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Noise sensitivity of Boolean functions

f:{-1,13" — {—1,1} a Boolean function, usually monotone.
Input is i.i.d. Bernoulli(p).

Take critical density p = p.(IN), where P,[ f(w) =1] =1/2.
Resample each input bit with probability €, independently, get w

Given a typical w, can we predict what f(w®) will be? What is the correlation
between f(w®) and f(w)? Three simple examples:

;= w1 . Here p.(n) =1/2.

Dictator, (w1, . ..,wy) :
), Dic,, (w€) | = 1 — ¢, hence noise-stable.

Here Corr| Dic,, (w

Majority, (w1, - .., Wy) :=sgn (w1 + -+ + wy). Again, p.(n) =1/2.
Here Corr| Maj,(w), Maj,(w€) | =1 — O(y/€), hence noise-stable.

Parity, (w1, ...,wy) := cWy. Again, p.(n) =1/2.
Here Corr| Par,(w), Pa rn( )} (1 — €)™, very sensitive to noise.



Noise sensitivity of Boolean functions

A sequence of Boolean functions f; : {—1,1}" — {—1,1} is called

noise sensitive at density p if
Ve>0: Corr| f(w), frw)] =0 as k— oo,

and noise stable if

lim sup P | fi(w®) # fr(w)| =0.

e—0 L

Could be insensitive but not stable.

Give a monotone noise sensitive example!



Percolation and noise

At p. = 1/2, left-right crossing has non-trivial probability.



Percolation and noise

At p. = 1/2, left-right crossing has non-trivial probability.



Naive idea: how many pivotals are there?

A bit is pivotal for f in w if flipping it changes the output.

Do the e-noise by switching bits one-by-one. In order to change the output,
need at least one pivotal switch; in fact, need an odd number of them.

Complete decorrelation < so many pivotal switches that you don't know
their parity.

Naively, “the more pivotals there are, the more noise sensitive the function
should be" .

First issue: Maj,, ; typically has no pivotal bits at all; with probability

= 1/Vk, it has k + 1, hence E[Pivmajy, ., | =< V'k. This matters for sharp
thresholds by the Russo-Margulis formula,

TP [fw) = 1] =B, [Pivy|].

but apparently not for noise sensitivity.



Naive idea: how many pivotals are there?

A site is pivotal for left-right crossing in w

if it has the alternating 4-arm event to the
sides. E|Piv,| < n?ay(n) (= n?/47ol)),

Furthermore, E[|Piv,,|?] < C (E|Piv,|)?
So, P| |Piv,,| > AE|Piv,| | < C/)\?, any A.

And not only Je P||Piv,| > €E|Piv,|| > e,
but P[0 < |Piv,| < eE|Piv,|] =< !1/9tol),
as € — 0 (exponent only for A).

If €, E[|Piv,,|] — 0, then E[number of pivotal switches| — 0)
—> asymptotically full correlation

If €,, E| |Piv,,|] — oo, then E[number of pivotal switches| — oo
=~ P[hit (many) pivotals| — 1 =~ asymptotic independence!!



Dynamical 2nd Moment Method for pivotal switches

Make m = t/ay4(n) switches, w = wy, . .., W, so that
E[S;] = E|[number of pivotal switches| < t.

Want to show P[S; = odd] > ¢; > 0, uniformly in n, because then
Corr| f(w), f(wm) ] <1—¢.

Will prove E[ S? — 5] = O(t?).

Then note E[S?] > P[S; =1]+ 2(ES, — P[S; = 1]). Rearranging gives
P[S; =1] > 2E[S;]| —E[S?]| <t — O(t?) > 0 for t > 0 small enough.
Also done for all ¢, since correlation is monotone decreasing in t.

And the second moment calculation:
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= O(1) ay(n)*m? = O(t2) :
where
A" (w;) := {alternating 4 arms in A,(1,2"7') and in A,(2"7% n) in w;},

B, (w;) := {alternating 4 arms in Ay (1,277 in w;l.



Same for weakly dependent input?

This was a robust argument! Critical FK-Ising and critical spin-Ising on Z?
also satisfy
P[B;(wj) ’ A;(wz)] = ay(1,2"),

for their natural Glauber / heat-bath / Gibbs sampler dynamics.

Moreoever, the exponents vy °"&(n) = n~35/24+0(1) gpd o P18 () =
n—21/8+0(1) 3re known (Chelkak, Duminil-Copin, Hongler, Garban).

