

How to prove tightness for the size of strange random sets? Based on [GPS 2008].

Gábor Pete http://www.math.toronto.edu/~gabor

Recall the Fourier spectral sample

The space $L^2(\Omega, \mu)$, where $\Omega = \{\pm 1\}^V$, μ uniform probability measure, inner product $\mathbf{E}[fg]$, has a nice orthonormal basis:

For $S \subset V$, let $\chi_S(\omega) := \prod_{v \in S} \omega(v)$, the parity inside S.

Any function $f \in L^2(\Omega, \mu)$ decomposes in this basis (Fourier-Walsh series):

$$\hat{f}(S) := \mathbf{E}[f\chi_S]; \qquad f(\omega) = \sum_{S \subset V} \hat{f}(S) \chi_S(\omega).$$

By Parseval, $\sum_{S} \hat{f}(S)^2 = \mathbf{E}[f^2]$. So can define probability measure $\mathbf{P}[\mathscr{S}_f = S] := \hat{f}(S)^2 / \mathbf{E}[f^2]$, the spectral sample $\mathscr{S}_f \subset V$.

$$\begin{split} \frac{\mathbf{E}[f(\omega^{\epsilon})f(\omega)] - \mathbf{E}[f]^2}{\mathbf{E}[f^2]} &= \sum_{S \neq \emptyset} \frac{\hat{f}(S)^2}{\mathbf{E}[f^2]} (1 - \epsilon)^{|S|} = \mathbf{E}[(1 - \epsilon)^{|\mathscr{S}_f|}; |\mathscr{S}_f| > 0],\\ \text{hence small } \mathbf{P}[0 < |\mathscr{S}_f| < K/\epsilon] \text{ means small covariance after } \epsilon \text{-noise.} \end{split}$$

Although goal is to understand size, Gil Kalai suggested trying to understand entire distribution. A strange random set of bits.

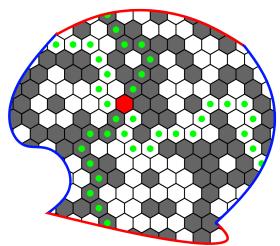
Effective sampling? If f is an effectively computable Boolean function, then there is an effective quantum algorithm for \mathscr{S}_f [Bernstein-Vazirani 1993].

For critical planar percolation, [Smirnov '01] + [Tsirelson '04] + [Schramm-Smirnov] implies that $\mathscr{S}_{\mathcal{Q},n}$ (left-right crossing in a conformal rectangle \mathcal{Q} , mesh 1/n) has a conformally invariant scaling limit.

For ± 1 -valued f, can consider pivotal bits. $\mathbf{P}[x, y \in \operatorname{Piv}_f] = \mathbf{P}[x, y \in \mathscr{S}_f]$, but not for more points.

Both random subsets measure the "influence" or "relevance" of bits.

$$\begin{split} \mathbf{P}\big[\,\mathscr{S}_{\mathcal{Q},n} \cap B \neq \emptyset\,\big] &\asymp \mathbf{P}\big[\,B \text{ is pivotal for crossing }\mathcal{Q}\,\big] \\ &= \alpha_4(B,\mathcal{Q}) \text{, the 4-arm event.} \end{split}$$



 $\mathbf{P}\big[\emptyset \neq \mathscr{S}_{\mathcal{Q},n} \subseteq B\big] \asymp \alpha_4(B,\mathcal{Q})^2. \text{ But } \mathbf{P}\big[\emptyset \neq \mathsf{Piv}_{\mathcal{Q},n} \subseteq B\big] \asymp \alpha_6(B,\mathcal{Q}).$

Three very simple examples

$$\begin{aligned} \mathsf{Dictator}_n(x_1, \dots, x_n) &:= x_1 \, . \\ \mathsf{Here } \mathsf{Cov} \big[\mathsf{Dic}_n(x), \mathsf{Dic}_n(x^{\epsilon}) \big] &= 1 - \epsilon, \text{ so noise-stable.} \\ \mathsf{And } \mathbf{P} \big[\mathscr{S}_n &= \{x_1\} \big] &= 1. \end{aligned}$$

$$\begin{aligned} \mathsf{Majority}_n(x_1, \dots, x_n) &:= \mathrm{sgn} \left(x_1 + \dots + x_n \right) \approx \frac{1}{\sqrt{n}} (x_1 + \dots + x_n) \,. \\ \mathsf{Here } \operatorname{Cov} \left[\operatorname{Maj}_n(x), \operatorname{Maj}_n(x^{\epsilon}) \right] &= 1 - O(\epsilon), \text{ so noise-stable.} \\ \mathsf{And } \mathbf{P} \left[\mathscr{S}_n &= \{x_i\} \right] &\asymp 1/n, \text{ most of the weight is on singletons.} \\ \mathsf{On the other hand, } \mathbf{E} |\mathscr{S}_n| &= \mathbf{E} |\operatorname{Piv}_n| \asymp \frac{1}{\sqrt{n}} n \asymp \sqrt{n}. \end{aligned}$$

