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Noise sensitivity of Boolean functions

f : {−1, 1}N −→ {−1, 1} a Boolean function, usually monotone.
Input is i.i.d. Bernoulli(p).

Take critical density p = pc(N), where Pp[ f(ω) = 1 ] = 1/2.

Resample each input bit with probability ǫ, independently, get ωǫ.

Given a typical ω, can we predict what f(ωǫ) will be? What is the correlation
between f(ωǫ) and f(ω)? Three simple examples:

Dictatorn(ω1, . . . , ωn) := ω1 . Here pc(n) = 1/2.
Here Corr

[
Dicn(ω),Dicn(ω

ǫ)
]
= 1− ǫ, hence noise-stable.

Majorityn(ω1, . . . , ωn) := sgn (ω1 + · · ·+ ωn). Again, pc(n) = 1/2.
Here Corr

[
Majn(ω),Majn(ω

ǫ)
]
= 1−O(

√
ǫ), hence noise-stable.

Parityn(ω1, . . . , ωn) := ω1 · · ·ωn. Again, pc(n) = 1/2.
Here Corr

[
Parn(ω),Parn(ω

ǫ)
]
= (1− ǫ)n, very sensitive to noise.
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Noise sensitivity of Boolean functions

A sequence of Boolean functions fk : {−1, 1}Nk −→ {−1, 1} is called

noise sensitive at density p if

∀ ǫ > 0 : Corr
[
fk(ω

ǫ), fk(ω)
]
→ 0 as k → ∞ ,

and noise stable if

lim
ǫ→0

sup
k

Pp

[
fk(ω

ǫ) 6= fk(ω)
]
= 0 .

Could be insensitive but not stable.

Give a monotone noise sensitive example!
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Percolation and noise

At pc = 1/2, left-right crossing has non-trivial probability.
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Percolation and noise

At pc = 1/2, left-right crossing has non-trivial probability.
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Naive idea: how many pivotals are there?

A bit is pivotal for f in ω if flipping it changes the output.

Do the ǫ-noise by switching bits one-by-one. In order to change the output,
need at least one pivotal switch; in fact, need an odd number of them.

Complete decorrelation ⇔ so many pivotal switches that you don’t know
their parity.

Naively, “the more pivotals there are, the more noise sensitive the function
should be”.

First issue: Maj2k+1 typically has no pivotal bits at all; with probability

≍ 1/
√
k, it has k + 1, hence E|PivMaj2k+1

| ≍
√
k. This matters for sharp

thresholds by the Russo-Margulis formula,

d

dp
Pp

[
f(ω) = 1

]
= Ep

[
|Pivf |

]
,

but apparently not for noise sensitivity.
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Naive idea: how many pivotals are there?

A site is pivotal for left-right crossing in ω
if it has the alternating 4-arm event to the
sides. E|Pivn| ≍ n2 α4(n) (= n3/4+o(1)).

Furthermore, E[ |Pivn|2 ] 6 C (E|Pivn|)2.
So, P

[
|Pivn| > λE|Pivn|

]
< C/λ2, any λ.

And not only ∃ǫ P
[
|Pivn| > ǫE|Pivn|

]
> ǫ,

but P
[
0 < |Pivn| < ǫE|Pivn|

]
≍ ǫ11/9+o(1),

as ǫ → 0 (exponent only for ∆).

If ǫnE[ |Pivn| ] → 0, then E[ number of pivotal switches ] → 0)
=⇒ asymptotically full correlation

If ǫnE[ |Pivn| ] → ∞, then E[ number of pivotal switches ] → ∞
6=⇒ P[ hit (many) pivotals ] → 1 6=⇒ asymptotic independence!!
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Dynamical 2nd Moment Method for pivotal switches

Make m = t/α4(n) switches, ω = ω0, . . . , ωm, so that

E[St ] = E[ number of pivotal switches ] ≍ t .

Want to show P[St = odd] > ct > 0, uniformly in n, because then
Corr

[
f(ω), f(ωm)

]
< 1− c̃t.

Will prove E[S2
t − St ] = O(t2).

Then note E[S2
t ] > P[St = 1 ] + 2

(
ESt −P[St = 1 ]

)
. Rearranging gives

P[St = 1 ] > 2E[St ]−E[S2
t ] ≍ t−O(t2) > 0 for t > 0 small enough.

