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Overview

1. Can transitive and “almost-transitive” functions of iid bits (say, Majority
and left-right crossing in percolation) be guessed from some sparse subset
of the input bits?

2. Extension to Ising model, say, on tori Zd
n?

A. Close to optimal result using representation of subcritical Ising as a
factor of iid process.

B. Critical Ising is already very different.

C. Faint hope to get optimal results for sub- and super-critical Ising
using the FK representation. . .
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The clue of small subsets?

Gmail chat from Itai Benjamini: For n iid Bernoulli(1/2) input bits, if we
know o(n) of the voters, we still have no clue what the result of majority will
be. Is this the same for left-to-right crossing in critical planar percolation?
Of course, we ask a predetermined set of voters, in a non-adaptive manner.

2



The clue of small subsets?

Gmail chat from Itai Benjamini: For n iid Bernoulli(1/2) input bits, if we
know o(n) of the voters, we still have no clue what the result of majority will
be. Is this the same for left-to-right crossing in critical planar percolation?
Of course, we ask a predetermined set of voters, in a non-adaptive manner.

In critical planar percolation,
P[ LR crossing in n ∗ n box ] ∼ 1/2.
Can be decided via exploration
interface, which has length n2−δ;
in fact, n7/4+o(1), proved for site
percolation on ∆.

That’s why non-adaptive.
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The clue of small subsets?

Gmail chat from Itai Benjamini: For n iid Bernoulli(1/2) input bits, if we
know o(n) of the voters, we still have no clue what the result of majority will
be. Is this the same for left-to-right crossing in critical planar percolation?
Of course, we ask a predetermined set of voters, in a non-adaptive manner.

A good definition for clue: how much information we gain (how much the
variance decreases on average) if we know the values of the bits of U :

cluef(U) :=
Var

[
E[ f | ωU ]

]

Var f
=

Var f −E
[
Var [f |ωU ]

]

Var f
.

Example. For ω ∈ {±1}n and fn(ω) =
∑n

i=1ωi, if |U | = ǫn, then
E[ fn | ωU ] =

∑
i∈U ωi, hence VarE[ fn | ωU ] = ǫn, and cluefn(U) = ǫ.

Quite similar for majority Majn(ω) = signfn.

What about other transitive functions?

4



Clue and noise sensitivity for percolation

The answer for percolation LR crossing should be the same, by the noise
sensitivity results of Garban, P. & Schramm ‘10:

A sequence of functions fn is noise sensitive iff ∀ ǫ > 0, resampling each bit
with probability ǫ > 0 gives Corr

[
fn(ω

ǫ), fn(ω)
]
→ 0.
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Clue and noise sensitivity for percolation

The answer for percolation LR crossing should be the same, by the noise
sensitivity results of Garban, P. & Schramm ‘10:

A sequence of functions fn is noise sensitive iff ∀ ǫ > 0, resampling each bit
with probability ǫ > 0 gives Corr

[
fn(ω

ǫ), fn(ω)
]
→ 0.

1) For fn = LRn, ǫn = n−3/4+ǫ is enough. I.e., if Un is everything but a
sparse random set of density n−3/4+ǫ, then it is asymptotically clueless.

2) If Un has a Hausdorff-distance scaling limit of Hausdorff-dimension less
than 5/4, then it is asymptotically clueless.

3) If Un is all the vertical bonds, then it is asymptotically clueless.

But, an example with |Un| = o(n2) left out: disjoint boxes of radius n3/8+ǫ,
distributed randomly, with typical gaps of n3/8+2ǫ.

The proof of 1)-2)-3) uses discrete Fourier analysis, and is quite hard, hence
making it more quantitative seemed daunting.
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What is the Fourier spectrum and why is it useful?

For f : {±1}V −→ R, with P1/2 product measure for the input,
(Nǫf)(ω) := E[ f(ωǫ) | ω ] is the noise operator. Basically the Markov
operator for continuous time random walk on the hypercube {−1, 1}V .

Covariance: E[ f(ωǫ)f(ω) ] − E[ f(ω) ]E[ f(ωǫ) ] = E[ f(ω)Nǫf(ω) ] −
E[ f(ω) ]

2
. So, we would like to diagonalize the noise operator Nǫ.