 $\begin{aligned} &\mathsf{Parity}_n(x_1, \dots, x_n) := x_1 \cdots x_n \\ &\mathsf{Here } \mathsf{Cov} \big[\mathsf{Par}_n(x), \mathsf{Par}_n(x^{\epsilon}) \big] = (1 - \epsilon)^n \text{, the most sensitive to noise.} \\ &\mathsf{And } \mathbf{P} \big[\mathscr{S}_n = \{x_1, \dots, x_n\} \big] = 1. \end{aligned}$

Self-similarity for left-right crossing of $n \times n$ square

$$\mathbf{E}|\mathscr{S}_{n}| = \mathbf{E}|\operatorname{Piv}_{n}| \asymp n^{2} \alpha_{4}(1, n) \stackrel{\Delta}{\asymp} n^{3/4+o(1)},$$
$$\mathbf{E}|\mathscr{S}_{n}(r)| := \mathbf{E}\left[\#\left\{r\text{-boxes } \mathscr{S}_{n} \cap B_{r} \neq \emptyset\right\}\right] \asymp \frac{n^{2}}{r^{2}} \alpha_{4}(r, n) \asymp \mathbf{E}|\mathscr{S}_{n/r}|,$$
$$\mathbf{E}\left[|\mathscr{S}_{n} \cap B_{r}| \mid \mathscr{S}_{n} \cap B_{r} \neq \emptyset\right] \asymp r^{2} \alpha_{4}(1, r) \asymp \mathbf{E}|\mathscr{S}_{r}|.$$

Of course, $r^2 \alpha_4(1,r) \cdot \frac{n^2}{r^2} \alpha_4(r,n) \asymp n^2 \alpha_4(1,n)$, by quasi-multiplicativity.

Self-similarity for left-right crossing of $n \times n$ square

$$\begin{split} \mathbf{E}|\mathscr{S}_{n}| &= \mathbf{E}|\mathrm{Piv}_{n}| \asymp n^{2} \alpha_{4}(1,n) \stackrel{\Delta}{\asymp} n^{3/4+o(1)}, \\ \mathbf{E}|\mathscr{S}_{n}(r)| &:= \mathbf{E}\Big[\#\big\{r\text{-boxes } \mathscr{S}_{n} \cap B_{r} \neq \emptyset \big\} \Big] \asymp \frac{n^{2}}{r^{2}} \alpha_{4}(r,n) \asymp \mathbf{E}|\mathscr{S}_{n/r}|, \\ \mathbf{E}\Big[|\mathscr{S}_{n} \cap B_{r}| \ \Big| \ \mathscr{S}_{n} \cap B_{r} \neq \emptyset \Big] \asymp r^{2} \alpha_{4}(1,r) \asymp \mathbf{E}|\mathscr{S}_{r}|. \end{split}$$
Of course, $r^{2} \alpha_{4}(1,r) \cdot \frac{n^{2}}{r^{2}} \alpha_{4}(r,n) \asymp n^{2} \alpha_{4}(1,n), \text{ by quasi-multiplicativity.} \end{split}$

Similar to the zero-set of simple random walk: $\mathbf{E}|\mathcal{Z}_n| \asymp n n^{-1/2} = n^{1/2}$,

$$\mathbf{E}|\mathcal{Z}_{n}(r)| := \mathbf{E}\Big[\#\big\{r\text{-intervals } \mathcal{Z}_{n} \cap I_{r} \neq \emptyset\big\}\Big] \asymp \frac{n}{r} (n/r)^{-1/2} \asymp \mathbf{E}|\mathcal{Z}_{n/r}|,$$
$$\mathbf{E}\Big[|\mathcal{Z}_{n} \cap I_{r}| \mid \mathcal{Z}_{n} \cap I_{r} \neq \emptyset\Big] \asymp r r^{-1/2} \asymp \mathbf{E}|\mathcal{Z}_{r}|.$$

The $\mathscr{S}_n(r)$ and $\mathcal{Z}_n(r)$ results are related to the existence of scaling limits.

