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The Tree Builder Random Walk

There are many models of RWs on graphs that change over time,

either independently of the walk (e.g., random walk on dynamical
percolation clusters, by Peres, Sousi, Stauffer, Steif),

or the walk is changing the transition probabilities (e.g., reinforced
random walk by Merkl-Rolles, Angel-Crawford-Kozma, . . . , true
self-repelling motion by Tóth-Werner).

Now the the walker is building the graph: Fix γ ∈ [0, 1]. In step n:

add a leaf with probability pn = n−γ to your current vertex Xn,

step to uniform random neighbor Xn+1 on new tree Tn+1.

Introduced by Amorim, Figueiredo, Iacobelli, Neglia (2016).

Mixture of RW (recurrence, transience, ballisticity) and
random graph questions (diameter, degree distribution).
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The Tree Builder Random Walk

γ = 0 γ = 0.3

γ = 0.55 γ = 0.9

(Thanks to Ágnes Kúsz for the pictures.)
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TBRW: the elliptic regime

γ = 0, always grow a leaf:

If Xn is a leaf, E[dist(o,Xn+1) ] = E[ dist(o,Xn) ].

If Xn is not a leaf, E[ dist(o,Xn+1) ] ≥ E[dist(o,Xn) ] + 1/3.

Xn spends at least a constant proportion of time at non-leaves.

=⇒ ballistic Xn, linearly growing Tn.

This and much more was proved by Figueiredo, Iacobelli, Oliveira,
Reed, Ribeiro (2021), and Iacobelli, Ribeiro, Valle, Zuaznábar
(2022) in the elliptic regime: pn > c > 0, and versions of that.
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TBRW: beyond ellipticity, γ < 1/2

How much are we walking between growth times?

Mixing time of a tree:

Tmix ≤ vol1+o(1) diam, and typically Tmix ≥ c vol.

Also, typical hitting time of root from a distant leaf is τhit ≥ c vol.

One stage: the walk between growth times.

By time n, around n1−γ growth times, so voln ≈ n1−γ .

The length Sn1−γ of the n1−γth stage is typically ≈ nγ .

γ < 1/2:

Sn1−γ ≈ nγ ≪ n1−γ ≤ τhit(Tn), so the chance that (Xt)t≥0 hits o
in a stage should be much smaller than the stationary distribution
1/voln, should happen only finitely often, by Borel-Cantelli.

=⇒ transience should hold. Nothing is proved.
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TBRW: beyond ellipticity, γ > 1/2

By time n, around n1−γ stages, so voln ≈ n1−γ .

The length Sn1−γ of the n1−γth stage is typically ≈ nγ .

Typically, c vol ≤ Tmix ≤ vol1+o(1) diam.

γ > 1/2: Hope to quite mix in a stage, so Tn is more balanced,
hence diam is smaller, hence we get more easily mixed.

Key proposition. For γ > 1/2, have diam(Tn) = vol
o(1)
n w.h.p.

Thus Tmix = vol
1+o(1)
n , so

P
[
Sk < Tmix

]
= P

[
Sk < k1+o(1)

]
= k

−γ
1−γ k1+o(1) = k

1−2γ
1−γ

+o(1).

For γ ∈ (1/2, 2/3], this is k−ε with ε ≤ 1, small, but happens i.o.

For γ ∈ (2/3, 1], this is summable in k, happens only fin. often.

But actual proofs? What does “mixing has happened” mean?
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TBRW: beyond ellipticity, γ > 1/2

For γ > 1/2, have P
[
τhit < Sk

]
> c > 0, hence it happens i.o.

=⇒ recurrence.

For γ > 2/3: want to say that {Sk < Tmix fin. oft.} means that
growth happens at a stationary vertex from some random time on,

hence it is the Barabási-Albert preferential attachment tree started
from a random tree.

