Noise sensitivity in critical percolation and what else might we learn from it

Mostly based on C. Garban, G. Pete \& O. Schramm:
The Fourier spectrum of critical percolation, Acta Math. 2010.

Naive idea: how many pivotals are there?

A site (or bond) is pivotal in ω, if flipping it changes the existence of a left-right crossing. $\mathbf{E}\left|\operatorname{Piv}_{n}\right| \asymp n^{2} \alpha_{4}(n) \quad\left(=n^{3 / 4+o(1)}\right)$.

Furthermore, $\mathbf{E}\left[\left|\operatorname{Piv}_{n}\right|^{2}\right] \leqslant C\left(\mathbf{E}\left|\operatorname{Piv}_{n}\right|\right)^{2}$. So, $\mathbf{P}\left[\left|\operatorname{Piv}_{n}\right|>\lambda \mathbf{E}\left|\operatorname{Piv}_{n}\right|\right]<C / \lambda^{2}$, any λ.

Tightness around mean also from below: $\mathbf{P}\left[0<\left|\operatorname{Piv}_{n}\right|<\lambda \mathbf{E}\left|\operatorname{Piv}_{n}\right|\right] \asymp \lambda^{11 / 9+o(1)}$, as $\lambda \rightarrow 0$ (exponent only for Δ).

Cannot have many pivotals. \Longrightarrow If $\epsilon_{n} \mathbf{E}\left[\left|\operatorname{Piv}_{n}\right|\right] \rightarrow 0$, then we don't hit any pivotals. \Longrightarrow Asymptotically full correlation.

Cannot have few pivotals (if there is any). \Longrightarrow If $\epsilon_{n} \mathbf{E}\left[\left|\operatorname{Piv}_{n}\right|\right] \rightarrow \infty$, then we do hit many pivotals. But this \nRightarrow asymptotic independence!

What is the Fourier spectrum and why is it useful?

$f_{n}:\{ \pm 1\}^{V_{n}} \longrightarrow\{ \pm 1\}$ indicator function of left-right crossing.
$\left(N_{\epsilon} f\right)(\omega):=\mathbf{E}\left[f\left(\omega^{\epsilon}\right) \mid \omega\right]$ is the noise operator, acting on the space $L^{2}(\Omega, \mu)$, where $\Omega=\{ \pm 1\}^{V}, \mu$ uniform measure, inner product $\mathbf{E}[f g]$.

Correlation: $\quad \mathbf{E}\left[f\left(\omega^{\epsilon}\right) f(\omega)\right]-\mathbf{E}[f(\omega)] \mathbf{E}\left[f\left(\omega^{\epsilon}\right)\right]=\mathbf{E}\left[f(\omega) N_{\epsilon} f(\omega)\right]-$ $\mathbf{E}[f(\omega)]^{2}$. So, we would like to diagonalize the noise operator N_{ϵ}.

Let χ_{i} be the function $\chi_{i}(\omega)=\omega(i), \omega \in \Omega$.
For $S \subset V$, let $\chi_{S}:=\prod_{i \in S} \chi_{i}$, the parity inside S. Then

$$
N_{\epsilon} \chi_{i}=(1-\epsilon) \chi_{i} ; \quad N_{\epsilon} \chi_{S}=(1-\epsilon)^{|S|} \chi_{S} .
$$

Moreover, the family $\left\{\chi_{S}, S \subset V\right\}$ is an orthonormal basis of $L^{2}(\Omega, \mu)$.

Any function $f \in L^{2}(\Omega, \mu)$ in this basis (Fourier-Walsh series):

$$
\hat{f}(S):=\mathbf{E}\left[f \chi_{S}\right] ; \quad f=\sum_{S \subset V} \hat{f}(S) \chi_{S}
$$

The correlation:

$$
\begin{aligned}
\mathbf{E}\left[f N_{\epsilon} f\right]-\mathbf{E}[f]^{2} & =\sum_{S} \sum_{S^{\prime}} \hat{f}(S) \hat{f}\left(S^{\prime}\right) \mathbf{E}\left[\chi_{S} N_{\epsilon} \chi_{S^{\prime}}\right]-\mathbf{E}\left[f \chi_{\emptyset}\right]^{2} \\
& =\sum_{\emptyset \neq S \subset V} \hat{f}(S)^{2}(1-\epsilon)^{|S|}=\sum_{k=1}^{\left|V_{n}\right|}(1-\epsilon)^{k} \sum_{|S|=k} \hat{f}(S)^{2}
\end{aligned}
$$

