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Let ξ1, ξ2, . . . be the i.i.d. lifetimes in a renewal process, with non-arithmetic distribution function F (s) =

P[ ξ ≤ s ] and mean Eξ = µ ∈ (0,∞). Then Tk :=
∑k
i=1 ξi are the renewal times, Nt := min{k : Tk ≥ t},

and U(t) := ENt. The excess lifetime (or overshoot) is γt := TNt − t, the current lifetime is δt := t− TNt−1,

and the total lifetime is βt := γt + δt.

ExerciseB 1.

(a) Find the renewal equation H(t) = h(t) + H ∗ F (t) for H(t) := P[βt > x ], where x ≥ 0 is fixed

arbitrarily.

(b) Find the renewal equation for H(t) := P[ γt > x ].

(c) Using the Renewal Theorem, find the limit distributions of βt and γt as t→∞.

If you did the previous exercise correctly, you understand why we are interested in the next one:

ExerciseB 2.

(a) Show that, for any distribution function F (t),∫ ∞
0

1− F (max{x, t}) dt =

∫ ∞
x

s dF (s) .

(b) Show that if X has distribution function F (t), then the size-biased version X̂ has distribution function
1

EX

∫ t
0
s dF (s).

From the previous two exercises, conclude the following:

ExerciseB 3.

(a) The limit distribution of the total lifetime βt is the size-biased version of ξ.

(b) The limit distribution of the overshoot γt is the size-biased version ξ̂ multiplied with an independent

Unif[0, 1] variable.

ExerciseB 4.

(a) Consider the renewal process with a non-arithmetic renewal distribution with finite mean. Show that

limt→∞P
[

number of renewals in [0, t] is odd
]

= 1/2.

(b)* Does this remain true if the renewal time has infinite mean?

Simple generalizations of the basic percolation arguments from class regarding pc(G) = pc(G,bond):

ExerciseB 5.

(a) Show that in any graph G(V,E) with maximal degree ∆, we have pc(G) ≥ 1/(∆− 1).

(b) Show that if in a graph G the number of minimal edge-cutsets (a subset of edges whose removal

disconnects a given vertex from infinity, minimal w.r.t. containment) of size n is at most exp(Cn) for

some C <∞, then pc(G) ≤ 1− ε(C) < 1.
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Recall from Exercise 9 of Sheet 1 that the function p log p+(1−p) log(1−p) plays an important role in the

large deviations theory of Bernoulli variables. That’s just the tip of an iceberg of the relationship between

large deviations and entropy theory, which we will not discuss in detail, but still, here is the definition and

some basic properties of the entropy of a discrete random variable:

Ent(X) := −
∑
x∈Ω

P[X = x ] logP[X = x ] .

If X and Y are defined on the same probability space, then Ent(X,Y ) is just the entropy of the variable

(X,Y ), while the conditional entropy Ent(X | Y ) is defined as the Y -average of the entropies of the

conditional distributions X | Y = y:

Ent(X | Y ) :=
∑
y∈Ω

(
−
∑
x∈Ω

P[X = x | Y = y ] logP[X = x | Y = y ]

)
P[Y = y ] .

ExerciseB 6.

(a) Show that if the probability space is finite, |Ω| = n, then Ent(X) ≤ log n, with equality iff X is uniform

on Ω. (Hint: use the concavity of −x log x on x ∈ [0, 1].)

(b) Show that Ent(X | Y ) ≤ Ent(X), with equality iff X and Y are independent.

(c) Show that Ent(X | Y ) = Ent(X,Y )−Ent(Y ). Deduce that Ent(X,Y ) ≤ Ent(X)+Ent(Y ), with equality

iff X and Y are independent.

As in class, the Ising model on a finite graph G(V,E) is the random spin configuration σ : V −→ {±1}
defined as follows. Given an external magnetic field h ∈ R, the Hamiltonian is

Hh(σ) := −h
∑

x∈V (G)

σ(x)−
∑

(x,y)∈E(G)

σ(x)σ(y) ,

and then the measure, at inverse temperature β = 1/T ≥ 0, is

Pβ,h[σ] :=
exp(−βHh(σ))

Zβ,h
, where Zβ,h :=

∑
σ

exp(−βHh(σ)) .

