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Recall the Fourier spectral sample

The space L2(Ω, µ), where Ω = {±1}V , µ uniform probability measure,
inner product E[ fg ], has a nice orthonormal basis:

For S ⊂ V , let χS(ω) :=
∏

v∈S ω(v), the parity inside S.

Any function f ∈ L2(Ω, µ) decomposes in this basis (Fourier-Walsh series):

f̂(S) := E[ fχS ] ; f(ω) =
∑

S⊂V

f̂(S)χS(ω) .

By Parseval,
∑

S f̂(S)2 = E[ f2 ]. So can define probability measure

P
[
Sf = S

]
:= f̂(S)2/E[ f2 ], the spectral sample Sf ⊂ V .

E[ f(ωǫ)f(ω) ] − E[ f ]2

E[ f2 ]
=

∑

S 6=∅

f̂(S)2

E[ f2 ]
(1−ǫ)|S| = E

[
(1 − ǫ)|Sf | ; |Sf | > 0

]
,

hence small P
[
0 < |Sf | < K/ǫ

]
means small covariance after ǫ-noise.
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Although goal is to understand size, Gil Kalai suggested trying to understand
entire distribution. A strange random set of bits.

Effective sampling? If f is an effectively computable Boolean function, then
there is an effective quantum algorithm for Sf [Bernstein-Vazirani 1993].

For critical planar percolation, [Smirnov ‘01] + [Tsirelson ‘04] + [Schramm-
Smirnov] implies that SQ,n (left-right crossing in a conformal rectangle Q,
mesh 1/n) has a conformally invariant scaling limit.

For ±1-valued f , can consider pivotal bits.
P

[
x, y ∈ Pivf

]
= P

[
x, y ∈ Sf

]
, but not for
more points.

Both random subsets measure the “influence”
or “relevance” of bits.
P

[
SQ,n ∩ B 6= ∅

]
≍ P

[
B is pivotal for crossing Q

]

= α4(B,Q), the 4-arm event.
P

[
∅ 6= SQ,n ⊆ B

]
≍ α4(B,Q)2. But P

[
∅ 6= PivQ,n ⊆ B

]
≍ α6(B,Q).

2



Three very simple examples

Dictatorn(x1, . . . , xn) := x1 .
Here Cov

[
Dicn(x), Dicn(xǫ)

]
= 1 − ǫ, so noise-stable.

And P
[
Sn = {x1}

]
= 1.

Majorityn(x1, . . . , xn) := sgn (x1 + · · · + xn) ≈ 1√
n
(x1 + · · · + xn) .

Here Cov
[
Majn(x), Majn(xǫ)

]
= 1 − O(ǫ), so noise-stable.

And P
[
Sn = {xi}

]
≍ 1/n, most of the weight is on singletons.

On the other hand, E|Sn| = E|Pivn| ≍ 1√
n

n ≍ √
n.

Parityn(x1, . . . , xn) := x1 · · ·xn

Here Cov
[
Parn(x), Parn(xǫ)

]
= (1 − ǫ)n, the most sensitive to noise.

And P
[
Sn = {x1, . . . , xn}

]
= 1.
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Self-similarity for left-right crossing of n × n square

E|Sn| = E|Pivn| ≍ n2 α4(1, n)
∆≍ n3/4+o(1) ,

E|Sn(r)| := E

[
#

{
r-boxes Sn ∩ Br 6= ∅

} ]
≍ n2

r2
α4(r, n) ≍ E|Sn/r| ,

E

[
|Sn ∩ Br|

∣∣∣ Sn ∩ Br 6= ∅
]
≍ r2 α4(1, r) ≍ E|Sr| .

Of course, r2 α4(1, r) · n2

r2 α4(r, n) ≍ n2 α4(1, n), by quasi-multiplicativity.
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Of course, r2 α4(1, r) · n2

r2 α4(r, n) ≍ n2 α4(1, n), by quasi-multiplicativity.