Also done for all t, since correlation is monotone decreasing in t.

And the second moment calculation:
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E[S2
t − St ] ≍

m∑

i,j=1
i 6=j

∑

x,y∈Vn
x 6=y

n−4
P
[
x ∈ Piv(ωi); y ∈ Piv(ωj)

]

6 n−4
m∑

i,j=1

⌈log2 n⌉∑

r=0

∑

x,y

2r6d(x,y)<2r+1

P
[
Ar

x(ωi)
]
P
[
Br

y(ωj)
∣∣ Ar

x(ωi)
]

6 n−4m2 n2

⌈log2 n⌉∑

r=0

O(1) 22rα4(1, 2
r)2 α4(2

r, n)

6 n−2m2 α4(n)

⌈log2 n⌉∑

r=0

O(1) 22rα4(2
r) , recall k2α4(k) = k3/4+o(1),

≍ O(1)α4(n)
2m2 = O(t2) ,

where

Ar
x(ωi) := {alternating 4 arms in Ax(1, 2

r−1) and in Ax(2
r+2, n) in ωi},

Br
y(ωj) := {alternating 4 arms in Ay(1, 2

r−1) in ωj}.
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Same for weakly dependent input?

This was a robust argument! Critical FK-Ising and critical spin-Ising on Z
2

also satisfy
P
[
Br

y(ωj)
∣∣ Ar

x(ωi)
]
≍ α4(1, 2

r) ,

for their natural Glauber / heat-bath / Gibbs sampler dynamics.

Moreoever, the exponents αFK-Ising
4 (n) = n−35/24+o(1) and αspin-Ising

4 (n) =
n−21/8+o(1) are known (Chelkak, Duminil-Copin, Hongler, Garban).

For FK-Ising, because of 35/24 < 2, which means many pivotal points in
the discrete world and self-touches of SLE(16/3) in the continuum, the
previous argument works fine. Hence t n−13/24+o(1) is the good space-time
scaling to watch macroscopic connections start changing, and Garban-P
(2015+) proves that there is a Markovian scaling limit of the dynamics.

For spin-Ising Glauber dynamics, because of 21/8 > 2, we do not know
anything. Btw, the mixing time of the entire system is known to be
polynomial (Lubetzky-Sly 2010), but the exponent is not known.
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Noise sensitivity of percolation

All results use Fourier analysis of Boolean functions:

Theorem (Benjamini, Kalai & Schramm 1998). If ǫ > 0 is fixed, and
fn is the indicator function for a left-right percolation crossing in an n× n
square, then as n → ∞

E
[
fn(ω) fn(ω

ǫ)
]
−E

[
fn(ω)

]2 → 0.

This holds for all ǫ = ǫn > c/ logn.

Theorem (Schramm & Steif 2005). Same if ǫn > n−a for some positive
a > 0. If triangular lattice, may take any a < 1/8.

Theorem (Garban, P & Schramm 2008). Same holds if and only if
ǫnE

[
|Pivn|

]
→ ∞. For triangular lattice, this threshold is ǫn = n−3/4+o(1).
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What is the Fourier spectrum and why is it useful?

fn : {±1}Vn −→ {±1} indicator of left-right crossing, V = Vn vertices.

(Nǫf)(ω) := E[ f(ωǫ) | ω ] is the noise operator, acting on the space
L2(Ω, µ), where Ω = {±1}V , µ uniform measure, inner product E[ fg ].

Correlation: E[ f(ωǫ)f(ω) ] − E[ f(ω) ]E[ f(ωǫ) ] = E[ f(ω)Nǫf(ω) ] −
E[ f(ω) ]

2
. So, we would like to diagonalize the noise operator Nǫ.

Let χi be the function χi(ω) = ω(i), ω ∈ Ω.

For S ⊂ V , let χS :=
∏

i∈S
χi, the parity inside S. Then

Nǫχi = (1− ǫ)χi ; NǫχS = (1− ǫ)|S|χS.

Moreover, the family {χS, S ⊆ V } is an orthonormal basis of L2(Ω, µ).
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Any function f ∈ L2(Ω, µ) in this basis (Fourier-Walsh series):

f̂(S) := E[ fχS ] ; f =
∑

S⊆V

f̂(S)χS .