What concentration can we expect?

 \mathscr{S}_n is very different from uniform set of similar density: i.i.d. $\mathbf{P}[x \in \mathscr{U}_n] = n^{-5/4}$. Hence $\mathbf{E}|\mathscr{U}_n| = n^{3/4}$.

For large $r \gg n^{5/8}$, this \mathscr{U}_n intersects every r-box; for small r, if it intersects one, there is just one point there.

Concentration of size: roughly within $\sqrt{\mathbf{E}|\mathscr{U}_n|} = n^{3/8}$.

A bit more similar: for $i = 1, \ldots, (n/r)^2$, i.i.d. $\mathbf{P}[X_i = r^{3/4}] = (n/r)^{-5/4}$, $X_i = 0$ otherwise. Then $S_{n,r} := \sum_i X_i$. Hence $\mathbf{E}|S_{n,r}| = n^{3/4}$.

For $r = n^{\gamma}$, size $|S_{n,r}|$ is concentrated within $n^{3/8(1+\gamma)}$, still $o(\mathbf{E}|S_{n,r}|)$.

For self-similar sets, we expect only tightness around the mean: $\mathbf{P}[0 < |\mathscr{S}_n| < \lambda \mathbf{E}|\mathscr{S}_n|] \to 0$ as $\lambda \to 0$, uniformly in n.

Proving tightness with a lot of independence

Assume we have the following ingredients, true for the zeroes:

(1)
$$\mathbf{P}\Big[|\mathcal{Z}_n \cap I_r| > c \, \mathbf{E}|\mathcal{Z}_r| \ \Big| \ \mathcal{Z}_n \cap I_r \neq \emptyset, \ \mathscr{F}_{[n]\setminus I_r}\Big] \geqslant c > 0.$$

(2) $\mathbf{P}[|\mathcal{Z}_n(r)| = k] \leq g(k) \mathbf{P}[|\mathcal{Z}_n(r)| = 1]$, with sub-exponential g(k):

when the r-intervals intersected are scattered, have to pay k times to get to and leave them, and this cost is not balanced by combinatorial entropy.

Proving tightness with a lot of independence

Assume we have the following ingredients, true for the zeroes:

(1)
$$\mathbf{P}\left[\left|\mathcal{Z}_{n}\cap I_{r}\right|>c\,\mathbf{E}\left|\mathcal{Z}_{r}\right|\ \middle|\ \mathcal{Z}_{n}\cap I_{r}\neq\emptyset,\ \mathscr{F}_{[n]\setminus I_{r}}\right]\geqslant c>0.$$

(2) $\mathbf{P}[|\mathcal{Z}_n(r)| = k] \leq g(k) \mathbf{P}[|\mathcal{Z}_n(r)| = 1]$, with sub-exponential g(k):

when the r-intervals intersected are scattered, have to pay k times to get to and leave them, and this cost is not balanced by combinatorial entropy.

$$\begin{split} \mathbf{P}\big[\, 0 < |\mathcal{Z}_n| < c \, \mathbf{E}|\mathcal{Z}_r| \, \big] &= \sum_{k \ge 1} \mathbf{P}\Big[\, 0 < |\mathcal{Z}_n| < c \, \mathbf{E}|\mathcal{Z}_r| \, , \ |\mathcal{Z}_n(r)| = k \, \Big] \\ & \text{by (1):} \quad \leqslant \sum_{k \ge 1} (1-c)^k \, \mathbf{P}\big[\, |\mathcal{Z}_n(r)| = k \, \big] \\ & \text{by (2):} \quad \leqslant O(1) \, \mathbf{P}\big[\, |\mathcal{Z}_n(r)| = 1 \, \big] \asymp (n/r)^{1-3/2}, \end{split}$$

which, using $\lambda = \frac{c \mathbf{E}|\mathcal{Z}_r|}{\mathbf{E}|\mathcal{Z}_n|} \asymp (r/n)^{1/2}$, reads as $\mathbf{P} \left[0 < |\mathcal{Z}_n| < \lambda \mathbf{E}|\mathcal{Z}_n| \right] \asymp \lambda$.

But we know much less independence for \mathscr{S}_n

(1') $\mathbf{P}\Big[|\mathscr{S}_n \cap B_r/3| > c \mathbf{E}|\mathscr{S}_r| \ \Big| \ \mathscr{S}_n \cap B_r \neq \emptyset = \mathscr{S}_n \cap W\Big] \ge c > 0,$ for any W that is not too close to B_r .