By Parseval, $\sum_{S} \hat{f}(S)^{2}=\mathbf{E}\left[f^{2}\right]=1$. So can define probability measure $\mathbf{P}\left[\mathscr{S}_{f}=S\right]:=\hat{f}(S)^{2} / \mathbf{E}\left[f^{2}\right]$, the spectral sample $\mathscr{S}_{f} \subset V$.
If, for some sequence k_{n}, we have $\nu\left[0<\left|\mathscr{S}_{n}\right|<t k_{n}\right] \rightarrow 0$ as $t \rightarrow 0$, uniformly in n, then $(1-\epsilon)^{k} \sim \exp (-\epsilon k)$ implies that for $\epsilon_{n} \gg 1 / k_{n}$ we have asymptotic independence. Maybe with $k_{n}=\mathbf{E}\left|\mathscr{S}_{n}\right|$?

Pivotals versus spectral sample

$\nabla_{i} f(\omega):=f\left(\sigma_{i}(\omega)\right)-f(\omega) \in\{-2,0,+2\}$ gradient.
$\nabla_{i} f(\omega)=\sum_{S} \hat{f}(S)\left[\chi_{S}\left(\sigma_{i}(\omega)\right)-\chi_{S}(\omega)\right]$, hence $\widehat{\nabla_{i} f}(S)=2 \hat{f}(S) \mathbf{1}_{i \in S}$.
$\mathbf{P}\left[i \in \operatorname{Piv}_{f}\right]=\frac{1}{4}\left\|\nabla_{i} f\right\|_{2}^{2}=\frac{1}{4} \sum_{S} \widehat{\nabla_{i} f}(S)^{2}=\sum_{S \ni i} \hat{f}(S)^{2}=\mathbf{P}\left[i \in \mathscr{S}_{f}\right]$.
Thus, $\mathbf{E}\left|\mathscr{S}_{f}\right|=\mathbf{E}\left|\operatorname{Piv}_{f}\right|$. So, the pivotal upper bound for noise sensitivity is sharp if there is tightness around $\mathbf{E}|\mathscr{S}|$.

Will see $\mathbf{P}\left[i, j \in \operatorname{Piv}_{f}\right]=\mathbf{P}\left[i, j \in \mathscr{S}_{f}\right]$, hence $\mathbf{E}\left|\mathscr{S}_{f}\right|^{2}=\mathbf{E}\left|\operatorname{Piv}_{f}\right|^{2}$.
Not for more points and higher moments! Both random subsets measure the "influence" or "relevance" of bits, but in different ways.

For percolation, $\mathbf{E}\left[\left|\operatorname{Piv}_{n}\right|^{2}\right] \leqslant C\left(\mathbf{E}\left|\operatorname{Piv}_{n}\right|\right)^{2}$, hence $\exists c>0$ s.t. $\quad \mathbf{P}\left[\left|\mathscr{S}_{n}\right|>c \mathbf{E}\left|\mathscr{S}_{n}\right|\right]>c$. That's why one hopes for tightness around mean.

Three very simple examples

Dictator $_{n}\left(x_{1}, \ldots, x_{n}\right):=x_{1}$.
Here $\operatorname{Cov}\left[\operatorname{Dic}_{n}(x), \operatorname{Dic}_{n}\left(x^{\epsilon}\right)\right]=1-\epsilon$, so noise-stable.
And $\mathbf{P}\left[\mathscr{S}_{n}=\left\{x_{1}\right\}\right]=1$.
Majority $_{n}\left(x_{1}, \ldots, x_{n}\right):=\operatorname{sgn}\left(x_{1}+\cdots+x_{n}\right) \approx \frac{1}{\sqrt{n}}\left(x_{1}+\cdots+x_{n}\right)$.
Here $\operatorname{Cov}\left[\operatorname{Maj}_{n}(x), \operatorname{Maj}_{n}\left(x^{\epsilon}\right)\right]=1-O(\epsilon)$, so noise-stable.
And $\mathbf{P}\left[\mathscr{S}_{n}=\left\{x_{i}\right\}\right] \asymp 1 / n$, most of the weight is on singletons.
On the other hand, $\mathbf{E}\left|\mathscr{S}_{n}\right|=\mathbf{E}\left|\operatorname{Piv}_{n}\right| \asymp \frac{1}{\sqrt{n}} n \asymp \sqrt{n}$.
$\operatorname{Parity}_{n}\left(x_{1}, \ldots, x_{n}\right):=x_{1} \cdots x_{n}$
Here $\operatorname{Cov}\left[\operatorname{Par}_{n}(x), \operatorname{Par}_{n}\left(x^{\epsilon}\right)\right]=(1-\epsilon)^{n}$, the most sensitive to noise.
And $\mathbf{P}\left[\mathscr{S}_{n}=\left\{x_{1}, \ldots, x_{n}\right\}\right]=1$.

