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The number of dots • is the value of an exercise. Hand in solutions for 12 points by May 18 in class.

If you have seriously tried to solve some problem, but got stuck, I will be happy to help. Also, if your final

solution to a problem has some mistake but has some potential to work, then I will give it back and you can

try and correct the mistake.

The first exercise would have been better in the first set, but I forgot to put it there:

Exercise▷ 1. A function f : V −→ R on the state space of a Markov chain P is called discrete harmonic if

it satisfies Pf(x) = f(x) for every x ∈ V . (I.e., one could call it an eigenfunction with eigenvalue 1, but we

don’t have a Hilbert space of functions here, so I would not call it like that.)

(a)• Show that if P is irreducible on a finite set V , then every harmonic function is constant.

(b)• Let (Xn)n≥0 be simple random walk on the 3-regular infinite tree, T3, with Markov operator P . Take

any vertex o ∈ V (T3), and let A be one of the three connected components of T3 \ {o}. Show that

f(x) := Px[∃n0 : Xn ∈ A ∀n ≥ n0 ] is a non-constant bounded harmonic function, where, remember,

Px[ · ] means that X0 = x.

(c)• Consider the lamplighter graph G = Z2 ≀Z3, with the standard 7 generators (six for moving the marker

in the city Z3, one for switching the lamp where the marker is). Give an example of a non-constant

bounded harmonic function for SRW on G. (Hint: follow the strategy of the previous part, but with

a different notion of “what happens eventually”. Namely, note that the marker visits the origin of Z3

only a finite number of times, hence there is a “final” state of the lamp there.)

Remark: There is an amazing theorem (Avez 1972, Deriennic 1980, Kaimanovich-Vershik 1983): the existence of

bounded harmonic functions on a transitive graph is equivalent to the speed of the SRW being positive

(linear rate of escape). Thus Z2 ≀ Z3 is an example where the graph is amenable, but the speed is

positive — which is also not hard to prove directly.

Exercise▷ 2.• Let P be a reversible Markov chain on n states; that is, the random walk on a finite graph

G with symmetric edge-weights. We have seen that P has eigenvalues −1 ≤ λn ≤ · · · ≤ λ1 = 1. Show that

λn > −1 if and only if every connected component of G is non-bipartite.

Exercise▷ 3.• Let P be any reversible finite Markov chain. Let P̄ be its 1/2-lazy version: in each step, with

probability 1/2 we stay put, while with probability 1/2 we take a step according to P . This is a usual way

to get rid of periodicity. Show that the spectrum of P̄ is contained in the interval [0, 1].

Exercise▷ 4.•• For simple random walk on any finite or infinite d-regular graph, show that after any even

number of steps the most likely position is the starting vertex.

Exercise▷ 5.• When the New York Times in 1990 reported on 7 riffle shuffles being enough for mixing, they

wrote: “By saying that the deck is completely mixed after seven shuffles, Dr. Diaconis and Dr. Bayer mean

that every arrangement of the 52 cards is equally likely or that any card is as likely to be in one place as in
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another.” True or false: Let µ be a distribution on Sn such that when σ ∈ Sn is chosen according to µ, we

have P[σ(i) = j ] = 1/n for every i, j ∈ {1, . . . , n}. Then µ is uniform on Sn.

Exercise▷ 6.•• Let P be a reversible Markov chain on a finite state space V , with reversible distribution π.

Recall that the chain is then just the random walk w.r.t. the symmetric edge-weights c(x, y) := π(x)p(x, y).

There is the following version of the Courant-Fisher-Rayleigh theorem (which you don’t have to prove):

λ2 = sup

{
(Pf, f)π
∥f∥π

: Eπ[ f ] :=
∑
x∈V

f(x)π(x) = 0

}
.

Using this, show that the spectral gap has the following formula:

1− λ2 = inf

{
1
2

∑
x,y

(
f(x)− f(y)

)2
c(x, y)

Varπ[f ]
: Varπ[f ] := Eπ[f

2]− (Eπf)
2 ̸= 0

}
.

Show that the numerator can be written as EX0∼π

[
Var

[
f(X1)

∣∣X0

] ]
. Thus, this formula is the infimum

ratio of the local variance to the global one.

Exercise▷ 7. Finding good functions in the formula of the previous exercise will give you upper bounds on

the spectral gap (hence lower bounds on the relaxation time, see the next exercise) of reversible Markov

chains. Using this strategy, show:

(a)• On the cycle Cn, the gap is at most O(1/n2).