Let χi be the function χi(ω) = ω(i), ω ∈ Ω.

For S ⊂ V , let χS :=
∏

i∈S
χi, the parity inside S. Then

Nǫχi = (1− ǫ)χi ; NǫχS = (1− ǫ)|S|χS.

Moreover, the family {χS, S ⊆ V } is an orthonormal basis of L2(Ω, µ).

Any function f ∈ L2(Ω, µ) in this basis (Fourier-Walsh series):

f̂(S) := E[ fχS ] ; f =
∑

S⊆V

f̂(S)χS .
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The covariance:

E[ fNǫf ]− E[ f ]
2
=

∑

S

∑

S′

f̂(S) f̂(S′)E
[
χSNǫχS′

]
−E[ fχ∅ ]

2

=
∑

∅6=S⊆V

f̂(S)2 (1− ǫ)|S| =

|Vn|∑

k=1

(1− ǫ)k
∑

|S|=k

f̂(S)2.

By Parseval,
∑

S f̂(S)
2 = E[ f2 ]. So can define probability measure

P
[
Sf = S

]
:= f̂(S)2/E[ f2 ], the spectral sample Sf ⊆ V .

Therefore, a sequence fn of non-degenerate functions, lim infnVar fn > 0,
is noise sensitive if ∀ k ∈ Z

+, we have

P
[
0 < |Sn| < k

]
→ 0.
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Clue and spectral sample

For U ⊆ V : E
[
χS

∣∣ ωU

]
=

{
χS S ⊆ U ,

0 otherwise .

Therefore, E
[
f
∣∣ ωU

]
=

∑
S⊆U f̂(S)χS , a nice projection.

P
[
Sf ⊆ U

]
=

∑
S⊆U f̂(S)

2 = E

[ (∑
S⊆U f̂(S)χS

)2 ]
= E

[
E
[
f
∣∣ ωU

]2 ]
.

Hence

cluef(U) =
Var

[
E[ f | ωU ]

]

Var f
=

P[ ∅ 6= Sf ⊆ U ]

P[ ∅ 6= Sf ]

= P
[
Sf ⊆ U

∣∣ Sf 6= ∅
]
.
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Small subsets are clueless

Proposition. If f : {±1}V −→ R is transitive, and U ⊂ V , then

clue(U) ·Var f = P[ ∅ 6= S ⊆ U ] 6 P[X ∈ U ] =
∑

u∈U

P[X = u ] =
|U |

|V |
,

where X ∈ S is a uniformly chosen random bit from S 6= ∅.

Percolation left-right crossing is not transitive, but seems not that far.
However, the proof is not at all flexible.
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Small subsets are clueless

Proposition. If f : {±1}V −→ R is transitive, and U ⊂ V , then

clue(U) ·Var f = P[ ∅ 6= S ⊆ U ] 6 P[X ∈ U ] =
∑

u∈U

P[X = u ] =
|U |

|V |
,

where X ∈ S is a uniformly chosen random bit from S 6= ∅.

Percolation left-right crossing is not transitive, but seems not that far.
However, the proof is not at all flexible.

Consider an n × n torus, and all n2 translated ways of cutting it into a
square. Let fi,j, for (i, j) ∈ {1, . . . , n}2, be the LR crossing indicators in
these squares. Want to join them using a transitive function Φ,

F (ω) = Φ(f1,1(ω), . . . , fn,n(ω)) ,

and argue that if the fi,j’s had small sets with large clue, then F would
also have. For this, Φ definitely should not be noise-sensitive.
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From LR crossing to a transitive function

F (ω) :=
∑

(i,j)∈{1,2,...,n}2

fi,j(ω) , SDF ≍ n2 .

Fǫ(ω) :=
∑

(i,j)∈{ǫn,2ǫn,... }2

fi,j(ω) , SDFǫ ≍ 1/ǫ2 .

Claim 1.

Corr
[ Fǫ

1/ǫ2
,
F

n2

]
> 1−O(ǫ) .

