Applications of Stochastics - Exercise sheet 1

Gábor Pete
http://www.math.bme.hu/~gabor

September 8, 2018

Notation. The probability measure for the Erdős-Rényi random graph $G(n, p)$ is denoted by \mathbf{P}_{p}.
Subsets of a base set S will be denoted by $\omega \in\{0,1\}^{S}$, thinking that $\omega(s)=1$ iff $s \in \omega$.
The comparisons \sim, \asymp, \ll, \gg are used as agreed in class.
"With high probability", abbreviated as "w.h.p.", means "with probability tending to 1 ".
\triangleright Exercise 1. An event for the Erdős-Rényi random graph, $A \subset\{0,1\}^{\binom{n}{2}}$, is called upward closed or increasing if, whenever $\omega \in A$ and $\omega^{\prime} \supseteq \omega$, then also $\omega^{\prime} \in A$. Show that, for any such event A, other than the empty or the complete set, the function $p \mapsto \mathbf{P}_{p}[A]$ is a strictly increasing polynomial of degree at most $\binom{n}{2}$, with $\mathbf{P}_{p}[A]=p$ for $p \in\{0,1\}$. In particular, there exists a unique p such that $\mathbf{P}_{p}[A]=1 / 2$; this value is usually called the critical (or threshold) density, and will be denoted by $p_{c}(n)=p_{c}^{A}(n)$.
$\triangleright \quad$ Exercise 2. Find the order of magnitude of the critical density $p_{c}(n)$ for the random graph $G(n, p)$ containing a copy of the cycle C_{4}. (Hint: as in class, use the 1st and 2nd Moment Methods.)

The critical density for the connectedness of $G(n, p)$ is $p_{c}(n)=(1+o(1)) \frac{\ln n}{n}$, with a pretty sharp threshold. The following exercise is not a proof of this, just a small indication for the value.
\triangleright Exercise 3. For $p=\frac{\lambda \ln n}{n}$, with $\lambda>1$ fixed, show that, with probability tending to 1 , there are no isolated vertices in $G(n, p)$. On the other hand, for $\lambda<1$ fixed, there exist isolated vertices w.h.p.

The following is an example of subgraph containment where the Second Moment Method fails.
$\triangleright \quad$ Exercise 4. Let H be the following graph with 5 vertices and 7 edges: a complete graph K_{4} with an extra edge from one of the four vertices to a fifth vertex. Show that if $5 / 7>\alpha>4 / 6$, and $p=n^{-\alpha}$, then the expected number of copies of H in $G(n, p)$ goes to infinity, but nevertheless the probability that there is at least one copy goes to 0 . What goes wrong with the 2nd Moment Method?
\triangleright Exercise 5. Let $X_{k}(n)$ be the number of degree k vertices in the Erdős-Rényi random graph $G(n, \lambda / n)$, with any $\lambda \in \mathbb{R}_{+}$fixed. Show that $X_{k}(n) / n$ converges in probability, as $n \rightarrow \infty$, to $\mathbf{P}[\operatorname{Poisson}(\lambda)=k]$. (Hint: the 1st moment of $X_{k}(n)$ is clear; then use the 2nd moment method.)
\triangleright Exercise 6. Flip a fair coin 60 times, and let $X \sim \operatorname{Binom}(60,1 / 2)$ be the number of heads. Using Markov's inequality for $e^{t X}$ with the best possible t, which can be found by minimizing the convex function $f(t)=$ $\log \left(1+e^{t}\right)-\frac{5}{6} t$, show that

$$
\mathbf{P}[|X-30| \geq 20] \leq 2 \cdot 3^{60} \cdot 5^{-50}<10^{-6} .
$$

\triangleright Exercise 7. Prove that for any $\delta>0$ there exist $c_{\delta}>0$ and $C_{\delta}<\infty$ such that

$$
\mathbf{P}[|\operatorname{Poisson}(\lambda)-\lambda|>\delta \lambda]<C_{\delta} e^{-c_{\delta} \lambda},
$$

for any $\lambda>0$. (Hint: use the moment generating function of Poisson (λ).)
$\triangleright \quad$ Exercise 8. Let $\xi_{i} \sim \operatorname{Expon}(\lambda)$ i.i.d. random variables, and let $S_{n}:=\xi_{1}+\cdots+\xi_{n}$. Prove that for any $\delta>0$ there exist $c_{\delta}>0$ and $C_{\delta}<\infty$ (also depending on λ, of course) such that

$$
\mathbf{P}\left[\left|S_{n}-\mathbf{E} S_{n}\right|>\delta n\right]<C_{\delta} e^{-c_{\delta} n}
$$

Hint: use the moment generating function of Expon or the previous Poisson exercise!
$\triangleright \quad$ Exercise 9. Let $p, \alpha \in(0,1)$ arbitrary, and let $\alpha_{n} \rightarrow \alpha$ such that $\alpha_{n} n \in \mathbb{Z}$ for every n. Using Stirling's formula, show that

$$
\lim _{n \rightarrow \infty} \frac{-\log \mathbf{P}\left[\operatorname{Binom}(n, p)=\alpha_{n} n\right]}{n}=\alpha \log \frac{\alpha}{p}+(1-\alpha) \log \frac{1-\alpha}{1-p}
$$

When $\alpha=p$, we are getting that $\mathbf{P}\left[\operatorname{Binom}(n, p)=\alpha_{n} n\right]$ is only subexponentially small. In particular, roughly how large is $\mathbf{P}[\operatorname{Binom}(n, p)=\lfloor p n\rfloor]$?