For FK-Ising, because of 35/24 < 2, which means many pivotal points in
the discrete world and self-touches of SLE(16/3) in the continuum, the
previous argument works fine. Hence ¢ n~13/24*t°(1) is the good space-time
scaling to watch macroscopic connections start changing, and Garban-P
(2015+) proves that there is a Markovian scaling limit of the dynamics.

For spin-Ising Glauber dynamics, because of 21/8 > 2, we do not know
anything. Btw, the mixing time of the entire system is known to be
polynomial (Lubetzky-Sly 2010), but the exponent is not known.



Noise sensitivity of percolation

All results use Fourier analysis of Boolean functions:

Theorem (Benjamini, Kalai & Schramm 1998). If ¢ > 0 is fixed, and
fn is the indicator function for a left-right percolation crossing in an n X n
square, then as n — oo

E[ fn(w) fa(w)] = E[ fu(w)] = 0.

This holds for all e = ¢, > ¢/logn.

Theorem (Schramm & Steif 2005). Same if ¢, > n™“ for some positive
a > 0. If triangular lattice, may take any a < 1/8.

Theorem (Garban, P & Schramm 2008). Same holds if and only if
en, E[ |Piv,,| ] — oco. For triangular lattice, this threshold is €, = n=3/4T°(1),
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What is the Fourier spectrum and why is it useful?

fn: {F£1}Yn — {41} indicator of left-right crossing, V =V}, vertices.

(Nef)(w) := E|f(w°) |w] is the noise operator, acting on the space
L?(), 1), where Q = {£1}V, 1 uniform measure, inner product E[ fg].

Correlation:  E[ f(w)f(w)] — E[ f(w) |JE[ f(w)] = E[f(w)Ncf(w)] —

E[ f(w)]?. So, we would like to diagonalize the noise operator N..
Let X; be the function X;(w) = w(i), w € 2.

For S C V, let Xg := [],c4 Xi, the parity inside S. Then

Nx;=(1—-€)X;;  Nexs=(1-¢)"xs.

Moreover, the family {Xg, S C V'} is an orthonormal basis of L*(£, ).



Any function f € L*(Q, i) in this basis (Fourier-Walsh series):

£(S) :== B[ fxs]; fZZf(S)XS

SCV

The correlation:

E[fNS]-E[f]°=) > () f(S")E[xs Nxs' ] — E[ fXp]’
S S/
0
= 82—l = "(1-eF Y f(9)
0£SCV k=1 |S|=k

By Parseval, 3" f(5)? = E[f?] = 1. So can define probability measure
P| .7 =S| := f(S)*/E[ f?], the spectral sample .7y C V.

If, for some functions f,, and numbers k,,, we have P |0 < |.,| < tk,| — 0
as t — 0, uniformly in n, then (1 — €)® ~ exp(—ek) implies that for
€, > 1/k, we have asymptotic independence. Maybe with k,, = E|.7,|?
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Pivotals versus spectral sample

Vif(w):= floi(w)) — f(w) € {—2,0,+2} gradient.
Vif(w) = g F(9)[Xs(0i(w)) — Xs(w)], hence V,F(S) = —=2f(S)Lics.

Plic Pivi]| = Y| VifI3 = 14 Vif(S)? = Yoss £(S)2 = Pli € 7).

Thus, E|.7| = E|Piv¢|. So, the pivotal upper bound for noise sensitivity is
sharp if there is tightness around E|.¥|.

Alos, P[i,j € Pivy| = P[i,j € %], hence E|.#}|* = E|Piv|%.

Not for more points and higher moments!
Both random subsets measure the “influence” or
“relevance” of bits, but in different ways.

For percolation, E[ |Piv,,|*] < C (E|Piv,|)?, hence
Jc > 0s.t. P||.7,]| > cE|.7,]| > c. That's why
one hopes for tightness around mean.
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The earlier simple examples

Dictator, (w1, .. .,wy) := w1 . Here p.(n) = 1/2.
Here Corr| Dic,(w), Dic,(w®)] = 1 — ¢, hence noise-stable. And

P| .7, ={x}]| =1

Majority,, (W1, ..., W) :=sgn (w1 + - -+ + wy). Again, p.(n) =1/2.
Here Corr| Maj,, (w), Maj,, (w®) | =1 — O(y/€), hence noise-stable.
And P|.7, = {z;} | < 1/n, most of the weight is on singletons.
On the other hand, E|.%,| = E|Piv,| < = V.