Claim 2. If a small subset Ui,j had a positive clue about fi,j, then Uǫ,
the union of the 1/ǫ× 1/ǫ translates, would have a positive clue about Fǫ,
so also about F , which is impossible, since |Uǫ|/n

2 = ǫ−2|Ui,j|/n
2 is still

small.
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Proof of Claim 1

If (i, j) and (k, ℓ) are neighbours in the ǫ-grid, and fi,j 6= fk,ℓ, then there
is a half-plane 3-arm event from distance ǫn to n. Since α+

3 (ǫn, n) ≍ ǫ2,
the expected number of such neighbours is O(1). Thus

P
[
number of neighbours with fi,j 6= fk,ℓ is > 1/ǫ

]
< O(ǫ) .

_+ + _ +

If there are neighbours (i, j) and (k, ℓ) with fi,j = fk,ℓ in the ǫ-grid,
but there is an (u, v) ∈ {1, . . . , n}2 nearby with fu,v different, we have
two independent half-plane 3-arm events, from two ǫn-boxes vertically or
horizontally aligned. The probability of this happening is ≍ (ǫ2)2/ǫ3 = O(ǫ).
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Proof of Claim 1

In summary: with probability 1−O(ǫ), the ǫ-grid detects all the changes in
crossing events, and there are only 1/ǫ changes, hence

∣∣Fǫ · ǫ
2n2 − F

∣∣ < 1/ǫ · ǫ2n2 .

That is,

P

[ ∣∣∣∣
Fǫ

1/ǫ2
−
F

n2

∣∣∣∣ > ǫ
]
< O(ǫ) .

Being bounded random variables, this implies that

Corr
[ Fǫ

1/ǫ2
,
F

n2

]
> 1−O(ǫ) .

Proof of Claim 2 is not hard, either.
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Transitive functions of non-iid spins?

Consider a translation invariant Markov random field σ ∈ {−1,+1}Z
2
n;

e.g., the Ising model at inverse temperature β ∈ (0,∞):

µ
Z
2
n

β (σ) :=
1

Zβ
exp

(
− β

∑

x∼y

1σ(x) 6=σ(y)

)
.

If f : {−1,+1}Z
2
n −→ R is a transitive function, and U ⊂ Z

2
n, let

cluef(U) =
VarE[ f | σU ]

Var f
.

For what measures is it true that |Un| = o(n2) implies clue(Un) → 0?
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Transitive functions of non-iid spins?

Consider a translation invariant Markov random field σ ∈ {−1,+1}Z
2
n;

e.g., the Ising model at inverse temperature β ∈ (0,∞):

µ
Z
2
n

β (σ) :=
1

Zβ
exp

(
− β

∑

x∼y

1σ(x) 6=σ(y)

)
.

If f : {−1,+1}Z
2
n −→ R is a transitive function, and U ⊂ Z

2
n, let

cluef(U) =
VarE[ f | σU ]

Var f
.

For what measures is it true that |Un| = o(n2) implies clue(Un) → 0?

Note: For noise sensitivity with iid spins, there are two key techniques:

(1) Explicit eigenfunctions of the noise operator, indexed by subsets of the
spins, giving rise to the Fourier spectral sample.

(2) Hypercontractivity / log-Sobolev inequality for RW on the hypercube,
again proved using Fourier, implies things like: a monotone function is noise
sensitive iff uncorrelated with majority over any subset.
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Transitive functions of non-iid spins?

Consider a translation invariant Markov random field σ ∈ {−1,+1}Z
2
n;

e.g., the Ising model at inverse temperature β ∈ (0,∞):

µ
Z
2
n

β (σ) :=
1

Zβ
exp

(
− β

∑

x∼y

1σ(x) 6=σ(y)

)
.

If f : {−1,+1}Z
2
n −→ R is a transitive function, and U ⊂ Z

2
n, let

cluef(U) =
VarE[ f | σU ]

Var f
.

For what measures is it true that |Un| = o(n2) implies clue(Un) → 0?
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Transitive functions of non-iid spins?

Consider a translation invariant Markov random field σ ∈ {−1,+1}Z
2
n;

e.g., the Ising model at inverse temperature β ∈ (0,∞):

µ
Z
2
n

β (σ) :=
1

Zβ
exp

(
− β

∑

x∼y

1σ(x) 6=σ(y)

)
.