(b)• On the hypercube {0, 1}k, the gap is at most O(1/k).

(c)• On the dumbbell graph (two complete graphs Kn joined by a single edge), the gap is at most O(1/n2).

(d)• What bound can you give on the following lollipop graph: a complete graph Kn, with a length n2

path emanating from it?

Exercise▷ 8.•• Consider a reversible Markov chain P on a finite state space V with reversible distribution

π and absolute spectral gap gabs := 1−max{|λ2|, |λn|}. This exercise explains why Trelax = 1/gabs is called

the relaxation time.

Show that gabs > 0 implies that limt→∞ P tf(x) = Eπf for all x ∈ V . Moreover,

Varπ[P
tf ] ≤ (1− gabs)

2t Varπ[f ] ,

with equality at the eigenfunction corresponding to the λi giving gabs = 1 − |λi|. Hence Trelax is the time

needed to reduce the standard deviation of any function to 1/e of its original standard deviation.

Exercise▷ 9.• Combining our computations of the spectrum of the cycle Cn and the spectrum of product

chains, show that the spectral gap of SRW on the torus Zd
n is of order 1/n2 for any fixed d ≥ 1.

We have accepted that the total variation distance between probability measures can be written as

dTV(µ, ν) = min
{
P[X ̸= Y ] : (X,Y ) is a coupling of µ and ν

}
. (1)

Consider now any Markov chain with a unique stationary measure π, and define

d(t) := sup
x∈V

dTV

(
pt(x, ·), π(·)

)
and d̄(t) := sup

x,y∈V
dTV

(
pt(x, ·), pt(y, ·)

)
.

Furthermore, define the total variation mixing time by

Tmix(ϵ) := inf
{
t : d(t) ≤ ϵ

}
and Tmix := Tmix(1/4).

The following exercise explains why we introduced d̄(t) and why this 1/4 definition is a good one.

2



Exercise▷ 10.

(a)• Show that d(t) ≤ d̄(t) ≤ 2d(t).

(b)• Using (1), show that d̄(t+ s) ≤ d̄(t) d̄(s).

(c)• Conclude from the previous two parts that Tmix(2
−ℓ) ≤ ℓ Tmix(1/4).

Exercise▷ 11.•• Consider simple random walk on the dumbbell graph: take two copies of the complete graph

Kn, add a loop at each vertex (so that the degrees become n), except at one distinguished vertex in each

copy, which will be connected to each other by an edge. Show that d(1) = 1/2, but Tmix ≥ cn2 for some

uniform c > 0. That is, in the definition of Tmix, the 1/4 should not be replaced by 1/2.

Exercise▷ 12.•• Show that (1 − gabs)
t ≤ 2d(t) in any finite reversible Markov chain. Deduce that Trelax ≤

CTmix for some absolute constant C < ∞.

Exercise▷ 13.•• Consider lazy SRW on the cycle Cn. Using the Central Limit Theorem, show that for any

t > 0 there exists δ0(t), δ1(t) > 0, such that, for any n, we have δ0(t) < d(tn2) < 1− δ1(t). Moreover, show

that one can achieve limt→0 δ0(t) = 1. This proves the lower bound Tmix ≥ cn2 for some uniform c > 0.

Exercise▷ 14.

(a)•• Show that, for any transitive reversible Markov chain with eigenvalues λi as usual,

4 dTV

(
pt(x, ·), π(·)

)2 ≤
∥∥∥∥pt(x, ·)π(·)

− 1

∥∥∥∥2
2

=

n∑
i=2

λ2t
i .

(b)• Deduce that the mixing time of the 1/2-lazy SRW on the cycle Cn is O(n2).

(c)• Deduce that the mixing time of the 1/2-lazy SRW on the hypercube {0, 1}k is at most (1/2 +

o(1)) k log k.

The following three exercises together give a probabilistic proof that the total variation mixing time of

the 1/2-lazy random walk X0, X1, . . . on the hypercube {0, 1}k is ∼ 1
2k log k. In particular, this improves on

the upper bound (1 + o(1)) k log k proved in class (on May 4) by coupling.

Exercise▷ 15.•• Let Yt be the number of missing coupons at time t in the coupon collector’s problem with

k coupons. Show that, for α ∈ (0, 1) fixed,

EYαk log k ∼ k1−α and DYαk log k = o(k1−α).

Using Markov’s and Chebyshev’s inequalities, deduce that Yαk log k/
√
k → 0 or ∞ in probability, for α > 1/2

and < 1/2, respectively.