The next bonus exercise contains some analytic details regarding the moment generating function. The main tool will be the Dominated Convergence Theorem $(D C T)$: if $\left\{X_{n}\right\}_{n \geq 1}$ and X and Y are random variables on the same probability space, with the almost sure pointwise convergence $\mathbf{P}\left[X_{n} \rightarrow X\right]=1$, plus $\left|X_{n}\right| \leq Y$ holds almost surely for all n, where $\mathbf{E} Y<\infty$, then $\mathbf{E}\left|X_{n}-X\right| \rightarrow 0$, and thus $\mathbf{E} X_{n} \rightarrow \mathbf{E} X<\infty$.
$\triangleright \quad$ Exercise 10.* Assume that $m_{X}(t):=\mathbf{E}\left[e^{t X}\right]<\infty$ for some $t=t_{0}>0$, and let $\kappa_{X}(t):=\log m_{X}(t)$.
(a) Show that $e^{t x}<1+e^{t_{0} x}$ for all $0 \leq t \leq t_{0}$ and $x \in \mathbb{R}$. Deduce that $m_{X}(t)<\infty$ for all $0 \leq t \leq t_{0}$.
(b) Using part (a) and the DCT, show that if $t_{n} \rightarrow t$, all of them in [0, $\left.t_{0}\right]$, then $m_{X}\left(t_{n}\right) \rightarrow m_{X}(t)$. Thus $m_{X}(t)$ and $\kappa_{X}(t)$ are continuous functions of $t \in\left[0, t_{0}\right]$.
(c) Show that $x<e^{t x} / t$ for any $t>0$ and $x \in \mathbb{R}$. Deduce that $\mathbf{E}\left[X e^{t X}\right]<\infty$ if $0<t \leq t_{0} / 2$.
(d) Using that $e^{b}-e^{a}=\int_{a}^{b} e^{y} d y$, show that $\left(e^{t x}-1\right) / t \leq x e^{t x}$ for any $t>0$ and $x \in \mathbb{R}$. Using part (c) and the DCT, show that $m_{X}^{\prime}(0)=\mathbf{E} X<\infty$.
(e) Deduce that $\kappa_{X}^{\prime}(0)=\mathbf{E} X$. Deduce that if $\alpha>\mathbf{E} X$, then $\kappa_{X}(t)-\alpha t<0$ for some $t \in\left(0, t_{0}\right)$.

The goal of the final bonus exercise is to present one way to pass from $G(n, p)$ to the $G(n, M)$ model.
$\triangleright \quad$ Exercise 11.* Fix $\delta>0$ arbitrary, and let $p_{n} \in(0,1)$ and $M_{n} \in\left\{0,1, \ldots,\binom{n}{2}\right\}$ be two sequences satisfying $\binom{n}{2} p_{n} \rightarrow \infty$ and $(1+\delta)\binom{n}{2} p_{n}<M_{n}$ for all n. Let $A_{n} \subset\{0,1\}^{\binom{n}{2}}$ be a sequence of upward closed events such that $\mathbf{P}_{p_{n}}\left[A_{n}\right] \rightarrow 1$. Prove that

$$
\mathbf{P}\left[G\left(n, M_{n}\right) \text { satisfies } A_{n}\right] \rightarrow 1, \quad \text { as } n \rightarrow \infty
$$

In more detail:
(a) Show that $\mathbf{P}\left[\operatorname{Binom}\left(\binom{n}{2}, p_{n}\right)<M_{n}\right] \rightarrow 1$.
(b) Let \mathcal{E}_{n} denote the number of edges in $G(n, p)$. Deduce from part (a) that $\mathbf{P}_{p_{n}}\left[A_{n} \mid \mathcal{E}_{n}<M_{n}\right] \rightarrow 1$.
(c) Show that, for any $M \in\left\{0,1, \ldots,\binom{n}{2}\right\}$, we have $\mathbf{P}_{p_{n}}\left[A_{n} \mid \mathcal{E}_{n}=M\right]=\mathbf{P}\left[G(n, M)\right.$ satisfies $\left.A_{n}\right]$.
(d) Deduce from part (c) that $\mathbf{P}_{p_{n}}\left[A_{n} \mid \mathcal{E}_{n}<M_{n}\right] \leq \mathbf{P}\left[G\left(n, M_{n}\right)\right.$ satisfies $\left.A_{n}\right]$.

Combining parts (b) and (d) concludes the exercise.

