Noise sensitivity in critical percolation and
what else might we learn from it

Mostly based on C. Garban, . Pete & O. Schramm:
The Fourier spectrum of critical percolation, Acta Math. 2010.



Naive idea: how many pivotals are there?

A site (or bond) is pivotal in w, if flipping it
changes the existence of a left-right crossing.
E|Piv,| < n? as(n)

Furthermore, E[|Piv,|?] < C (E|Piv,|)?
So, P|[ |Piv,| > AE|Piv,| | < C/A?, any A.

Tightness around mean also from below:
P[0 < |Piv,| < AE|Piv,|]| < A1/9Fe() ] 35
A — 0 (exponent only for A).

Cannot have many pivotals. — If ¢,E[|Piv,|] — 0, then we don't hit
any pivotals. = Asymptotically full correlation.

Cannot have few pivotals (if there is any). = If ¢, E| |Piv,|] — oo, then
we do hit many pivotals. But this =5 asymptotic independence!



What is the Fourier spectrum and why is it useful?

fn: {F£1}Y» — {41} indicator function of left-right crossing.

(Nef)(w) = E| f(w°) |w] is the noise operator, acting on the space
L?(Q, 1), where Q = {#1}V, 1 uniform measure, inner product E[ fg].

Correlation: B[ f(w) ()] — E[f(@)E[f(@)] = E[f()Nef(@)] -

E[ f(w)]?. So, we would like to diagonalize the noise operator N..
Let X; be the function X;(w) = w(i), w € 2.

For S C V, let Xg := HieSX’i' the parity inside S. Then

NXxi = (1 —¢€)X;; Noxg = (1 — )l xg.

Moreover, the family {Xs, S C V'} is an orthonormal basis of L*(Q, ).



Any function f € L*(Q, i) in this basis (Fourier-Walsh series):

f(S):=E[fxs];  f=)>_ f(S)x

SCV

The correlation:

E[fNSI=E[f"=)_> F(S) f(S)E[Xxs Nexs] — E[ fxy]"
S

S/
Vil
Z f 1—e|S|—Zl—e Zf
£SC k=1 |S|=k

By Parseval, > f(S)? = E[f2] = 1. So can define probability measure
P| .7 =S| := f(S)*/E[ f?], the spectral sample .7y C V.

If, for some sequence k,,, we have V[() < | < tkn} — 0 ast — 0,
uniformly in n, then (1 — €)¥ ~ exp(—ek) implies that for ¢, > 1/k, we
have asymptotic independence. Maybe with £, = E|.#,|?



Pivotals versus spectral sample

Vif(w):= f(o;(w)) — flw) € {—2,0,42} gradient.
Vif(w) =Yg F(S)[Xs(0:(w)) — Xs(w)], hence Vi f(S) = 2f(S)Lies.

Plic Pivy] = Y Vifll3 = 15 Vif(8)? = Ygs; f(S)2 = Pli € 7).

Thus, E|.7| = E|Piv¢|. So, the pivotal upper bound for noise sensitivity
is sharp if there is tightness around E|.7|.

Will see P[i,j € Pivy] = P[i,j € %], hence E|%f|? = E|Pivs|°.

Not for more points and higher moments!
Both random subsets measure the “influence” or
“relevance” of bits, but in different ways.

For percolation, E[|Piv,]?] < C (E|Piv,]|)?
hence 3¢ > 0 st. P[] > cEl7,|| > c
That's why one hopes for tightness around mean.




Three very simple examples

Dictator,(z1,...,x,) := x7 .
Here Cov| Dic,,(z), Dic,,(z€) | = 1 — ¢, so noise-stable.
And P[.7, = {z,}] = L

Majority,, (€1, ...,2Tn) :=sgn (x1 + -+ x,) ~ %(ml + -t xy,).
Here Cov| Maj, (z), Maj,,(z°) | =1 — O(e), so noise-stable.

And P|.%, = {z;} | < 1/n, most of the weight is on singletons.
On the other hand, E|.¥,| = E|Piv,,| < TN =< V.

