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ExerciseB 1. As in the class discussing the Barabási-Albert preferential attachment graphs, let ν1, ν2, . . . be

positive reals satisfying the recursion

νt+1 =
(

1− αt

t

)
νt +

βt
t
,

where αt, βt are positive reals converging to some positive α and β, respectively. Is this information enough

to find limt→∞ νt?

ExerciseB 2. Recall that we defined the clustering coefficient of an undirected graph as

CC :=
# paths of length 2 with endpoints connected by an edge

# paths of length 2
.

With n vertices and 10n edges, find a graph with small CC, and another one with large CC.

For a (possibly directed) graph, the adjacency matrix is Au,v = 1u→v. The probability transition matrix

for the corresponding Markov chain is Pu,v = Au,v/
∑

w Au,w. For an undirected graph on the vertex set

{1, . . . , n}, we know from the Stochastic Processes course (and it is straightforward to verify) that P has

a left eigenvector π(i) = deg(i), 1 ≤ i ≤ n, with eigenvalue 1; i.e., it is a stationary measure. The leading

eigenvector of A is a bit more mysterious, but clearly relevant for measuring how central which vertex is —

it is sometimes called the Eigenvector Centrality.

ExerciseB 3.

(a) When P is the Markov transition matrix for any finite directed graph G(V,E), show that ‖Pf‖∞ ≤
‖f‖∞ holds for any f : V −→ R.

(b) Deduce that |λ| ≤ 1 for any eigenvalue λ ∈ C of P .

ExerciseB 4. Let A be the symmetric n × n adjacency matrix of an undirected finite graph on the vertex

set {1, . . . , n}. Let D be the diagonal matrix formed by the degrees deg(i), and note that it is clear what

D−1/2 means. Let B = D−1/2AD−1/2. Observe that B and the Markov transition matrix P are conjugate

matrices, hence they have the same eigenvalues. Show that they are all real, between 1 and −1, and that

the vector
(√

deg(i)
)
1≤i≤n is an eigenvector for the eigenvalue 1.

Remark: Graph theorists prefer B to P because it is symmetric, and to A because it is normalized to have

spectrum between 1 and −1.

ExerciseB 5. In Google’s PageRank, we are considering the iteration xt+1 := αxtP + (1− α)1, with some

α ∈ (0, 1). Show that, for any starting vector x0, the sequence xt converges to (1− α)1 (I − αP )−1. (Hint:

use the Banach fixed point theorem, with an appropriate notion of distance. See part (a) of Exercise 3.)
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ExerciseB 6. Consider the undirected graph on the vertex set {1, 2, 3, 4}, where 1, 2, 3 form a triangle, and

1 and 4 are also connected by an edge.

(a) Calculate the Eigenvector Centrality scores.

(b) Calculate the PageRank scores, for several values of α.

You are welcome to use Mathematica or other software.

ExerciseB 7. If X is a non-negative random variable with finite expectation, then its size-biased version

X̂ is defined by P[X̂ ∈ A] = E[X 1{X∈A} ]/EX.

(a) Show that E[ X̂ ] ≥ E[X ].

(b)* Show that X̂ stochastically dominates X in the sense that P[ X̂ > t ] ≥ P[X > t ] for any t ≥ 0.

(c) Show that the size-biased version of Poi(λ) is just Poi(λ) + 1.

(d) Show that the size-biased version of Expon(λ) is the sum of two independent Expon(λ)’s.

(e)* Take Poisson point process of intensity λ on R. Condition on the interval (−ε, ε) to contain at least

one arrival. As ε → 0, what is the point process we obtain in the limit? What does this have to do

with parts (c) and (d)?

ExerciseB 8. Let X0, X1, X2, . . . be simple random walk on the infinite d-regular tree Td, and let Dn :=

dist(Xn, X0) be the graph distance from the starting point X0 = o.

(a) Give a coupling of the process Dn with the biased random walk Yn on Z that goes +1 with probability
d−1
d , and −1 with probability 1

d , in such a way that Yn ≤ Dn for all n, almost surely.

(b) State a large deviations bound for the biased random walk {Yn} above, and deduce that the return

probability pn(o, o) := P[Xn = o | X0 = o ] is exponentially small in n. Deduce that the walk on Td is

transient.

(c) Again by stating a large deviations bound for the biased random walk and Borel-Cantelli, deduce that

limn→∞
Dn

n = d−2
d almost surely (the speed of escape of the random walk {Xn}).

ExerciseB 9. As in class, let ξ1, ξ2, . . . be the i.i.d. lifetimes of the light bulbs, with Eξi = µ ∈ (0,∞], and

we have a janitor who visits the corridor at times given by a Poisson process with intensity λ, and if he sees

that the bulb is dead, he replaces it by a new one. Thus the times τ1, τ2, . . . passing between the death of a

light bulb and the next visit of the janitor are i.i.d. Expon(λ) variables.

(a) At what rate are bulbs replaced?

(b) What is the almost sure limiting fraction of visits by the janitor on which the bulb is working?

(c) Now assume that ξi ∼ Expon(1/µ). What is the limiting fraction of time that the light works? (This

part might require a bit of thinking and an application of Borel-Cantelli.) )

ExerciseB 10. Mr Smith likes the brand UniCar. These cars break down after a uniform Uni[0, 2] years of

use, independently of everything. Mr Smith wants to replace each of his old cars after a fixed T years of use,

or the time of breakdown, whichever happens earlier. When a car breaks down, there is a cost of USD 1000

for towing it from the road and getting rid of it, and a new car costs USD 12000. If he replaces a car when

it still works, he gets a discount at the store for the old car, so the new car costs only USD 10000 (and there

is no extra cost of getting rid of the old car). How should Mr Smith choose T to optimize his spendings on

the long run?

Finally, a technical lemma used in the proof of the Elementary Renewal Theorem:

ExerciseB 11. If aK(t) ≥ 0, monotone decreasing in K for any fixed t, then

lim sup
K→∞

lim sup
t→∞

aK(t) ≥ lim sup
t→∞

lim sup
K→∞

aK(t) .
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