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The number of dots • is the value of an exercise. Hand in solutions for 12 points by June 8 Thu 4:15

pm. If you have seriously tried to solve some problem, but got stuck, I will be happy to help. Also, if your

final solution to a problem has some mistake but has some potential to work, then I will give it back and

you can try and correct the mistake.

Recall the following definition. Let Gn be a sequence of finite graphs. Pick a uniform random root ρn

from V (Gn), and take the ball BGn,ρn
(r) around it in the graph metric, with some fixed radius r ∈ Z+. We

get a distribution µn,r on finite rooted graphs. We say that the sequence {Gn} converges in the Benjamini-

Schramm sense (also called local weak convergence) to a random rooted graph (G, ρ), if, for every r,

the distributions µn,r converge weakly as n → ∞ to the distribution of BG,ρ(r). The simplest case is when

the limit is a transitive infinite graph G: the measures µn,r converge to the Dirac measure on a single graph,

the r-ball of G. The following exercise generalizes the examples of boxes in Zd and balls in the d-regular

tree Td that we saw on class:

Exercise▷ 1. •• Show that a transitive graph G has a sequence Gn of subgraphs converging to it in the

Benjamini-Schramm (local weak) sense if and only if it is amenable.

Exercise▷ 2. • Assuming Exercise 21 from HW2, show that our random d-regular bipartite multi-graph

Mn,n,d converges to the d-regular tree Td in the Benjamini-Schramm sense. (Here the randomness for the

measure µn,r comes from two sources: we take a random root ρn in the random graph Gn, and want to show

convergence in this joint probability space.)

Exercise▷ 3.•• Let Gn be the Erdős-Rényi random graph G(n, λ/n), with any λ ∈ R+ fixed. Show that

the Benjamini-Schramm limit of Gn is the PGW(λ) tree, the Galton-Watson tree with offpsring Poisson(λ),

rooted as normally. (As in the previous exercise, convergence in the joint probability space of choosing the

random graph and the random root.)

Exercise▷ 4.• Show that the functions vk(t) :=
kk−1

k! e−kttk−1 for k = 1, 2, . . . indeed satisfy the Smoluchowski

coagulation equations

d

dt
vk(t) = −kvk(t) +

k

2

k−1∑
ℓ=1

vℓ(t)vk−ℓ(t) .

Exercise▷ 5. • Can it happen for some iid sequence X1, X2, . . . that (X1 + · · · + Xn)/an almost surely

converges, for some sequence an → ∞ (e.g., an = n or an =
√
n) to a random variable that is not an almost

sure constant? (Hint: think of Kolmogorov’s 0/1 law.)

Exercise▷ 6. •• Give an example of a random sequence (Mn)
∞
n=0 such that E[Mn+1 | Mn ] = Mn for all

n ≥ 0, but which is not a martingale (in its natural filtration Fn = σ{M0, . . . ,Mn}).
Exercise▷ 7. Consider a Galton-Watson tree with offspring distribution ξ, with Eξ = µ. Let Zn be the size

of the nth level, with Z0 = 1, the root.

(a)• Find E[Zn ], and using this show that µ < 1 implies that the GW tree is finite almost surely.
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(b)•• Extending the previous part, show that Zn/µ
n is a martingale, and using a Martingale Convergence

Theorem (non-negative martingales converge almost surely to some almost surely finite variable), show

that µ = 1 with P[ ξ = 1 ] ̸= 1 also implies that the GW tree is finite almost surely.

(c)•• If µ > 1 and E[ ξ2 ] < ∞, show that E
[
Z2
n

]
≤ C(EZn)

2 with a constant C < ∞ that does not depend

on n. (Hint: use the conditional variance formula D2[Zn] = E
[
D2[Zn

∣∣ Zn−1]
]
+D2

[
E[Zn | Zn−1 ]

]
.)

Using this and the Second Moment Method, namely, ifX ≥ 0 a.s., thenP[X > 0 ] ≥ (EX)2/E[X2 ]

(you can look this up, e.g., in PGG Section 12.3), deduce that the GW tree is infinite with positive

probability.

(d)• Extend the previous part to the case Eξ = ∞ or Dξ = ∞ by a truncation ξ1ξ<K for K large enough.

Exercise▷ 8.• What is the critical bond percolation density for the infinite triangular ladder?

Exercise▷ 9.• We saw in class for the binary tree T that pc(T) = 1/2. Using this, show that the 3-regular

tree has pc(T3) = 1/2, as well.

Exercise▷ 10. Consider site percolation on Z2; i.e., instead of deleting or keeping the edges (bonds), we are

keeping or deleting the vertices. Show that 1/3 ≤ pc(Z2, site) ≤ 5/6.