Parity, (x1,...,%p) ;= X1 Tn
Here Cov| Par, (), Par,(z¢) | = (1 — €)™, the most sensitive to noise.
And P|.7, = {z1,...,z,} | = L.



Benjamini, Kalai & Schramm 1998

Theorem. A sequence f,, of monotone Boolean functions is noise sensitive,
I.e., for any fixed € > 0,

E[ fn(w) faw)] = E[ faw)]* =0

as n — oo, iff it is asymptotically uncorrelated with all weighted majorities
Maj,, (z1,...,2,) =sign >, z;w; . Also, not very slow decorrelation with
all subset-majorities is enough for sensitivity.

Theorem. The left-right percolation crossing in an n X n square is noise
sensitive, even with € = ¢, > ¢/ logn.



Steif & Schramm 2005

Theorem. If f: 2 — R can be computed with a randomized algorithm
with revealment 9, then

S fS)? <RSI

S:|S|=k

For left-right crossing in n X n box on the hexagonal lattice, exploration
interface with random starting point gives revealment n~1/4t°(1) (it has
length n7/47°(1) given by 2-arm exponent), while 3", _ 'k =< m?, thus:

Theorem. Left-right crossing on the triangular lattice is noise sensitive
under €, > n~% with any a < 1/8. Even on square lattice, can take some
positive a > 0.

The revealment is at least n~=1/2+°(1) for any algorithm computing the
crossing, hence this method can give only n~1/4+°(1)_sensitivity, far from
the conjectured ¢, = n—3/4to(1),



The GPS approach, 2008

Although goal is to understand size, Gil Kalai suggested trying to understand
entire distribution of .4. A strange random set of bits.

Effective sampling? If f is an effectively computable Boolean function, then
there is an effective quantum algorithm for .7y |Bernstein-Vazirani 1993].

For .“o.n (left-right crossing in a conformal rectangle Q, mesh 1/n),
[Smirnov ‘01] + [Tsirelson ‘04] + [Schramm-Smirnov ‘11] implies that it
has a conformally invariant scaling limit.

How to prove tightness for the size of strange random fractal-like sets?



Basic properties of the spectral sample

Xs SQA,

For A C V: E[XS | EA} - {o otherwise .

Therefore, E| f | #4] = D _scA ]/"\(S) Xs , a nice projection.

Also, for S C A: E[fxs ] 34’146} — ZS,gAcf(SUS’) Xg' , hence

E|E[fxs| Za]’| = > F(Sus)P?=P[sna=s].
S/C Ac

This is the Random Restriction Lemma of Linial-Mansour-Nisan ‘93. E.g.,
Pli.j € 7] =E[P[fxig | Fuge] |
1 . o .
= ZP[M‘{%J’}C is such that ¢, 5 each may be plvotal]

=P|i,j € Pivy].



How does [yn N B ! SN B # (Z)} look like?

B as set has to

be pivotal.

Strong Separation Lemma. For d(B,0Q) > diam(B), conditioned on the
4 interfaces to reach 0B, with arbitrary starting points, with a uniformly
positive conditional probability the interfaces are well-separated around 0B.
Very bad separation is very unlikely. [Simple proof by Damron-Sapozhnikov
‘09, following Kesten ‘87. Also explained in Appendix to GPS ‘10.]

Corollary 1. P

Corollary 2. E

_YnﬂBr + (Z)} = ay(r,n).

|- N By

0N B, # (Z)} =r?ay(l,r) < E|.7%].
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Self-similarity for left-right crossing of n x n square

E|.7,| = E[Piv,| = n2 ay(1,n) 2 p3/ite@)

n2

E|.7,(r)] == E{#{r—boxes SN B, # (Z)} = —ay(r,n) <EL.Y, /|,

r2

E[\yntr\

0N B, # 0| =2 as(1,r) < E|.].