If f : {−1,+1}Z
2
n −→ R is a transitive function, and U ⊂ Z

2
n, let

cluef(U) =
VarE[ f | σU ]

Var f
.

For what measures is it true that |Un| = o(n2) implies clue(Un) → 0?

Example: Low temperature Ising, β > βc. Then µ
Z
2
n

β converges weakly to

(µ+
β +µ

−
β )/2: not extremal. And sparse reconstruction is easy: if |Un| → ∞,

then sign
∑

x∈Un
σ(x) tells us with large probability if we are in µ+

β or µ−
β ,

hence has clue close to 1 about f(σ) := sign
∑

x∈Z2
n
σ(x).

Lemma (Lanford & Ruelle ‘69). For Markov fields, non-extremal ⇔ not
tail-trivial ⇔ spin reconstruction from a large distance.
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Spectral sample for non-iid spins?

Can we define a random set S = Sf , based on clue:

P[S ⊆ U ] =
∥∥E[ f | σU ]

∥∥2 , P[ ∅ 6= S ⊆ U ]

P[ ∅ 6= S ]
= cluef(U) ?

Eigenfunctions of the Glauber dynamics noise operator are typically not
indexed by subsets of bits, hence this would be a different generalization of
Fourier transform to non-iid measures.

Can try inclusion-exclusion formula:

P[S = S ] :=
∑

T⊆S

(−1)|S|−|T |
P[S ⊆ T ] .

Issue: why would this be non-negative for all S?
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Product measures: Efron-Stein decomposition

Theorem (Efron & Stein ‘81). For f ∈ L2(Ωn, π⊗n), there is a unique
decomposition

f =
∑

S⊆[n]

f=S ,

where f=S depends only on the bits in S, and (f=S, f=T ) = 0 for S 6= T .

Namely, letting f⊆S := E[ f | FS ], the inclusion-exclusion definition works:

f=S :=
∑

T⊆S

(−1)|S|−|T | f⊆T .

Remark. For Ω = {±1}, just f=S = (f, χS).

Consequently, P[S = S ] := ‖f=S‖2/‖f‖2 is a good spectral sample, and
the one-line Small Clue Theorem works.

Why are we happy about this?
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Subcritical Ising as a factor of iid

A measure µ on {−1,+1}Z
d
is a factor of iid if there is a measurable map

ψ : [0, 1]Z
d
−→ {−1,+1} such that if ω ∼ Unif[0, 1]Z

d
, then

σ(x) := ψ
(
ω(x+ ·)

)
, x ∈ Z

d ,

is distributed w.r.t. µ. This factor map is finitary if there is a random
coding radius R(ω) < ∞ such that ψ(ω) and R(ω) are determined by{
ω(x) : x ∈ [−R,R]d

}
.

Using exponential convergence of the Ising Glauber dynamics for β < βc
(Martinelli & Olivieri ‘94), and the Coupling From The Past perfect sampling
algorithm (Propp & Wilson ‘96):

Theorem (van den Berg & Steif ‘99). For β < βc, the unique Ising

measure µ on Z
d is a finitary factor of Unif[0, 1]Z

d
, with coding radius

P[R > t ] < exp(−ct).
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Small Clue Theorem for subcritical Ising

Theorem. For any transitive function f of the Ising spins
{
σ(x) : x ∈ Z

d
n

}
,

and any subset |Un| = o(nd/ logd n), we have cluef(Un) → 0.
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Small Clue Theorem for subcritical Ising

Theorem. For any transitive function f of the Ising spins
{
σ(x) : x ∈ Z

d
n

}
,

and any subset |Un| = o(nd/ logd n), we have cluef(Un) → 0.

Proof. We can get σ as a finitary factor ψ of iid, with coding radii

P
[
Ru < rn for all u ∈ Un

]
> 1− |Un| exp(−crn) ,

which is 1−o(1) if rn = C logn with large enough C, while |Un| r
d
n = o(nd)

still holds. Thus, taking Vn =
⋃

u∈Un
BC logn(u), we have

• ωVn determines σUn with probability 1− o(1);

• |Vn| = o(n2), hence for g = f ◦ ψ, we have clueg(Vn) = o(1).