For Bernoulli bond percolation on any connected infinite graph G, any o ∈ V (G), define

pT := inf
{
p : Ep[ |Co| ] = ∞

}
,

where Co denotes the cluster of vertex o. T is for the honour of Temperley. As for the critical density pc

defined in class, one can show that this does not depend on o. Obviously, pT ≤ pc for any graph.

Exercise▷ 11. Consider Bernoulli bond percolation on the canopy tree Λ (the Benjamini-Schramm limit of

the balls Bn(o) in the 3-regular tree T3).

(a)• Show that pc(Λ) = 1.

(b)•• Find pT (Λ).

As in class, the Ising model on a finite graph G(V,E) is the random spin configuration σ : V −→ {±1}
defined as follows. Given an external magnetic field h ∈ R, the Hamiltonian is

Hh(σ) := −h
∑

x∈V (G)

σ(x)−
∑

(x,y)∈E(G)

σ(x)σ(y) ,

and then the measure, at inverse temperature β = 1/T ≥ 0, is

Pβ,h[σ] :=
exp(−βHh(σ))

Zβ,h
, where Zβ,h :=

∑
σ

exp(−βHh(σ)) .

Exercise▷ 12. The partition function Zβ,h contains a lot of information about the model:

(a)• Show that the expected total energy is

Eβ,h[H ] = − ∂

∂β
lnZβ,h , with variance Varβ,h[H] = − ∂

∂β
Eβ,h[H ] .

(b)• The average free energy or pressure is defined by f(β, h) := (β|V |)−1 lnZβ,h. Show that for the

average total magnetization M(σ) := |V |−1
∑

x∈V σ(x), we have

m(β, h) := Eβ,h[M ] =
∂

∂h
f(β, h) .
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(c)• The susceptibility of the total magnetization to a change in the external magnetic field is

χ(β, h) :=
1

β

∂

∂h
m(β, h) =

1

β

∂2

∂h2
f(β, h) .

Relate this quantity to Varβ,h[M ]. Deduce that f(β, h) is convex in h.

Exercise▷ 13. Consider the Ising model on an interval, {σi : i = −n, . . . , n − 1, n}, with no boundary

condition, at any inverse temperature β ∈ [0,∞).

(a)• Show that {σi : i = −n, . . . , n − 1, n} is the trajectory of a stationary irreducible Markov chain on

{−,+}.
(b)•• Show that Sn :=

∑n
i=−n σi has Var[Sn] ∼ Cβn, as n → ∞, for some Cβ ∈ (0,∞).

That is, in dimension 1, there is no long range order for any β < ∞.

Here are two quite canonical random spanning tree models on finite graphs:

Exercise▷ 14. On any finite graph G(V,E), assign iid random edge weights ξ = (ξe)e∈E to the edges, from

an atomless non-negative valued distribution. Consider the spanning tree of G that minimizes the sum of

the edge weights — this is the Minimal Spanning Tree MSTξ.

(a)• Show that one can construct this tree by removing from every cycle of G the edge with the largest

label.

(b)• Conclude that the distribution of MSTξ does not depend on the distribution of the ξe’s. Hence we

can denote this random tree just by MST, the Minimal Spanning Tree of the graph.

(c)•• Consider the uniform distribution on all the spanning trees of G — this is the Uniform Spanning

Tree UST. Give a finite graph on which MST ̸= UST with positive probability.

The Fortuin-Kasteleyn random cluster measure FK(p, q) on a finite graph G, with p ∈ [0, 1] and

q > 0, is the invariant bond percolation model given by, for any ω ⊂ E(G),

PFK(p,q)[ω] :=
p|ω| (1− p)|E\ω| qk(ω)

ZFK(p,q)
with ZFK(p,q) :=

∑
ω⊆E

p|ω| (1− p)|E\ω| qk(ω) ,

where k(ω) is the number of clusters of ω.

Exercise▷ 15.•• Consider FK(p, q) on the n×n two-dimensional lattice torus (Z/nZ)2. Given a configuration

ω, the dual configuration ω∗ is defined on the dual torus: the dual vertices are the primal faces, and two

are connected by a dual edge iff the edge between the primal faces is not present in ω. Show that for

p = pself-dual(q) =
√
q

1+
√
q , the dual configuration ω∗ has the same distribution as ω.

Exercise▷ 16.• For any finite tree, show that FK(p, q) is just Bernoulli bond percolation at some density

p̃(q), which you should identify.

Exercise▷ 17.• For any finite graph, show that limp→0+ limq→0+ FK(p, q) = UST.
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