Of course, 2 ay(1,r) - Z—§a4(r, n) < n?a4(1,n), by quasi-multiplicativity.
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Self-similarity for left-right crossing of n x n square

E|%,| = E|Piv,| < n? as(1,n) 2 nd/4+o@)

n2

E|.7,.(r)] := E{#{r—boxes SN B, # (Z)} = —oy(r,n) < EL.Y, /|,

r2

E[\yntr\

0N B, # 0| =2 as(1,r) < E|.].

Of course, 2 as(1,7) - Z—joal(r, n) < n?a4(1,n), by quasi-multiplicativity.

1/2 1/2

Similar to the zero-set of simple random walk: E|Z,| <xnn™"/% =n"/*,

E|Z,(r)] == E[#{r-intervals 2,01 £ 0} | =<2 (n/r) Y2 < B|Z,,],
d T

E[|Znﬂlr\

Z, 01, £0] =rr /2 < B|Z,|.

These results are related to the existence of scaling limits.
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What concentration can we expect?

S 1s very different from uniform set of similar density:
i.id Plz € %,] =n"%* Hence E|%,| = n>3/*.

For large r (> n5/8), this %, intersects every r-box;
for small r, if it intersects one, there is just one point there.

Concentration of size: roughly within \/E|%,| = n3/8.

A bit more similar: fori =1,...,(n/r)? iid. P[X; =r3*] = (n/r)=5/4,
X; = 0 otherwise. Then S,, . := > X;. Hence E|S,, .| = n3/%.

For r = n7, size |5, .| is concentrated within n3/81+7) still o(E|S,,.|).

For self-similar sets, we expect only tightness around the mean:
P|0< || <AE[Z,|] — 0as A — 0, uniformly in n.



Proving tightness with a lot of independence

Assume we have the following ingredients, true for the zeroes:

(1) P||Z.n1|>cE|Z]

Z, N1, #£ 0, g;[n]\fr} = c > 0.

(2) Pl|Z.(r)]=Fk] <glk)P||Z,(r)| = 1], with sub-exponential g(k):

when the r-intervals intersected are scattered, have to pay k£ times to get
to and leave them, and this cost is not balanced by combinatorial entropy.



Proving tightness with a lot of independence

Assume we have the following ingredients, true for the zeroes:

(1) Pl||z.n1|>cE|Z,]

Z,N 1. #10, y[n]\[r} = c > 0.

2) Pl|Z2.(r)] =Fk] <glk)P||Z,(r)| = 1], with sub-exponential g(k):

when the r-intervals intersected are scattered, have to pay k£ times to get
to and leave them, and this cost is not balanced by combinatorial entropy.

P[0 < |Z,| < cE|Z|] = ZP[O < |2, < cE|Z,|, |Z,(r)] = k]
k>1

by (1): <> (1—=¢)*P[|2a(r)| = k]
k>1

by (2): <O P[|Z,(r)| = 1] = (n/r)' >,

which, using A = % = (r/n)Y/? readsas P[0 < | Z,| < AE|Z,|| =< \.



But we know much less independence for .¥,

(1) [15/ N B,/3| > SN B, # ()= ymw} c>0,

for any WW that is not too close to B,.

Why only this negative conditioning? Inclusion formula:
) 2 2
P[5 CU] = Zf ~E[ (X f9)xs) | =E[B[f]| 70]"|
ScU

From this, for disjoint subsets A and B,

P/ NB#£0=5NA]=P[S CA°] -P[.7 C(AUB)"]
~ BBl | Zxc ]~ BLf | Fany |

:E:(E[f | Fac] —E[f | 9(AUB)C])2] :



So, what are we going to do?

With quite a lot of work for both items,

(1) P [ ., 0 B,/3| > cE|.Z]

yntr#(D:yan} >c> 0.

(2) P||S(r) =k] < g(k)P||#,(r)| = 1], with sub-exponential g(k).

We could repeat (1') for many r-boxes only if “not enough points in one
box" meant “we found nothing in that box".

So, take an independent random dilute sample: Plx € R] = 1/E|.%,] i.i.d.
Then, |., N B,./3| is small = RN.%,NB,/3=10is likely,
and |.%, N B,./3| is large = RN .7, N B,./3 # 0 is likely.



So, what are we going to do?

