well.
- ▷ **Exercise 10.** Consider site percolation on \mathbb{Z}^2 ; i.e., instead of deleting or keeping the edges (bonds), we are keeping or deleting the vertices. Show that $1/3 \leq p_c(\mathbb{Z}^2, \text{site}) \leq 5/6$.

For Bernoulli bond percolation on any connected infinite graph G, any $o \in V(G)$, define

$$p_T := \inf \left\{ p : \mathbf{E}_p[|\mathscr{C}_o|] = \infty \right\},\$$

where \mathscr{C}_o denotes the cluster of vertex o. T is for the honour of Temperley. As for the critical density p_c defined in class, one can show that this does not depend on o. Obviously, $p_T \leq p_c$ for any graph.

- \triangleright Exercise 11. Consider Bernoulli bond percolation on the canopy tree Λ (the Benjamini-Schramm limit of the balls $B_n(o)$ in the 3-regular tree \mathbb{T}_3).
 - (a) Show that $p_c(\Lambda) = 1$.
 - (b) •• Find $p_T(\Lambda)$.

As in class, the **Ising model** on a finite graph G(V, E) is the random spin configuration $\sigma : V \longrightarrow \{\pm 1\}$ defined as follows. Given an external magnetic field $h \in \mathbb{R}$, the Hamiltonian is

$$H_h(\sigma) := -h \sum_{x \in V(G)} \sigma(x) - \sum_{(x,y) \in E(G)} \sigma(x) \sigma(y) \,,$$

and then the measure, at inverse temperature $\beta = 1/T \ge 0$, is

$$\mathbf{P}_{\beta,h}[\sigma] := \frac{\exp(-\beta H_h(\sigma))}{Z_{\beta,h}}, \quad \text{where} \quad Z_{\beta,h} := \sum_{\sigma} \exp(-\beta H_h(\sigma)).$$

 \triangleright Exercise 12. The partition function $Z_{\beta,h}$ contains a lot of information about the model:

(a) \bullet Show that the expected total energy is

$$\mathbf{E}_{\beta,h}[H] = -\frac{\partial}{\partial\beta} \ln Z_{\beta,h}, \text{ with variance } \operatorname{Var}_{\beta,h}[H] = -\frac{\partial}{\partial\beta} \mathbf{E}_{\beta,h}[H].$$

(b) • The average free energy or pressure is defined by $f(\beta, h) := (\beta |V|)^{-1} \ln Z_{\beta,h}$. Show that for the average total magnetization $M(\sigma) := |V|^{-1} \sum_{x \in V} \sigma(x)$, we have

$$m(\beta, h) := \mathbf{E}_{\beta, h}[M] = \frac{\partial}{\partial h} f(\beta, h).$$

(c) • The susceptibility of the total magnetization to a change in the external magnetic field is

$$\chi(\beta,h) := \frac{1}{\beta} \frac{\partial}{\partial h} m(\beta,h) = \frac{1}{\beta} \frac{\partial^2}{\partial h^2} f(\beta,h) \,.$$

Relate this quantity to $\operatorname{Var}_{\beta,h}[M]$. Deduce that $f(\beta,h)$ is convex in h.

- ▷ Exercise 13. Consider the Ising model on an interval, $\{\sigma_i : i = -n, ..., n 1, n\}$, with no boundary condition, at any inverse temperature $\beta \in [0, \infty)$.
 - (a) Show that $\{\sigma_i : i = -n, ..., n-1, n\}$ is the trajectory of a stationary irreducible Markov chain on $\{-,+\}$.
 - (b) •• Show that $S_n := \sum_{i=-n}^n \sigma_i$ has $\operatorname{Var}[S_n] \sim C_\beta n$, as $n \to \infty$, for some $C_\beta \in (0, \infty)$. That is, in dimension 1, there is no long range order for any $\beta < \infty$.

Here are two quite canonical random spanning tree models on finite graphs:

- ▷ Exercise 14. On any finite graph G(V, E), assign iid random edge weights $\xi = (\xi_e)_{e \in E}$ to the edges, from an atomless non-negative valued distribution. Consider the spanning tree of G that minimizes the sum of the edge weights this is the Minimal Spanning Tree MST_{ξ} .
 - (a) Show that one can construct this tree by removing from every cycle of G the edge with the largest label.
 - (b) Conclude that the distribution of MST_{ξ} does not depend on the distribution of the ξ_e 's. Hence we can denote this random tree just by MST, the Minimal Spanning Tree of the graph.
 - (c) •• Consider the uniform distribution on all the spanning trees of G this is the Uniform Spanning Tree UST. Give a finite graph on which $MST \neq UST$ with positive probability.

The Fortuin-Kasteleyn random cluster measure $\mathsf{FK}(p,q)$ on a finite graph G, with $p \in [0,1]$ and q > 0, is the invariant bond percolation model given by, for any $\omega \subset E(G)$,

$$\mathbf{P}_{\mathsf{FK}(p,q)}[\omega] := \frac{p^{|\omega|} \left(1-p\right)^{|E\setminus\omega|} q^{k(\omega)}}{Z_{\mathsf{FK}(p,q)}} \qquad \text{with} \quad Z_{\mathsf{FK}(p,q)} := \sum_{\omega \subseteq E} p^{|\omega|} \left(1-p\right)^{|E\setminus\omega|} q^{k(\omega)} ,$$

where $k(\omega)$ is the number of clusters of ω .

- Exercise 15.** Consider $\mathsf{FK}(p,q)$ on the $n \times n$ two-dimensional lattice torus $(\mathbb{Z}/n\mathbb{Z})^2$. Given a configuration ω , the dual configuration ω^* is defined on the dual torus: the dual vertices are the primal faces, and two are connected by a dual edge iff the edge between the primal faces is not present in ω . Show that for $p = p_{\text{self-dual}}(q) = \frac{\sqrt{q}}{1+\sqrt{q}}$, the dual configuration ω^* has the same distribution as ω .
- \triangleright Exercise 16. For any finite tree, show that $\mathsf{FK}(p,q)$ is just Bernoulli bond percolation at some density $\tilde{p}(q)$, which you should identify.
- \triangleright Exercise 17. For any finite graph, show that $\lim_{p\to 0+} \lim_{q\to 0+} \mathsf{FK}(p,q) = \mathsf{UST}$.