Exercise▷ 16.•• Let N(µ, σ2) denote the normal distribution. Show that, for any sequence σk → σ ∈ (0,∞),

we have that dTV

(
N(0, σ2), N(µk, σ

2
k)
)
→ 0 or 1, for µk → 0 and µk → ∞, respectively. Using this and the

local version of the de Moivre–Laplace theorem, prove that

dTV

(
Binom(k, 1/2), Binom(k − kβ , 1/2) + kβ

)
→

0 if β < 1/2 ,

1 if β > 1/2 .

Exercise▷ 17.

(a)• For X0 = (0, 0, . . . , 0) ∈ {0, 1}k, let the distribution of Xt be µt. What is it, conditioned on ∥Xt∥1 = ℓ?

(b)• What is the distribution of ∥Z∥1, where Z has distribution π, uniform on {0, 1}k?
(c)•• Let Yt be the number of coordinates that have not been rerandomized by time t in Xt. Compare the

distribution of k − ∥Xt∥1, conditioned on Yt ≥ y, to Binom(k − y, 1/2) + y. Deduce from the previous

parts and the previous exercises that dTV

(
µαn logn, π

)
→ 0 or 1, for α > 1/2 and < 1/2, respectively.
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The L∞- or uniform mixing time of a Markov chain is usually defined as

T∞
mix := inf

{
t : sup

x,y

∣∣∣∣pt(x, y)π(y)
− 1

∣∣∣∣ < 1

e

}
.

Exercise▷ 18.•• Using Exercise 15, show that the uniform mixing time of the hypercube {0, 1}k is ∼ k log k.

Exercise▷ 19. This exercise explains why it is hard to construct large expander graphs. A covering map

φ : G′ −→ G between graphs is a surjective graph homomorphism that is locally an isomorphism: denoting

by NG(v) the subgraph induced by v ∈ G and all its neighbours, we require that each connected component

of the subgraph of G′ induced by the full inverse image φ−1(NG(v)) be isomorphic to NG(v).

(a)• If G′ −→ G is a covering map of infinite graphs, then the spectral radii satisfy ρ(G′) ≤ ρ(G),

i.e., the larger graph is more non-amenable. In particular, if G is an infinite k-regular graph, then

ρ(G) ≥ ρ(Tk) =
2
√
k−1
k . (Hint: use the return probability definition of ρ(G).)

(b)• If G′ −→ G is a covering map of finite graphs, then λ2(G
′) ≥ λ2(G), i.e., the larger graph is a worse

expander. (Hint: eigenfunctions on G can be “lifted” to G′.

Exercise▷ 20.• Consider the configuration modelMn,d for a random d-regular multi-graph on n vertices, with

nd even. (Given by a uniform random perfect matching on the nd half-edges). Show that if we condition this

random graph to have no multiple edges and no self-loops, then we get the uniform distribution on d-regular

simple graphs on n vertices.

Exercise▷ 21. We considered the following simple model Mn,n,d for a random d-regular bipartite (multi-

)graph: take d independent uniform random permutations πi : {1, . . . , n} −→ {1, . . . , n}, then take all the

edges
{
(j, n+ π(j)) : j ∈ {1, . . . , n}, i ∈ {1, . . . , d}

}
.

(a)• Show that the number of multiple edges is tight in n.

(b)• More generally, show that, for any k ≥ 2, the number of k-cycles is tight in n.

We claimed in class that the bipartite configuration model Mn,n,d is a good expander with probability

tending to 1. I was trying to follow Alexander Lubotzky’s Discrete Groups, Expanding Graphs and Invariant

Measures Proposition 1.2.1, but it claims the result only for d ≥ 5, and the proof is in fact completely wrong.

Instead, here is a correct and easier proof from the Levin-Peres-Wilmer book:

Exercise▷ 22.

(a)• Show that the probability that there exists a subset S ⊂ {1, . . . , n} of size |S| = t ∈ {1, . . . , ⌊n/2⌋}
with neighbourhood |N(S)| ≤ ⌊(1 + δ)t⌋ is at most

R(t) =

(
n

t

)(
n−t
⌊δt⌋

)(⌊(1+δ)t⌋
⌊δt⌋

)d−1(
n
t

)d−1
.

This is in fact the same formula that we had in class, just written in a different way.

(b)• Using the bounds (n/k)k ≤
(
n
k

)
≤ (en/k)k, show that, for d ≥ 3, and δ > 0 small enough, indepen-

dently of n, we have
∑⌊n/2⌋

t=1 R(t) → 0 as n → ∞.
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