Let G be the sigma-algebra generated by
{
ωBRu(u)

, u ∈ Un

}
and ωVn.

Then VarE[ g | G ] > VarE[ f | σUn ]. On the other hand,
∥∥E[ g | G ]

∥∥2 =
∥∥E[ g | ωVn ]

∥∥2 +
∥∥E[ g | G ]−E[ g | ωVn ]

∥∥2 .
Both terms on the right are o(Var g), hence VarE[ f | σUn ] = o(Var f).
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Small Clue Theorem for subcritical Ising

Theorem. For any transitive function f of the Ising spins
{
σ(x) : x ∈ Z

d
n

}
,

and any subset |Un| = o(nd/ logd n), we have cluef(Un) → 0.

Proof. We can get σ as a finitary factor ψ of iid, with coding radii

P
[
Ru < rn for all u ∈ Un

]
> 1− |Un| exp(−crn) ,

which is 1−o(1) if rn = C logn with large enough C, while |Un| r
d
n = o(nd)

still holds. Thus, taking Vn =
⋃

u∈Un
BC logn(u), we have

• ωVn determines σUn with probability 1− o(1);

• |Vn| = o(n2), hence for g = f ◦ ψ, we have clueg(Vn) = o(1).

Let G be the sigma-algebra generated by
{
ωBRu(u)

, u ∈ Un

}
and ωVn.

Then VarE[ g | G ] > VarE[ f | σUn ]. On the other hand,

VarE[ g | G ] = VarE[ g | ωVn ] +
∥∥E[ g | G ]−E[ g | ωVn ]

∥∥2 .
Both terms on the right are o(Var g), hence VarE[ f | σUn ] = o(Var f).
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What about critical and supercritical Ising?

Theorem (van den Berg & Steif ‘99).

• At β = βc, using
∑

x∈Zd E[σ(0)σ(x) ] = ∞, the unique Ising measure µ
cannot be a finitary factor with E[Rd ] <∞.

• At β > βc, the + measure µ+ is not a finitary factor of iid.
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What about critical and supercritical Ising?

Theorem (van den Berg & Steif ‘99).

• At β = βc, using
∑

x∈Zd E[σ(0)σ(x) ] = ∞, the unique Ising measure µ
cannot be a finitary factor with E[Rd ] <∞.

• At β > βc, the + measure µ+ is not a finitary factor of iid.

Theorem. At β = βc on Z
2
n, the total magnetization Mn(σ) :=

∑
x σ(x)

can be guessed with high precision from the sparse magnetizationM ǫ
n(σ) :=∑

nǫ|x σ(x), as long as ǫ < 7/8. This implies clueMn(n
ǫ-grid) = 1− o(1).

Intuition 1: The infinite susceptibility
∑

x∈Zd E[σ(0)σ(x) ] = ∞ translates
to Var [Majn] ≫ nd. Then, majority over a random not too sparse sample,
which forgets the geometry, will have a high correlation with the full
majority. But this is only non-constructive sparse reconstruction.
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What about critical and supercritical Ising?

Theorem (van den Berg & Steif ‘99).

• At β = βc, using
∑

x∈Zd E[σ(0)σ(x) ] = ∞, the unique Ising measure µ
cannot be a finitary factor with E[Rd ] <∞.

• At β > βc, the + measure µ+ is not a finitary factor of iid.

Theorem. At β = βc on Z
2
n, the total magnetization Mn(σ) :=

∑
x σ(x)

can be guessed with high precision from the sparse magnetizationM ǫ
n(σ) :=∑

nǫ|x σ(x), as long as ǫ < 7/8. This implies clueMn(n
ǫ-grid) = 1− o(1).

Intuition 2: the discrete magnetization field has a scaling limit that is
measurable w.r.t. macroscopic cluster structure of the FK random cluster
representation underlying the Ising model (Camia, Garban, Newman ‘13).
That is, from macrosopic info only, can guess microscopic magnetization.
Can similarly guess the sparse magnetization, and if ǫ is small enough for
M ǫ

n to be supported everywhere, then it will have the same scaling limit,
and must be close to the full magnetization.
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What about critical and supercritical Ising?