The correlation:

E[ fNǫf ]− E[ f ]
2
=

∑

S

∑

S′
f̂(S) f̂(S′)E

[
χS NǫχS′

]
−E[ fχ∅ ]

2

=
∑

∅6=S⊆V

f̂(S)2 (1− ǫ)|S| =
|Vn|∑

k=1

(1− ǫ)k
∑

|S|=k

f̂(S)2.

By Parseval,
∑

S f̂(S)2 = E[ f2 ] = 1. So can define probability measure

P
[
Sf = S

]
:= f̂(S)2/E[ f2 ], the spectral sample Sf ⊆ V .

If, for some functions fn and numbers kn, we have P
[
0 < |Sn| < tkn

]
→ 0

as t → 0, uniformly in n, then (1 − ǫ)k ∼ exp(−ǫk) implies that for
ǫn ≫ 1/kn we have asymptotic independence. Maybe with kn = E|Sn|?
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Pivotals versus spectral sample

∇if(ω) := f(σi(ω))− f(ω) ∈ {−2, 0,+2} gradient.

∇if(ω) =
∑

S f̂(S)[χS(σi(ω))− χS(ω)], hence ∇̂if(S) = −2f̂(S)1i∈S.

P[ i ∈ Pivf ] =
1
4‖∇if‖22 = 1

4

∑
S ∇̂if(S)

2 =
∑

S∋i f̂(S)
2 = P[ i ∈ Sf ].

Thus, E|Sf | = E|Pivf |. So, the pivotal upper bound for noise sensitivity is
sharp if there is tightness around E|S |.

Alos, P[ i, j ∈ Pivf ] = P[ i, j ∈ Sf ], hence E|Sf |2 = E|Pivf |2.

Not for more points and higher moments!
Both random subsets measure the “influence” or
“relevance” of bits, but in different ways.

For percolation, E[ |Pivn|2 ] 6 C (E|Pivn|)2, hence
∃c > 0 s.t. P

[
|Sn| > cE|Sn|

]
> c. That’s why

one hopes for tightness around mean.
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The earlier simple examples

Dictatorn(ω1, . . . , ωn) := ω1 . Here pc(n) = 1/2.
Here Corr

[
Dicn(ω),Dicn(ω

ǫ)
]

= 1 − ǫ, hence noise-stable. And
P
[
Sn = {x1}

]
= 1.

Majorityn(ω1, . . . , ωn) := sgn (ω1 + · · ·+ ωn). Again, pc(n) = 1/2.
Here Corr

[
Majn(ω),Majn(ω

ǫ)
]
= 1−O(

√
ǫ), hence noise-stable.

And P
[
Sn = {xi}

]
≍ 1/n, most of the weight is on singletons.

On the other hand, E|Sn| = E|Pivn| ≍ 1√
n
n ≍ √

n.

Parityn(ω1, . . . , ωn) := ω1 · · ·ωn. Again, pc(n) = 1/2.
Here Corr

[
Parn(ω),Parn(ω

ǫ)
]
= (1− ǫ)n, very sensitive to noise.

And P
[
Sn = {x1, . . . , xn}

]
= 1.
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Benjamini, Kalai & Schramm 1998

Using hypercontractivity of the noise operator Nǫ:

Theorem 1. A sequence fn of monotone Boolean functions is noise
sensitive, iff it is asymptotically uncorrelated with all weighted majorities
Majw(ω1, . . . , ωn) = sign

∑n
i=1 ωiwi .

Theorem 2. A sequence fn of monotone Boolean functions is noise
sensitive at density p = 1/2, iff

∑
xP[x ∈ Pivn ]

2 → 0 as n → 0.

Extended to pc(n) ≍ 1/poly(logn) by Keller-Kindler ‘10 and Bouyrie ‘14.

Corollary. The left-right percolation crossing in an n × n square is noise
sensitive, even with ǫ = ǫn > c/ logn.
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Schramm & Steif 2005

Theorem. If f : Ω −→ R can be computed with a randomized algorithm
with revealment δ (each bit is read only with probability 6 δ), then

∑

S:|S|=k

f̂(S)2 6 δ k ‖f‖22 .