Parity, (w1, ...,wn) := w1 - wy. Again, p.(n) =1/2.
Here Corr| Par,,(w), Par,(w®) | = (1 — €)™, very sensitive to noise.
And P[&”n — {xl,...,xn}} = 1.



Benjamini, Kalai & Schramm 1998

Using hypercontractivity of the noise operator V:

Theorem 1. A sequence f,, of monotone Boolean functions is noise
sensitive, iff it is asymptotically uncorrelated with all weighted majorities

Maj,, (w1, ... ,wy) =signd | ww;.

Theorem 2. A sequence f, of monotone Boolean functions is noise
sensitive at density p =1/2, iff ) Plz & Piv,,]* — 0 as n — 0.

Extended to p.(n) < 1/poly(logn) by Keller-Kindler ‘10 and Bouyrie ‘14.

Corollary. The left-right percolation crossing in an n X n square is noise
sensitive, even with € = ¢,, > ¢/logn.
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Schramm & Steif 2005

Theorem. If f: 2 — R can be computed with a randomized algorithm
with revealment § (each bit is read only with probability < ), then

S fS) <RSI

S:|S|=k

For left-right crossing in n X n box on the hexagonal lattice, exploration
interface with random starting point gives revealment n~1/4t°(1) (it has
length n™/47°(1) given by 2-arm exponent), while >°, _ 'k =< m?, thus:

Corollary. Left-right crossing on the triangular lattice is noise sensitive
under €, > n~% with any a < 1/8. Even on square lattice, can take some
positive a > 0.

The revealment is at least n=1/2+°(1) for any algorithm computing the
crossing (O'Donnell-Servedio ‘07, plus n3/4 pivotals), hence this method can
give only n~1/4t°(L_sensitivity, far from the conjectured ¢,, = n—3/4to(1),
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Garban, P. & Schramm 2008

Although goal is to understand size, Gil Kalai suggested trying to understand
entire distribution of .. A strange random set of bits.

[Smirnov ‘01] 4 [Tsirelson ‘04] 4+ [Schramm-Smirnov ‘10] implies that it
has a conformally invariant scaling limit.

How to prove tightness for the size of strange random fractal-like sets?

Xs SQA,

For AC V: E[XS | ng} - {0 otherwise .

Therefore, E| f ‘ Fal = D.SCA f(S) Xs , a nice projection.

P C U = Soen 192 = B[ (Ssev f(S)xs) | =B[B[r | 70]].

From this, for disjoint subsets A and B, can try to give percolation meaning
to P[ .7 NB#0=.7NA|. Very restricted independence.
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Influence notions of subsets

Besides resampling a random subset U,, could also use any fixed subset U.

Influence:
I(U) :=P|U is pivotal| = P[U*° does not determine the value of f].

Significance: the amount of information missing if the bits in U¢ are known,

E|Var(f | Zye]| PLSNU#£0D] |

sig(U) := Varf ~ T Varf

Clue: the amount of information we gain from the bits of U,

:Var[E[ngZUH P[(Z)#QS”QU].

clue(U) :

Var f Var f

Clearly, I(U) = sig(U) > clue(U). Also, clue(U) =1 —sig(U°).



Influence notions of subsets

A few examples:

U, is all the vertical edges in Z? bond percolation.
Then sig(U,) — 1 and clue(U,,) — 0.

U,, has a scaling limit of Hausdorff-dimension ~:

If v < 5/4, then sig(U,) — 0, or clue(US) — 1.

If 5/4 < ~ < 2, then usually sig(U,) — 1, but also sig(US) — 1, hence
clue(U,) — 0.

For Majority,,, any subset U of size en has sig(U) < +/e.
: does |U,,| = o(n?) imply also for percolation that clue(U,,) — 07?

If we can choose the revealed bits adaptively, then, using the exploration
interface, n’/4t°(1) bits suffice.



Small subsets are clueless ( )

If f: {1}V — {&1} is transitive, and U C V, then

clue(U) - Varf =P[0 # . CU]| < P[X € U] ZP “‘(i:
uelU

Percolation left-right crossing is not transitive, but if we consider an n x n
torus, then the indicator F' of the event that {there Is a translate of the

square on the torus where the left-right crossing happens} Is transitive.