Theorem (van den Berg & Steif ‘99).

• At β = βc, using
∑

x∈Zd E[σ(0)σ(x) ] = ∞, the unique Ising measure µ

cannot be a finitary factor with E[Rd ] <∞.

• At β > βc, the + measure µ+ is not a finitary factor of iid.

Theorem. At β = βc on Z
2
n, the total magnetization Mn(σ) :=

∑
x σ(x)

can be guessed with high precision from the sparse magnetizationM ǫ
n(σ) :=∑

nǫ|x σ(x), as long as ǫ < 7/8. This implies clueMn(n
ǫ-grid) = 1− o(1).

Proof (with help from Christophe Garban): From Wu ‘66 and Chelkak,
Hongler, Izyurov ‘12, we know E[σ(x)σ(y) ] ∼ c ‖x− y‖−1/4.
Thus Var [Mn] =

∑
x,yE[σ(x)σ(y) ] ≍ n4−1/4.

Also, Var [M ǫ
n] ≍ n2−2ǫ + n4−4ǫ−1/4.

On the other hand, Cov
[
Mn,M

ǫ
n

]
=

∑
x,nǫ|yE[σ(x)σ(y) ] = n4−2ǫ−1/4.

For ǫ < 7/8, get Corr
[
Mn,M

ǫ
n

]
> c > 0. With a more careful argument,

using the scaling limit, can get 1− o(1).
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Generalized Divide and Colour Models

Consider a partition of [n]. More precisely, π : [n] −→ [n], giving the
partition by the inverse images. Then flip an independent fair coin for each
part, or equivalently, let σ(i) := ω(π(i)), where ω is an iid fair sequence.

If f is a function of the spins σ, define fπ(ω) := f(ω ◦ π). It turns out that

f̂π(T ) =
∑

S :π⊕(S)=T

f̂(S),

where π⊕(S) = ⊕j∈S π(j), understood as mod 2 addition in {0, 1}[n].
Clearly,

E[ f(σ)2 ] = E[ fπ(ω)
2 ] =

∑

T⊂[n]

f̂π
2
(T ) .

We can now define S π
f via f̂π(T )

2, and then, for any subset U of the spins,

VarE[ f | σ(U), π ]

Var [f |π]
= P

[
S

π
f ⊂ U

∣∣ S
π
f 6= ∅

]
. (1)
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This is for any specific π. If π is an invariant random Π, as in the FK
random cluster model, then σ(U) may contain information about Π, so the
LHS of (1) has a non-trivial term in the conditional variance formula, and
we cannot just average over Π on the RHS. For Ef = 0,

P
[
S

Π
f ⊂ U

∣∣ S
Π
f 6= ∅

]
6

VarE[ f | σ(U) ]

Var f
6 P

[
S

Π
f ⊂ U

]
.

Of course, P[S Π
f = ∅ | Π ] = E[ f | Π ]. If this is close to Ef = 0 for most

Π, then the lower and upper bounds are close.

In general:

cluef(σ(U)) 6 Emax
i

|Π−1(i)|
|U |

n
+P[S Π

f = ∅ ].

In nice cases, such as FK, should be

cluef(σ(U)) 6 C E|Π−1(1)|
|U |

n
.

Note that E|Π−1(1)| =
∑

iE[σ(1)σ(i) ], susceptibility again.
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Some questions

1. If a Markov random field on Z
d is a finitary factor of iid with finite

expected coding volume, E[Rd ] <∞, and thus finite susceptibility:

a. No sparse reconstruction for Majority?

b. No sparse reconstruction for any transitive function?

In particular, does it hold for subcritical Ising in its sharpest form?

For generalized DaC models, E|Π−1(1)| ≪ ∞ implies no sparse
reconstruction for Majority, but other functions can sometimes be
reconstructed!

2. Supercritical Ising µ+ is not a finitary factor of iid. Is there a transitive
function with sparse reconstruction? This time, magnetization probably
does not work.

3. For 2-dimensional Ising at βc, prove that LR-crossing of spins with
+ − +− boundary condition has sparse reconstruction. (Reason: no
pivotals, positive correlation with magnetization field.)
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