Stochastic Models - Third HW problem set

Gábor Pete
http://www.math.bme.hu/~gabor

May 24, 2023

The number of dots ${ }^{-}$is the value of an exercise. Hand in solutions for 12 points by June 8 Thu 4:15 pm. If you have seriously tried to solve some problem, but got stuck, I will be happy to help. Also, if your final solution to a problem has some mistake but has some potential to work, then I will give it back and you can try and correct the mistake.

Recall the following definition. Let G_{n} be a sequence of finite graphs. Pick a uniform random root ρ_{n} from $V\left(G_{n}\right)$, and take the ball $B_{G_{n}, \rho_{n}}(r)$ around it in the graph metric, with some fixed radius $r \in \mathbb{Z}_{+}$. We get a distribution $\mu_{n, r}$ on finite rooted graphs. We say that the sequence $\left\{G_{n}\right\}$ converges in the BenjaminiSchramm sense (also called local weak convergence) to a random rooted graph (G, ρ), if, for every r, the distributions $\mu_{n, r}$ converge weakly as $n \rightarrow \infty$ to the distribution of $B_{G, \rho}(r)$. The simplest case is when the limit is a transitive infinite graph G : the measures $\mu_{n, r}$ converge to the Dirac measure on a single graph, the r-ball of G. The following exercise generalizes the examples of boxes in \mathbb{Z}^{d} and balls in the d-regular tree \mathbb{T}_{d} that we saw on class:
\triangleright Exercise 1. ${ }^{\bullet}$ Show that a transitive graph G has a sequence G_{n} of subgraphs converging to it in the Benjamini-Schramm (local weak) sense if and only if it is amenable.
\triangleright Exercise 2.• Assuming Exercise 21 from HW2, show that our random d-regular bipartite multi-graph $M_{n, n, d}$ converges to the d-regular tree \mathbb{T}_{d} in the Benjamini-Schramm sense. (Here the randomness for the measure $\mu_{n, r}$ comes from two sources: we take a random root ρ_{n} in the random graph G_{n}, and want to show convergence in this joint probability space.)
\triangleright Exercise $3^{\bullet \bullet}$ Let G_{n} be the Erdős-Rényi random graph $G(n, \lambda / n)$, with any $\lambda \in \mathbb{R}_{+}$fixed. Show that the Benjamini-Schramm limit of G_{n} is the PGW (λ) tree, the Galton-Watson tree with offpsring Poisson (λ), rooted as normally. (As in the previous exercise, convergence in the joint probability space of choosing the random graph and the random root.)
\triangleright Exercise 4.• Show that the functions $v_{k}(t):=\frac{k^{k-1}}{k!} e^{-k t} t^{k-1}$ for $k=1,2, \ldots$ indeed satisfy the Smoluchowski coagulation equations

$$
\frac{d}{d t} v_{k}(t)=-k v_{k}(t)+\frac{k}{2} \sum_{\ell=1}^{k-1} v_{\ell}(t) v_{k-\ell}(t) .
$$