Now I+, the indicator of {there is a good translate by some vector (k, {)en

k.l € {O,l,...,l/e}} is a good approximation to F, because of low
probability of half-plane 3-arm events etc.

If a small subset U had a clue about left-right crossing in a square, then its
1/€ x 1/e translates, using FKG, would have a clue about F,, so also about
F, which is impossible, since 1/¢%|U] is still small.



The clue of random subsets

It Ain’t over till it’s over (Mossel, O’Donnell, Oleszkiewicz ‘10). For
any density 0 < p < 1 and € > 0 there is a 0 and a 7 such that for every
Boolean function f satisfying P[i € Pivy| < 7 for all i € V, we have

P[clue(U,) >21—-46] <e.

This is a deep result, though obvious for noise sensitive functions. Our
easy method gives the result when ) . P[i € Pivf]2 = 0(1), via an Azuma-
Hoeffding concentration argument:

E[clue(U,)]-Varf =P[0# . CU,| <P[X €U,] =p.
And if U and U’ differ only in bit 7, then
clue(U) — clue(U")| < P[i € ] = P[i € Piv].
Hence we get concentration around the mean on the scale > . P[i € Piv]2.
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Bootstrap percolation on infinite graphs

Infinite transitive graph. Start with Bernoulli(p) percolation of occupied
sites. If a site has at least k occupied neighbors, then gets occupied. Repeat
ad infinitum. For what p do we occupy the entire graph, with probability 17

van Enter ‘87, Schonmann ‘90. p.(Z% k) = 0 for k < d, and 1 for k > d.

Probably also true for the Heisenberg group (observation by Rob Morris).

Balogh, Peres & P. ‘06. For any non-amenable group I' that has a free
subgroup F5, there exists a symmetric finite generating set and a k-neighbor
rule such that G = Cayley(I',S) has 0 < p.(G, k) < 1.

On d-regular tree p.(T4, k) can be explicitly calculated, since unsuccessful
occupation is equivalent to having a d — k£ + 1- regular vacant subtree in
the initial configuration.

Question. What about non-amenable graph without free subgroups?
Conversely, on amenable transitive graphs, does p. < 1 imply p. = 07
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Bootstrap percolation on infinite graphs
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Bootstrap percolation on finite graphs

Aizenman, Lebowitz ‘88. p.(Z2,2) = 1ogd1—1n'

More general and sharper results by Cerf, Cirillo, Manzo, Holroyd, Balogh,
Bollobads, Morris, Duminil-Copin, . . ..

Balogh, Pittel ‘07. For the random d-regular graph on n vertices,
Pe(Gn.as k) — pe(Ty, k) for any 2 < k < d — 2. The threshold window
around p.(n) is of size O(1/4/n).

Bartha & P. ‘14,
(1) At p.(ZZ,2), the process is noise sensitive.
(2) At p.(Gp.d, k), the process is noise insensitive.
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Rough sketch of sensitivity on 72

Will use the condition that 3" P[i € Piv]” is small.

Complete occupation is roughly equivalent to having an internally spanned
rectangular seed of side lengths = log n, because this will keep growing.

Hence, again using an “almost transitivity” argument,

C log”n

PliePivand w; =1] < >
n

And we have P[i € Pivand w; = 1] < @P[i € Pivand w; = —1]. So,
altogether,

C log°n

Pli e Piv] < —

Should hold for k& > 2, too, but seeds are much more complicated.

Revealment does not work: for negative result, need to reveal a lot.



Sketch of stability on G,, 4

The very narrow threshold window O(1/y/n) implies that it is correlated
with a weighted majority: if majority at level p.(n) is fulfilled, then with
positive probability we overshoot by density O(1/+/n), but that raises the
probability of complete occupation noticeably.

But this used the Balogh-Pittel explicit ODE calculation, relying on the lot
of independent randomness in G, 4.

A more intuitive reason for (2) is that it should hold for many expander
graphs: for 2d-regular expanders, with £ > d, by the perimeter trick, all
positive witnesses have size at least ¢n, and this is often also true for the
negative witnesses, which already should imply insensitivity — that would
be a converse to the revealment method.

However, there are expanders where each vertex is part of large piece of a
square lattice, hence p.(G,,2) — 0. | do not know whether to expect noise
stability or not.