With quite a lot of work for both items,

(1) P [ .0 B, /3| > cE|.Z,

Vntr#(ﬂ:Yan} > c> 0.

(2) P||7(r) =k] < g(k)P|[|7,(r)| = 1], with sub-exponential g(k).

We could repeat (1') for many r-boxes only if “not enough points in one
box" meant “we found nothing in that box".

So, take an independent random dilute sample: Plx € R] = 1/E|.%,] i.i.d.
Then, |., N B,./3| is small = RN.%,NB,/3=10is likely,
and |.%, N B,./3| is large = RN.%, N B,./3 # 0 is likely.

But P [5”” £0=RNS | |Snlr)| = k] is still problematic conditioning.

A strange large deviations lemma solves the issue.



The strange large deviation lemma

Suppose X,;,Y; € {0,1},i=1,...,n, and that VJ C [n] and Vi € [n] \ J
PV, =1]|VesY;=0] 2cP[X;=1]|Ve,Y; =0].

Then
P[ViYi — O} < c_lE[eXp(—(c/e) ZX") }

We use this with Xj = 1{5ﬂﬁBj?5@} and 1/3 — 1{ymBij¢@}.

Proof: Instead of sequential scan, average everything together.
Choose J C [n] randomly, Bernoulli(1—p). Get E| Y p¥ | > ¢cE| X p¥ T ].

So, E[Z] > 0, where Z := (Y —cpX)p¥. Choose p := e~ 1. Maximize
Z over Y, and get the bound Z < exp(—1 — cX/e). Altogether,
ce 'P|Y =0< X | <E|[1lxsgexp(—1—cX/e)|, and done.



Final result for the spectral sample

If r € [1,n], then {|.#,| < E|.#|} is basically equivalent to being contained
inside some r X r sub-square:

2
P[0 < || < E|lZ|] < au(r,n)? (E> .

r

In particular, on the triangular lattice A,
P[0 < | 7] < AE|Z,|] < A¥/3.

The scaling limit of .7, is a conformally invariant Cantor-set with Hausdorff-
dimension 3/4.

GPS (2010-11) proves that the scaling limit of dynamical percolation exists
as a Markov process; for mesh 1/n the time-scale is tn=3/4+t°(1) The above
implies that this process is ergodic, with correlations decaying as ¢~2/3.
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Question 1: Can one build similar proofs for other Boolean functions?

Question 2: Self-similarity of Piv,, and .¥,, is a lot of restriction. The
entropy of such random sets X, should be at most E|X,,|, i.e., there is no
log factor as it would be in uniform:

Fractal percolation on a b-ary tree, by always choosing 5 random children,
to depth h. This is uniform measure on

h—1 h_1

(00 -0

subsets, so entropy is const(b, j) - 5", while size is j".




In particular, Influence-Entropy conjecture |Friedgut-Kalai 1996]: For some
universal constant ', for any Boolean function f,

1

SpecEnt(f) := F(S)?log—— < C x
pec S%{:] f(S)2
x Influence(f) := E1.7| = E|Pivy| = Y F(5)?S].

SC[n]

| think | can do it for Piv,,, but not enough independence is known in .#,.

Gil Kalai's motivating example: Recursive 3-Wise Majority:

Pivotal set is the leaves of a Galton-Watson tree with offspring distribution
Plr=0]=1/4and P|m =2]| = 3/4.

Spectral sample is the leaves of a Galton-Watson tree with offspring
distribution P|oc=1| =3/4 and P|o = 3] = 1/4.

Note that E[7] = E[oc] = 3/2 and E[7?] = E[0?] = 3.
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General Boolean functions?

Random Restriction Lemma 4+ Strong Separation Lemma suggest that
typical random restriction of a large Boolean function might look “generic”.
And then could continue recursively, to get tree-like structure (except that
we don’t have enough independence. . . ). Is that naive?

Two results in similar directions:

. large dense graphs look random.

If M is a large Hermitian matrix, and k is large,
then the spectral measure of almost all principal submatrices of M of order
k is almost the same (but depends on M, of course).