\triangleright Exercise 5. ${ }^{\bullet}$ Can it happen for some iid sequence X_{1}, X_{2}, \ldots that $\left(X_{1}+\cdots+X_{n}\right) / a_{n}$ almost surely converges, for some sequence $a_{n} \rightarrow \infty$ (e.g., $a_{n}=n$ or $a_{n}=\sqrt{n}$) to a random variable that is not an almost sure constant? (Hint: think of Kolmogorov's $0 / 1$ law.)
\triangleright Exercise 6. ${ }^{\bullet}$ Give an example of a random sequence $\left(M_{n}\right)_{n=0}^{\infty}$ such that $\mathbf{E}\left[M_{n+1} \mid M_{n}\right]=M_{n}$ for all $n \geq 0$, but which is not a martingale (in its natural filtration $\mathcal{F}_{n}=\sigma\left\{M_{0}, \ldots, M_{n}\right\}$).
\triangleright Exercise 7. Consider a Galton-Watson tree with offspring distribution ξ, with $\mathbf{E} \xi=\mu$. Let Z_{n} be the size of the nth level, with $Z_{0}=1$, the root.
(a) ${ }^{\bullet}$ Find $\mathbf{E}\left[Z_{n}\right]$, and using this show that $\mu<1$ implies that the GW tree is finite almost surely.
(b) ${ }^{\bullet \bullet}$ Extending the previous part, show that Z_{n} / μ^{n} is a martingale, and using a Martingale Convergence Theorem (non-negative martingales converge almost surely to some almost surely finite variable), show that $\mu=1$ with $\mathbf{P}[\xi=1] \neq 1$ also implies that the GW tree is finite almost surely.
(c) ${ }^{\bullet \bullet}$ If $\mu>1$ and $\mathbf{E}\left[\xi^{2}\right]<\infty$, show that $\mathbf{E}\left[Z_{n}^{2}\right] \leq C\left(\mathbf{E} Z_{n}\right)^{2}$ with a constant $C<\infty$ that does not depend on n. (Hint: use the conditional variance formula $\mathbf{D}^{2}\left[Z_{n}\right]=\mathbf{E}\left[\mathbf{D}^{2}\left[Z_{n} \mid Z_{n-1}\right]\right]+\mathbf{D}^{2}\left[\mathbf{E}\left[Z_{n} \mid Z_{n-1}\right]\right]$.) Using this and the Second Moment Method, namely, if $X \geq 0$ a.s., then $\mathbf{P}[X>0] \geq(\mathbf{E} X)^{2} / \mathbf{E}\left[X^{2}\right]$ (you can look this up, e.g., in PGG Section 12.3), deduce that the GW tree is infinite with positive probability.
(d) ${ }^{\bullet}$ Extend the previous part to the case $\mathbf{E} \xi=\infty$ or $\mathbf{D} \xi=\infty$ by a truncation $\xi \mathbf{1}_{\xi<K}$ for K large enough.
\triangleright Exercise $8 .^{\bullet}$ What is the critical bond percolation density for the infinite triangular ladder?

$\triangleright \quad$ Exercise 9. ${ }^{\bullet}$ We saw in class for the binary tree \mathbb{T} that $p_{c}(\mathbb{T})=1 / 2$. Using this, show that the 3-regular tree has $p_{c}\left(\mathbb{T}_{3}\right)=1 / 2$, as well.
$\triangleright \quad$ Exercise 10. Consider site percolation on \mathbb{Z}^{2}; i.e., instead of deleting or keeping the edges (bonds), we are keeping or deleting the vertices. Show that $1 / 3 \leq p_{c}\left(\mathbb{Z}^{2}\right.$, site $) \leq 5 / 6$.

For Bernoulli bond percolation on any connected infinite graph G, any $o \in V(G)$, define

$$
p_{T}:=\inf \left\{p: \mathbf{E}_{p}\left[\left|\mathscr{C}_{o}\right|\right]=\infty\right\}
$$

where \mathscr{C}_{o} denotes the cluster of vertex $o . \mathrm{T}$ is for the honour of Temperley. As for the critical density p_{c} defined in class, one can show that this does not depend on o. Obviously, $p_{T} \leq p_{c}$ for any graph.
\triangleright Exercise 11. Consider Bernoulli bond percolation on the canopy tree Λ (the Benjamini-Schramm limit of the balls $B_{n}(o)$ in the 3 -regular tree $\left.\mathbb{T}_{3}\right)$.
(a) ${ }^{\bullet}$ Show that $p_{c}(\Lambda)=1$.
(b) ${ }^{\bullet \bullet}$ Find $p_{T}(\Lambda)$.

As in class, the Ising model on a finite graph $G(V, E)$ is the random spin configuration $\sigma: V \longrightarrow\{ \pm 1\}$ defined as follows. Given an external magnetic field $h \in \mathbb{R}$, the Hamiltonian is

$$
H_{h}(\sigma):=-h \sum_{x \in V(G)} \sigma(x)-\sum_{(x, y) \in E(G)} \sigma(x) \sigma(y)
$$

and then the measure, at inverse temperature $\beta=1 / T \geq 0$, is

$$
\mathbf{P}_{\beta, h}[\sigma]:=\frac{\exp \left(-\beta H_{h}(\sigma)\right)}{Z_{\beta, h}}, \quad \text { where } \quad Z_{\beta, h}:=\sum_{\sigma} \exp \left(-\beta H_{h}(\sigma)\right)
$$

\triangleright Exercise 12. The partition function $Z_{\beta, h}$ contains a lot of information about the model:
(a) ${ }^{\text {• Show that the expected total energy is }}$

$$
\mathbf{E}_{\beta, h}[H]=-\frac{\partial}{\partial \beta} \ln Z_{\beta, h}, \text { with variance } \operatorname{Var}_{\beta, h}[H]=-\frac{\partial}{\partial \beta} \mathbf{E}_{\beta, h}[H]
$$