Similar to the zero-set of simple random walk: E|Zn| ≍ nn−1/2 = n1/2,

E|Zn(r)| := E

[
#

{
r-intervals Zn ∩ Ir 6= ∅

} ]
≍ n

r
(n/r)−1/2 ≍ E|Zn/r| ,

E

[
|Zn ∩ Ir|

∣∣∣ Zn ∩ Ir 6= ∅
]
≍ r r−1/2 ≍ E|Zr| .

The Sn(r) and Zn(r) results are related to the existence of scaling limits.
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What concentration can we expect?

Sn is very different from uniform set of similar density:
i.i.d. P[ x ∈ Un ] = n−5/4. Hence E|Un| = n3/4.

For large r (≫ n5/8), this Un intersects every r-box;
for small r, if it intersects one, there is just one point there.

Concentration of size: roughly within
√

E|Un| = n3/8.

A bit more similar: for i = 1, . . . , (n/r)2, i.i.d. P
[
Xi = r3/4

]
= (n/r)−5/4,

Xi = 0 otherwise. Then Sn,r :=
∑

i Xi. Hence E|Sn,r| = n3/4.

For r = nγ, size |Sn,r| is concentrated within n3/8(1+γ), still o(E|Sn,r|).

For self-similar sets, we expect only tightness around the mean:
P

[
0 < |Sn| < λE|Sn|

]
→ 0 as λ → 0, uniformly in n.
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Proving tightness with a lot of independence

Assume we have the following ingredients, true for the zeroes:

(1) P

[
|Zn ∩ Ir| > cE|Zr|

∣∣∣ Zn ∩ Ir 6= ∅, F[n]\Ir

]
> c > 0.

(2) P
[
|Zn(r)| = k

]
6 g(k)P

[
|Zn(r)| = 1

]
, with sub-exponential g(k):

when the r-intervals intersected are scattered, have to pay k times to get
to and leave them, and this cost is not balanced by combinatorial entropy.
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P
[
0 < |Zn| < cE|Zr|

]
=

∑

k>1

P

[
0 < |Zn| < cE|Zr| , |Zn(r)| = k

]

by (1): 6
∑

k>1

(1 − c)k
P

[
|Zn(r)| = k

]

by (2): 6 O(1)P
[
|Zn(r)| = 1

]
≍ (n/r)1−3/2,

which, using λ = c E|Zr|
E|Zn| ≍ (r/n)1/2, reads as P

[
0 < |Zn| < λE|Zn|

]
≍ λ.
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But we know much less independence for Sn

(1’) P

[
|Sn ∩ Br/3| > cE|Sr|

∣∣∣ Sn ∩ Br 6= ∅ = Sn ∩ W
]

> c > 0,

for any W that is not too close to Br.

Why only this negative conditioning? Inclusion formula:

P
[
Sf ⊂ U

]
=

∑

S⊂U

f̂(S)2 = E

[ (∑

S⊂U

f̂(S)χS

)2 ]
= E

[
E

[
f

∣∣ FU

]2 ]
.

From this, for disjoint subsets A and B,

P
[
Sf ∩ B 6= ∅ = Sf ∩ A

]
= P

[
Sf ⊆ Ac

]
− P

[
Sf ⊆ (A ∪ B)c

]

= E

[
E[ f | FAc ]

2 − E[ f | F(A∪B)c ]
2
]

= E

[ (
E[ f | FAc ] − E[ f | F(A∪B)c ]

)2
]
.
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So, what are we going to do?

With quite a lot of work for both items,

(1’) P

[
|Sn ∩ Br/3| > cE|Sr|

∣∣∣ Sn ∩ Br 6= ∅ = Sn ∩ W
]

> c > 0.

(2) P
[
|Sn(r)| = k

]
6 g(k)P

[
|Sn(r)| = 1

]
, with sub-exponential g(k).

We could repeat (1’) for many r-boxes only if “not enough points in one
box” meant “we found nothing in that box”.