Key tool (Aldous-Diaconis 1987). For any finite Markov chain
(Xt)t≥0 with stationary distribution π, for any starting state x ,
there is an optimal strong stationary stopping time ηx :
Px

[
Xηx = y

∣∣ ηx = t
]
= π(y), and

Px [ ηx > t ] = sx(t), the separation distance at time t.

With this, we can produce a coupling with BA-tree process from
some random time on.
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TBRW: structural corollaries γ > 2/3

All almost sure BA-tree limit results that do not depend on the
starting tree (B. Pittel, T. Móri, Zs. Katona) can get transfered:

diam(Tn)

log n
→ c

dist(o,Unif(Tn))

log n
→ 1/2

maxdeg(Tn)√
voln

→ ζ with a non-trivial distribution

|{v ∈ Tn : deg(v) = k}|
voln

→ 4

k(k + 1)(k + 2)
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TBRW: open questions

1 Show transience for γ < 1/2.

Diameter of Tn is n1−γ−δ(γ) for what δ(γ)?

Degree distribution: exponential or polynomial or in between?

2 What happens at γ = 1/2?

3 For γ ∈ (1/2, 2/3], the process is not the BA-tree process, but
do we still have BA-like statistics?

4 What is the scaling limit of the height process of the random
walker on a BA tree? It is typically at height (1/2) log n, with
Gaussian fluctuations ≍

√
log n, by results of Zsolt Katona.

Do we see an Ornstein-Uhlenbeck process?
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A network-of-networks model for physical networks

Ivan Bonamassa

(Central European University, Vienna)

Márton Pósfai

(Central European University, Vienna)

Sigurdur Örn Stefánsson

(University of Iceland)

Ádám Timár
(University of Iceland and Rényi Institute)
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Representing physical networks

Physical network: not only is the graph embedded in space, but
the vertices and edges are non-overlapping physical objects.

Traditional: balls and tubes,
More realistic: nodes are extended objects and links are the
points of contact. E.g., neurons and synapses
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A dynamical model

Nodes will be random walk paths (pieces) in some finite graph H.
In principle one could choose simple random walk, self-avoiding
walk, loop-erased walk...
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Gábor Pete Trees built from random walks



Loop-erased random walk

We will mainly focus on models generated by the loop-erased
random walk (LERW).

LERW from x1 to x0: run simple random walk and erase all the
loops as they are created.
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The resulting network-of-networks in 3 dimensions:
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We will look at the fully packed model: every H-vertex is
contained in some piece.
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Heuristic calculation for degree distribution

Assume the pieces in Zd have “fractal dimension” ζ, with 2ζ ≥ d .

Box of tth piece: side-length ℓt . Typically, ℓs ≥ ℓt for s ≤ t.

If larger piece Vs intersects the box of
the smaller piece Vt , then, by 2ζ ≥ d ,
they overlap with positive probability.

Tile the box [L]d with (L/ℓt)
d boxes of

side-length ℓt . Number of boxes inter-
sected by Vs is ≈ (ℓs/ℓt)

ζ .

Thus the intersection probability, ran-
domly placed, using vs = |Vs | ≈ ℓζs :

ps,t ≈
(
ℓs
ℓt

)ζ

/

(
L

ℓt

)d

=
vsv

d/ζ−1
t

Ld
.
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Heuristic calculation for degree distribution

Probability that the piece added at time t intersects any existing
piece s < t is approximately∑

s:s<t

ps,t =
∑
s:s<t

wt−1v
d/ζ−1
t /Ld ,

where ws = v1 + · · ·+ vs .

In our growth process, Vt grows until it hits existing piece, until
the above intersection probability becomes ≈ 1. I.e.:

vt ≈
(
wt−1/L

d
)− ζ

d−ζ
.

This is an ODE, vt = w ′
t , with w1 ≈ Lζ . Get wt ≈ Ld(t/Ld)1−ζ/d

and vt ≈ (t/Ld)−ζ/d , and the degree of piece t at time T is

degT (t) ≈ 1 +
vt
Ld

T∑
s=t

v
d/ζ−1
s ≈ (T/t)ζ/d .