(b) • The average free energy or pressure is defined by $f(\beta, h):=(\beta|V|)^{-1} \ln Z_{\beta, h}$. Show that for the average total magnetization $M(\sigma):=|V|^{-1} \sum_{x \in V} \sigma(x)$, we have

$$
m(\beta, h):=\mathbf{E}_{\beta, h}[M]=\frac{\partial}{\partial h} f(\beta, h) .
$$

(c) - The susceptibility of the total magnetization to a change in the external magnetic field is

$$
\chi(\beta, h):=\frac{1}{\beta} \frac{\partial}{\partial h} m(\beta, h)=\frac{1}{\beta} \frac{\partial^{2}}{\partial h^{2}} f(\beta, h) .
$$

Relate this quantity to $\operatorname{Var}_{\beta, h}[M]$. Deduce that $f(\beta, h)$ is convex in h.
\triangleright Exercise 13. Consider the Ising model on an interval, $\left\{\sigma_{i}: i=-n, \ldots, n-1, n\right\}$, with no boundary condition, at any inverse temperature $\beta \in[0, \infty)$.
(a) ${ }^{\bullet}$ Show that $\left\{\sigma_{i}: i=-n, \ldots, n-1, n\right\}$ is the trajectory of a stationary irreducible Markov chain on $\{-,+\}$.
(b) ${ }^{\bullet \bullet}$ Show that $S_{n}:=\sum_{i=-n}^{n} \sigma_{i}$ has $\operatorname{Var}\left[S_{n}\right] \sim C_{\beta} n$, as $n \rightarrow \infty$, for some $C_{\beta} \in(0, \infty)$. That is, in dimension 1 , there is no long range order for any $\beta<\infty$.

Here are two quite canonical random spanning tree models on finite graphs:
$\triangleright \quad$ Exercise 14. On any finite graph $G(V, E)$, assign iid random edge weights $\xi=\left(\xi_{e}\right)_{e \in E}$ to the edges, from an atomless non-negative valued distribution. Consider the spanning tree of G that minimizes the sum of the edge weights - this is the Minimal Spanning Tree MST_{ξ}.
(a) ${ }^{\bullet}$ Show that one can construct this tree by removing from every cycle of G the edge with the largest label.
(b) ${ }^{\bullet}$ Conclude that the distribution of MST_{ξ} does not depend on the distribution of the ξ_{e} 's. Hence we can denote this random tree just by MST, the Minimal Spanning Tree of the graph.
(c) ${ }^{\bullet \bullet}$ Consider the uniform distribution on all the spanning trees of G - this is the Uniform Spanning Tree UST. Give a finite graph on which MST \neq UST with positive probability.

The Fortuin-Kasteleyn random cluster measure $\operatorname{FK}(p, q)$ on a finite graph G, with $p \in[0,1]$ and $q>0$, is the invariant bond percolation model given by, for any $\omega \subset E(G)$,

$$
\mathbf{P}_{\mathrm{FK}(p, q)}[\omega]:=\frac{p^{|\omega|}(1-p)^{|E \backslash \omega|} q^{k(\omega)}}{Z_{\mathrm{FK}(p, q)}} \quad \text { with } \quad Z_{\mathrm{FK}(p, q)}:=\sum_{\omega \subseteq E} p^{|\omega|}(1-p)^{|E \backslash \omega|} q^{k(\omega)}
$$

where $k(\omega)$ is the number of clusters of ω.
$\triangleright \quad$ Exercise 15. ${ }^{\bullet \bullet}$ Consider $\operatorname{FK}(p, q)$ on the $n \times n$ two-dimensional lattice torus $(\mathbb{Z} / n \mathbb{Z})^{2}$. Given a configuration ω, the dual configuration ω^{*} is defined on the dual torus: the dual vertices are the primal faces, and two are connected by a dual edge iff the edge between the primal faces is not present in ω. Show that for $p=p_{\text {self-dual }}(q)=\frac{\sqrt{q}}{1+\sqrt{q}}$, the dual configuration ω^{*} has the same distribution as ω.
\triangleright Exercise 16. ${ }^{\bullet}$ For any finite tree, show that $\operatorname{FK}(p, q)$ is just Bernoulli bond percolation at some density $\tilde{p}(q)$, which you should identify.
\triangleright Exercise 17.• For any finite graph, show that $\lim _{p \rightarrow 0+} \lim _{q \rightarrow 0+} \operatorname{FK}(p, q)=$ UST.