For left-right crossing in n × n box on the hexagonal lattice, exploration
interface with random starting point gives revealment n−1/4+o(1) (it has
length n7/4+o(1), given by 2-arm exponent), while

∑
k6m k ≍ m2, thus:

Corollary. Left-right crossing on the triangular lattice is noise sensitive
under ǫn > n−a, with any a < 1/8. Even on square lattice, can take some
positive a > 0.

The revealment is at least n−1/2+o(1) for any algorithm computing the
crossing (O’Donnell-Servedio ‘07, plus n3/4 pivotals), hence this method can
give only n−1/4+o(1)-sensitivity, far from the conjectured ǫn = n−3/4+o(1).
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Garban, P. & Schramm 2008

Although goal is to understand size, Gil Kalai suggested trying to understand
entire distribution of Sf . A strange random set of bits.

[Smirnov ‘01] + [Tsirelson ‘04] + [Schramm-Smirnov ‘10] implies that it
has a conformally invariant scaling limit.

How to prove tightness for the size of strange random fractal-like sets?

For A ⊆ V : E
[
χS

∣∣ FA

]
=

{
χS S ⊆ A ,

0 otherwise .

Therefore, E
[
f
∣∣ FA

]
=

∑
S⊆A f̂(S)χS , a nice projection.

P
[
Sf ⊂ U

]
=

∑
S⊂U f̂(S)2 = E

[ (∑
S⊂U f̂(S)χS

)2 ]
= E

[
E
[
f
∣∣ FU

]2 ]
.

From this, for disjoint subsets A and B, can try to give percolation meaning
to P

[
Sf ∩B 6= ∅ = Sf ∩A

]
. Very restricted independence.
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Influence notions of subsets

Besides resampling a random subset Uǫ, could also use any fixed subset U .

Influence:

I(U) := P[U is pivotal ] = P[U c does not determine the value of f ] .

Significance: the amount of information missing if the bits in U c are known,

sig(U) :=
E
[
Var[f |FUc]

]

Varf
=

P[S ∩ U 6= ∅ ]
Varf

.

Clue: the amount of information we gain from the bits of U ,

clue(U) :=
Var

[
E[ f | FU ]

]

Varf
=

P[ ∅ 6= S ⊆ U ]

Varf
.

Clearly, I(U) > sig(U) > clue(U). Also, clue(U) = 1− sig(U c).
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Influence notions of subsets

A few examples:

Un is all the vertical edges in Z
2 bond percolation.

Then sig(Un) → 1 and clue(Un) → 0.

Un has a scaling limit of Hausdorff-dimension γ:
If γ < 5/4, then sig(Un) → 0, or clue(U c

n) → 1.
If 5/4 < γ < 2, then usually sig(Un) → 1, but also sig(U c

n) → 1, hence
clue(Un) → 0.

For Majorityn, any subset U of size ǫn has sig(U) ≍ √
ǫ.

Benjamini: does |Un| = o(n2) imply also for percolation that clue(Un) → 0?

If we can choose the revealed bits adaptively, then, using the exploration
interface, n7/4+o(1) bits suffice.
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Small subsets are clueless (Galicza & P.)

If f : {±1}V −→ {±1} is transitive, and U ⊂ V , then

clue(U) ·Varf = P[ ∅ 6= S ⊆ U ] 6 P[X ∈ U ] =
∑

u∈U

P[X = u ] =
|U |
|V |.

Percolation left-right crossing is not transitive, but if we consider an n× n

torus, then the indicator F of the event that
{
there is a translate of the

square on the torus where the left-right crossing happens
}
is transitive.

Now Fǫ, the indicator of
{
there is a good translate by some vector (k, ℓ)ǫn,

k, ℓ ∈ {0, 1, . . . , 1/ǫ}
}

is a good approximation to F , because of low

probability of half-plane 3-arm events etc.

If a small subset U had a clue about left-right crossing in a square, then its
1/ǫ× 1/ǫ translates, using FKG, would have a clue about Fǫ, so also about
F , which is impossible, since 1/ǫ2|U | is still small.
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The clue of random subsets

It Ain’t over till it’s over (Mossel, O’Donnell, Oleszkiewicz ‘10). For
any density 0 < ρ < 1 and ǫ > 0 there is a δ and a τ such that for every
Boolean function f satisfying P[ i ∈ Pivf ] 6 τ for all i ∈ V , we have

P[ clue(Uρ) > 1− δ ] < ǫ .