ExerciseB 7. Using the method of Lagrange multipliers, show that, for any finite graph G(V,E), any external

field h ∈ R, and any given energy level E ≥ 0, among all probability measures µ on {±1}V (G) that have

Eµ[H(σ) ] = E, the measures that maximize the entropy Ent(µ) are all of the above form Pβ,h for some

β > 0. (For some values of E, there may exist no measure µ with Eµ[H(σ) ] = E, but that is OK.)

ExerciseB 8. The partition function Zβ,h contains a lot of information about the model:

(a) Show that the expected total energy is

Eβ,h[H ] = − ∂

∂β
lnZβ,h , with variance Varβ,h[H] = − ∂

∂β
Eβ,h[H ] .

(b) The average free energy or pressure is defined by f(β, h) := (β|V |)−1 lnZβ,h. Show that for the

average total magnetization M(σ) := |V |−1
∑
x∈V σ(x), we have

m(β, h) := Eβ,h[M ] =
∂

∂h
f(β, h) .

(c) The susceptibility of the total magnetization to a change in the external magnetic field is

χ(β, h) :=
1

β

∂

∂h
m(β, h) =

1

β

∂2

∂h2
f(β, h) .

Relate this quantity to Varβ,h[M ]. Deduce that f(β, h) is convex in h.
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The Curie-Weiss model is the Ising model on the complete graph Kn, with edge weights 1/n, so that

the Hamiltonian is

Hn,h(σ) := −h
n∑
i=1

σi −
1

2n

n∑
i,j=1

σiσj .

(The 1/2 factor is to make up for having each pair {i, j} with i 6= j twice in the sum. The appearance of

the terms i = j causes just a shift of H by a constant, which is not visible in Pβ,h.) In terms of the average

magnetization M(σ) =
∑
i σi/n, note that we can write

Hn,h(σ) = −
(
hM(σ) +M(σ)2/2

)
n ,

and the number of σ’s with M(σ) = x ∈ {−1, −n+2
n , . . . , n−2

n , 1} is
(

n
n(1+x)/2

)
. Thus,

Zn,β,h =
∑
x

cn,β,h(x) , where cn,β,h(x) :=

(
n

n(1 + x)/2

)
exp

(
βn
(
hx+ x2/2

))
.

ExerciseB 9.

(a) Show that f(β, h) := limn→∞ fn(β, h) = limn→∞
maxx ln cn,β,h(x)

βn .

(b) Similarly to Exercise 9 from Sheet 1, show that ln cn,β,h(x) = n
(
βhx− Φβ(x)

)
+ o(n), where

Φβ(x) =
1− x

2
ln

1− x
2

+
1 + x

2
ln

1 + x

2
− βx2

2
for x ∈ [−1, 1] .

(c) Sketch the curves Φβ(x) and Φ′β(x) on x ∈ [−1, 1], for some parameters β < 1, β = 1, and β > 1.

(d) By choosing the appropriate root x = x0(β, h) of Φ′β(x) = βh, find limn→∞ arg maxx ln cn,β,h(x). Note

that part (a) gives

∂

∂h
f(β, h) =

∂

∂h

(
hx0(β, h)− Φβ(x0(β, h))

β

)
= x0(β, h) .

(e) By part (b) of the previous exercise, mn(β, h) = ∂
∂hfn(β, h). Assuming thatm(β, h) := limn→∞mn(β, h) =

∂
∂hf(β, h) holds for h 6= 0 (which is indeed the case), deduce from the above that

lim
h→0+

m(β, h) > 0 and lim
h→0−

m(β, h) < 0 for β > 1 ,

while these limits equal 0 for β ≤ 1. Hence m(β, h) is discontinuous at h = 0 iff β > 1.

(f) Show that
1

β

∂2

∂h2
f(β, h) =

1

β

∂

∂h
x0(β, h) =

1− x0(β, h)2

1− β(1− x0(β, h)2)
.

For β = 1, deduce that ∂
∂hx0(β, h) = ∞. That is, m(1, h) is continuous but not analytic at h = 0.

Assuming that the limiting susceptibility χ(β, h) := limn→∞ χn(β, h) equals 1
β
∂2

∂h2 f(β, h), we get that

the limiting susceptibility is χ(1, 0) = ∞. What does that mean for the variance of the average

magnetization?

(g)* Show that ∂
∂hx0(β, 0+) <∞ for β > 1, so that the limiting susceptibility is finite.
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