Why only this negative conditioning? Inclusion formula:

$$\mathbf{P}\big[\mathscr{S}_f \subset U\big] = \sum_{S \subset U} \hat{f}(S)^2 = \mathbf{E}\Big[\left(\sum_{S \subset U} \hat{f}(S) \,\chi_S\right)^2\Big] = \mathbf{E}\Big[\mathbf{E}\big[f \mid \mathscr{F}_U\big]^2\Big]$$

From this, for disjoint subsets A and B,

$$\mathbf{P}\left[\mathscr{S}_{f} \cap B \neq \emptyset = \mathscr{S}_{f} \cap A\right] = \mathbf{P}\left[\mathscr{S}_{f} \subseteq A^{c}\right] - \mathbf{P}\left[\mathscr{S}_{f} \subseteq (A \cup B)^{c}\right]$$
$$= \mathbf{E}\left[\mathbf{E}\left[f \mid \mathscr{F}_{A^{c}}\right]^{2} - \mathbf{E}\left[f \mid \mathscr{F}_{(A \cup B)^{c}}\right]^{2}\right]$$
$$= \mathbf{E}\left[\left(\mathbf{E}\left[f \mid \mathscr{F}_{A^{c}}\right] - \mathbf{E}\left[f \mid \mathscr{F}_{(A \cup B)^{c}}\right]\right)^{2}\right].$$

So, what are we going to do?

With quite a lot of work for both items,

(1')
$$\mathbf{P}\Big[|\mathscr{S}_n \cap B_r/3| > c \,\mathbf{E}|\mathscr{S}_r| \mid \mathscr{S}_n \cap B_r \neq \emptyset = \mathscr{S}_n \cap W\Big] \ge c > 0.$$

(2) $\mathbf{P}[|\mathscr{S}_n(r)| = k] \leq g(k) \mathbf{P}[|\mathscr{S}_n(r)| = 1]$, with sub-exponential g(k).

We could repeat (1') for many *r*-boxes only if "not enough points in one box" meant "we found nothing in that box".

So, take an independent random dilute sample: $\mathbf{P}[x \in \mathcal{R}] = 1/\mathbf{E}|\mathscr{S}_r|$ i.i.d. Then, $|\mathscr{S}_n \cap B_r/3|$ is small $\implies \mathcal{R} \cap \mathscr{S}_n \cap B_r/3 = \emptyset$ is likely, and $|\mathscr{S}_n \cap B_r/3|$ is large $\implies \mathcal{R} \cap \mathscr{S}_n \cap B_r/3 \neq \emptyset$ is likely.

So, what are we going to do?

With quite a lot of work for both items,

(1')
$$\mathbf{P}\Big[|\mathscr{S}_n \cap B_r/3| > c \,\mathbf{E}|\mathscr{S}_r| \ \Big| \ \mathscr{S}_n \cap B_r \neq \emptyset = \mathscr{S}_n \cap W\Big] \ge c > 0.$$

(2) $\mathbf{P}[|\mathscr{S}_n(r)| = k] \leq g(k) \mathbf{P}[|\mathscr{S}_n(r)| = 1]$, with sub-exponential g(k).

We could repeat (1') for many *r*-boxes only if "not enough points in one box" meant "we found nothing in that box".

So, take an independent random dilute sample: $\mathbf{P}[x \in \mathcal{R}] = 1/\mathbf{E}|\mathscr{S}_r|$ i.i.d. Then, $|\mathscr{S}_n \cap B_r/3|$ is small $\implies \mathcal{R} \cap \mathscr{S}_n \cap B_r/3 = \emptyset$ is likely, and $|\mathscr{S}_n \cap B_r/3|$ is large $\implies \mathcal{R} \cap \mathscr{S}_n \cap B_r/3 \neq \emptyset$ is likely.

But $\mathbf{P}\Big[\mathscr{S}_n \neq \emptyset = \mathcal{R} \cap \mathscr{S}_n \ \Big| \ |\mathscr{S}_n(r)| = k\Big]$ is still problematic conditioning.

Or, if we scan sequentially the *r*-boxes until $\mathcal{R} \cap \mathscr{S}_n \cap B_r/3 \neq \emptyset$, how would (2) imply that we had a good chance of success several times? We don't know how $\mathbf{P} \big[\mathscr{S}_n \cap B_r(t) \neq \emptyset \mid \mathscr{S}_n \cap W(t) = \emptyset \big]$ changes with the steps *t*.