This is a deep result, though obvious for noise sensitive functions. Our
easy method gives the result when

∑
iP[ i ∈ Pivf ]

2
= o(1), via an Azuma-

Hoeffding concentration argument:

E[ clue(Uρ) ] ·Varf = P[ ∅ 6= S ⊆ Uρ ] 6 P[X ∈ Uρ ] = ρ.

And if U and U ′ differ only in bit i, then

|clue(U)− clue(U ′)| 6 P[ i ∈ S ] = P[ i ∈ Piv ] .

Hence we get concentration around the mean on the scale
∑

iP[ i ∈ Piv ]
2
.
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Bootstrap percolation on infinite graphs

Infinite transitive graph. Start with Bernoulli(p) percolation of occupied
sites. If a site has at least k occupied neighbors, then gets occupied. Repeat
ad infinitum. For what p do we occupy the entire graph, with probability 1?

van Enter ‘87, Schonmann ‘90. pc(Z
d, k) = 0 for k 6 d, and 1 for k > d.

Probably also true for the Heisenberg group (observation by Rob Morris).

Balogh, Peres & P. ‘06. For any non-amenable group Γ that has a free
subgroup F2, there exists a symmetric finite generating set and a k-neighbor
rule such that G = Cayley(Γ, S) has 0 < pc(G, k) < 1.

On d-regular tree pc(Td, k) can be explicitly calculated, since unsuccessful
occupation is equivalent to having a d − k + 1- regular vacant subtree in
the initial configuration.

Question. What about non-amenable graph without free subgroups?
Conversely, on amenable transitive graphs, does pc < 1 imply pc = 0?
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Bootstrap percolation on infinite graphs
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Bootstrap percolation on finite graphs

Aizenman, Lebowitz ‘88. pc(Z
d
n, 2) ≍ 1

logd−1 n
.

More general and sharper results by Cerf, Cirillo, Manzo, Holroyd, Balogh,
Bollobás, Morris, Duminil-Copin, . . . .

Balogh, Pittel ‘07. For the random d-regular graph on n vertices,
pc(Gn,d, k) → pc(Td, k) for any 2 6 k 6 d − 2. The threshold window
around pc(n) is of size O(1/

√
n).

Bartha & P. ‘14.
(1) At pc(Z

d
n, 2), the process is noise sensitive.

(2) At pc(Gn,d, k), the process is noise insensitive.
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Rough sketch of sensitivity on Z
2
n

Will use the condition that
∑

iP[ i ∈ Piv ]
2
is small.

Complete occupation is roughly equivalent to having an internally spanned
rectangular seed of side lengths ≍ logn, because this will keep growing.

Hence, again using an “almost transitivity” argument,

P[ i ∈ Piv and ωi = 1 ] 6
C log2 n

n2
.

And we have P[ i ∈ Piv and ωi = 1 ] ≍ 1
log nP[ i ∈ Piv and ωi = −1 ]. So,

altogether,

P[ i ∈ Piv ] 6
C log3 n

n2
.

Should hold for k > 2, too, but seeds are much more complicated.

Revealment does not work: for negative result, need to reveal a lot.
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Sketch of stability on Gn,d

The very narrow threshold window O(1/
√
n) implies that it is correlated

with a weighted majority: if majority at level pc(n) is fulfilled, then with
positive probability we overshoot by density O(1/

√
n), but that raises the

probability of complete occupation noticeably.

But this used the Balogh-Pittel explicit ODE calculation, relying on the lot
of independent randomness in Gn,d.

A more intuitive reason for (2) is that it should hold for many expander
graphs: for 2d-regular expanders, with k > d, by the perimeter trick, all
positive witnesses have size at least c n, and this is often also true for the
negative witnesses, which already should imply insensitivity — that would
be a converse to the revealment method.

However, there are expanders where each vertex is part of large piece of a
square lattice, hence pc(Gn, 2) → 0. I do not know whether to expect noise
stability or not.
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