It follows that degree distribution is P
[
degT (σT ) > k

]
≈ k−d/ζ .
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Heuristic calculation for degree distribution

For 2ζ < d , get P
[
degT (σT ) > k

]
≈ k−2, mean-field, as in BA.

Example 1. LERW in d ≥ 5.

Example 2. ζ = 1, d = 2, random ray model:

Ex1 is really a version of the BA-tree, not just in deg-distribution.
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LERW physical networks

For the case of LERW, mathematically rigorous proofs can be
given, using connection with the Uniform Spanning Tree:

Theorem

The degree distribution of the abstract network satisfies

P[deg(σ) > t] = t−8/5+o(1) for dim= 2;

P[deg(σ) > t] = t−2+o(1) for dim≥ 5.
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Construction via the Uniform Spanning Tree

Consider a Uniform Spanning Tree (UST) T in G (finite). Take a
uniform random ordering x0, x1, . . . , xN of the vertices.

P1 := the path from x1 to x0 in T
Pk := the path from xk to P1 ∪ . . . ∪ Pk−1

The resulting physical network has the same distribution as our
original model! We rely on Wilson’s algorithm.
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Limit networks

One consequence of the alternative description is the existence of
the infinite-volume limit.

Theorem

Let G be an infinite transitive graph and Gn be an exhaustion by
finite induced subgraphs. The LERW-generated physical network
on Gn has a weak limit, invariant under the automorphisms of G .

The abstract network corresponding to the weak limit is a
unimodular random forest consisting of one-ended trees whenever
G has superlinear growth.

One can also construct a scaling limit, using work of Archer,
Nachmias, Shalev (2021) for d ≥ 5. (In progress.)

Gives answers to questions like: how does the subtree induced by
the first 100 pieces in the construction look like?
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Degree exponent, rough sketch of proof

Want: degree of a uniformly randomly selected node of the
abstract graph.

Gábor Pete Trees built from random walks



Degree exponent, rough sketch of proof

Want: degree of a uniformly randomly selected node of the
abstract graph.
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Degree exponent, rough sketch of proof

This is the same as the the “degree” of the piece of a random
vertex x in H. We choose x with a bias |P(x)|−1 where P(x) is its
piece.
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Degree exponent, rough sketch of proof

Lemma 1: Degree of a piece is of the same magnitude as its length.
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Degree exponent, rough sketch of proof

Lemma 2: Length of P(x) is comparable to the diameter of the
subtree of vertices in the UST that x separates from x0 (the past
of x).

So we need the distribution of this latter diameter, diam(pastx).
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Degree exponent, rough sketch of proof

Dimension 2:
growth exponent is 5/4, Kenyon (2000), Barlow-Masson (2011)

Ignoring o(1) corrections in the exponents,

P[diam(pastx) > r ] ≈ P[Eucl-diam(pastx)
5/4 > r ]

= P[Eucl-diam(pastx) > r4/5] ≈ (r4/5)−3/4 = r−3/5,

where the last ≈ is by a result of Masson about intersecting LERW
and SRW:

8

8
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Degree exponent, rough sketch of proof

Thus, for the uniformly selected point o of the abstract network we
can summarize:

P[deg(o) = k] ≈ 1

k
P[|P(x)| = k] ≈ 1

k
P[diam(pastx) = k]

≈ 1

k
k−3/5−1 = k−2.6.

Dimension ≥ 5:

Follows from the known distribution of Eucl-diam(pastx),
Bhupatiraju-Hanson-Járai (2017), and the concentration of
diam(pastx) around Eucl-diam(pastx)

2, by Lawler (1980).
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Combinatorial Laplacian
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Physical Laplacian

Gábor Pete Trees built from random walks



Fruitfly brain
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Open problems

1 Show γ = 3 degree distribution for random ray model in 2d.

2 Understand how exactly the Physical Laplacian feels
physicality.

For instance, prove that the spectrum does not have a fat tail.
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Thank you for your attention!
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