Oded's first solution: a filtered Markov inequality

If \mathscr{F}_k is a monotone increasing filtration, X_k are non-negative variables, and $Y_k := \mathbf{E} [X_k \mid \mathscr{F}_k]$, then, for any $s, t \ge 0$,

$$\mathbf{P}\Big[\sum_{k} Y_k \leqslant s, \sum_{k} X_k \geqslant t\Big] \leqslant s/t.$$

In the application, \mathscr{F}_k is the σ -algebra generated by the random sets $\{\mathcal{R} \cap \mathscr{S}_n \cap B_j : j \leq k-1\}$, and $X_k = 1_{\{\mathscr{S}_n \cap B_k \neq \emptyset\}}$.

Since (2) says that $\sum_k X_k$ is probably large, we get the same for $\sum_k Y_k$. Hence, with large probability, there are several boxes where the scanning has a positive chance to succeed, so it is unlikely that it remains unsuccessful.

However, the Markov-type bound is too weak, we don't get the sharp result.

Oded's second solution: a large deviation lemma

Suppose $X_i, Y_i \in \{0, 1\}$, i = 1, ..., n, and that $\forall J \subset [n]$ and $\forall i \in [n] \setminus J$

$$\mathbf{P}\left[Y_i=1 \mid \forall_{j\in J}Y_j=0\right] \geqslant c \mathbf{P}\left[X_i=1 \mid \forall_{j\in J}Y_j=0\right].$$

Then

$$\mathbf{P}\Big[\forall_i Y_i = \mathbf{0}\Big] \leqslant c^{-1} \mathbf{E}\Big[\exp\Big(-(c/e)\sum_i X_i\Big)\Big].$$

We use this with $X_j := 1_{\{\mathscr{S} \cap B_j \neq \emptyset\}}$ and $Y_j := 1_{\{\mathscr{S} \cap B_j \cap \mathcal{R} \neq \emptyset\}}$.

Proof: Instead of sequential scan, average everything together. Choose $J \subset [n]$ randomly, Bernoulli(1-p). Get $\mathbf{E}[Y p^Y] \ge c \mathbf{E}[X p^{Y+1}]$.

So, $\mathbf{E}[Z] \ge 0$, where $Z := (Y - c p X) p^Y$. Choose $p := e^{-1}$. Maximize Z over Y, and get the bound $Z \le \exp(-1 - c X/e)$. Altogether, $c e^{-1} \mathbf{P}[Y = 0 < X] \le \mathbf{E}[1_{X>0} \exp(-1 - c X/e)]$, and done.

Final result for the spectral sample

If $r \in [1, n]$, then $\{|\mathscr{S}_n| < \mathbf{E}|\mathscr{S}_r|\}$ is basically equivalent to being contained inside some $r \times r$ sub-square:

$$\mathbf{P}\left[\left.0 < |\mathscr{S}_n| < \mathbf{E}|\mathscr{S}_r|\right.\right] \asymp \alpha_4(r,n)^2 \left(\frac{n}{r}\right)^2.$$

In particular, on the triangular lattice Δ ,

$$\mathbf{P}\big[0 < |\mathscr{S}_n| < \lambda \, \mathbf{E}|\mathscr{S}_n|\big] \asymp \lambda^{2/3}.$$

The *scaling limit* of \mathscr{S}_n is a conformally invariant Cantor-set with Hausdorffdimension 3/4.

Remark. The same strategy gives $\mathbf{P}[0 < |\mathsf{Piv}_n| < \lambda \mathbf{E}|\mathsf{Piv}_n|] \simeq \lambda^{11/9}$, but it's an overkill, given all the independence in Piv_n .

Some related questions

Question 1: Can one build similar proofs for other Boolean functions?

Question 2: Self-similarity of Piv_n and \mathscr{S}_n is a lot of restriction.

Conjecture [Gil Kalai]: The entropy of such random sets X_n is at most $E|X_n|$, i.e., there is no log factor as in uniform.

In particular, Influence-Entropy conjecture [Friedgut-Kalai 1996]: For some universal constant C, for any Boolean function f,

$$\begin{split} \mathbf{SpecEnt}(f) &:= \sum_{S \subset [n]} \widehat{f}(S)^2 \log \frac{1}{\widehat{f}(S)^2} \leqslant C \times \\ &\times \mathbf{Influence}(f) := \mathbf{E}|\mathscr{S}_f| = \mathbf{E}|\mathrm{Piv}_f| = \sum_{S \subset [n]} \widehat{f}(S)^2 |S| \,. \end{split}$$

I think I can do it for Piv_n , but have no idea about \mathscr{S}_n .