So, take an independent random dilute sample: P[ x ∈ R ] = 1/E|Sr| i.i.d.
Then, |Sn ∩ Br/3| is small =⇒ R∩ Sn ∩ Br/3 = ∅ is likely,
and |Sn ∩ Br/3| is large =⇒ R∩ Sn ∩ Br/3 6= ∅ is likely.
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But P

[
Sn 6= ∅ = R∩ Sn

∣∣∣ |Sn(r)| = k
]

is still problematic conditioning.

Or, if we scan sequentially the r-boxes until R∩Sn∩Br/3 6= ∅, how would
(2) imply that we had a good chance of success several times? We don’t
know how P

[
Sn ∩ Br(t) 6= ∅

∣∣ Sn ∩ W (t) = ∅
]

changes with the steps t.
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Oded’s first solution: a filtered Markov inequality

If Fk is a monotone increasing filtration, Xk are non-negative variables,
and Yk := E

[
Xk

∣∣ Fk

]
, then, for any s, t > 0,

P

[ ∑

k

Yk 6 s,
∑

k

Xk > t
]

6 s/t .

In the application, Fk is the σ-algebra generated by the random sets
{R ∩ Sn ∩ Bj : j 6 k − 1}, and Xk = 1{Sn∩Bk 6=∅}.

Since (2) says that
∑

k Xk is probably large, we get the same for
∑

k Yk.
Hence, with large probability, there are several boxes where the scanning has
a positive chance to succeed, so it is unlikely that it remains unsuccessful.

However, the Markov-type bound is too weak, we don’t get the sharp result.
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Oded’s second solution: a large deviation lemma

Suppose Xi, Yi ∈ {0, 1}, i = 1, . . . , n, and that ∀J ⊂ [n] and ∀i ∈ [n] \ J

P
[
Yi = 1

∣∣ ∀j∈JYj = 0
]

> cP
[
Xi = 1

∣∣ ∀j∈JYj = 0
]
.

Then
P

[
∀iYi = 0

]
6 c−1

E

[
exp

(
−(c/e)

∑

i

Xi

) ]
.

We use this with Xj := 1{S∩Bj 6=∅} and Yj := 1{S∩Bj∩R6=∅}.

Proof: Instead of sequential scan, average everything together.
Choose J ⊂ [n] randomly, Bernoulli(1−p). Get E

[
Y pY

]
> cE

[
X pY +1

]
.

So, E[Z ] > 0, where Z := (Y − c p X) pY . Choose p := e−1. Maximize
Z over Y , and get the bound Z 6 exp(−1 − cX/e). Altogether,
c e−1

P
[
Y = 0 < X

]
6 E

[
1X>0 exp(−1 − cX/e)

]
, and done.
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Final result for the spectral sample

If r ∈ [1, n], then
{
|Sn| < E|Sr|

}
is basically equivalent to being contained

inside some r × r sub-square:

P
[
0 < |Sn| < E|Sr|

]
≍ α4(r, n)2

(n

r

)2

.

In particular, on the triangular lattice ∆,

P
[
0 < |Sn| < λE|Sn|

]
≍ λ2/3.

The scaling limit of Sn is a conformally invariant Cantor-set with Hausdorff-
dimension 3/4.

Remark. The same strategy gives P
[
0 < |Pivn| < λE|Pivn|

]
≍ λ11/9, but

it’s an overkill, given all the independence in Pivn.
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Some related questions

Question 1: Can one build similar proofs for other Boolean functions?

Question 2: Self-similarity of Pivn and Sn is a lot of restriction.

Conjecture [Gil Kalai]: The entropy of such random sets Xn is at most
E|Xn|, i.e., there is no log factor as in uniform.

In particular, Influence-Entropy conjecture [Friedgut-Kalai 1996]: For some
universal constant C, for any Boolean function f ,

SpecEnt(f) :=
∑

S⊂[n]

f̂(S)2 log
1

f̂(S)2
6 C ×

× Influence(f) := E|Sf | = E|Pivf | =
∑

S⊂[n]

f̂(S)2|S| .

I think I can do it for Pivn, but have no idea about Sn.

15