Benjamini, Kalai \& Schramm 1998

Theorem. A sequence f_{n} of monotone Boolean functions is noise sensitive, i.e., for any fixed $\epsilon>0$,

$$
\mathbf{E}\left[f_{n}(\omega) f_{n}\left(\omega^{\epsilon}\right)\right]-\mathbf{E}\left[f_{n}(\omega)\right]^{2} \rightarrow 0
$$

as $n \rightarrow \infty$, iff it is asymptotically uncorrelated with all weighted majorities $\operatorname{Maj}_{w}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{sign} \sum_{i=1}^{n} x_{i} w_{i}$. Also, not very slow decorrelation with all subset-majorities is enough for sensitivity.

Theorem. The left-right percolation crossing in an $n \times n$ square is noise sensitive, even with $\epsilon=\epsilon_{n}>c / \log n$.

Steif \& Schramm 2005

Theorem. If $f: \Omega \longrightarrow \mathbb{R}$ can be computed with a randomized algorithm with revealment δ, then

$$
\sum_{S:|S|=k} \hat{f}(S)^{2} \leqslant \delta k\|f\|_{2}^{2}
$$

For left-right crossing in $n \times n$ box on the hexagonal lattice, exploration interface with random starting point gives revealment $n^{-1 / 4+o(1)}$ (it has length $n^{7 / 4+o(1)}$, given by 2 -arm exponent), while $\sum_{k \leqslant m} k \asymp m^{2}$, thus:

Theorem. Left-right crossing on the triangular lattice is noise sensitive under $\epsilon_{n}>n^{-a}$, with any $a<1 / 8$. Even on square lattice, can take some positive $a>0$.

The revealment is at least $n^{-1 / 2+o(1)}$ for any algorithm computing the crossing, hence this method can give only $n^{-1 / 4+o(1)}$-sensitivity, far from the conjectured $\epsilon_{n}=n^{-3 / 4+o(1)}$.

The GPS approach, 2008

Although goal is to understand size, Gil Kalai suggested trying to understand entire distribution of \mathscr{S}_{f}. A strange random set of bits.

Effective sampling? If f is an effectively computable Boolean function, then there is an effective quantum algorithm for \mathscr{S}_{f} [Bernstein-Vazirani 1993].

For $\mathscr{S}_{\mathcal{Q}, n}$ (left-right crossing in a conformal rectangle \mathcal{Q}, mesh $1 / n$), [Smirnov '01] + [Tsirelson '04] + [Schramm-Smirnov '11] implies that it has a conformally invariant scaling limit.

How to prove tightness for the size of strange random fractal-like sets?

Basic properties of the spectral sample

For $A \subseteq V: \mathbf{E}\left[\chi_{S} \mid \mathscr{F}_{A}\right]= \begin{cases}\chi_{S} & S \subseteq A, \\ 0 & \text { otherwise } .\end{cases}$
Therefore, $\mathbf{E}\left[f \mid \mathscr{F}_{A}\right]=\sum_{S \subseteq A} \widehat{f}(S) \chi_{S}$, a nice projection.
Also, for $S \subseteq A: \mathbf{E}\left[f \chi_{S} \mid \mathscr{F}_{A^{c}}\right]=\sum_{S^{\prime} \subseteq A^{c}} \widehat{f}\left(S \cup S^{\prime}\right) \chi_{S^{\prime}}$, hence

$$
\mathbf{E}\left[\mathbf{E}\left[f \chi_{S} \mid \mathscr{F}_{A^{c}}\right]^{2}\right]=\sum_{S^{\prime} \subseteq A^{c}} \widehat{f}\left(S \cup S^{\prime}\right)^{2}=\mathbf{P}[\mathscr{S} \cap A=S] .
$$

This is the Random Restriction Lemma of Linial-Mansour-Nisan '93. E.g.,

$$
\begin{aligned}
\mathbf{P}\left[i, j \in \mathscr{S}_{f}\right] & =\mathbf{E}\left[\mathbf{P}\left[f \chi_{\{i, j\}} \mid \mathscr{F}_{\{i, j\}^{c}}\right]\right] \\
& =\frac{1}{4} \mathbf{P}\left[\left.\omega\right|_{\{i, j\}^{c}} \text { is such that } i, j \text { each may be pivotal }\right] \\
& =\mathbf{P}\left[i, j \in \operatorname{Piv}_{f}\right] .
\end{aligned}
$$

How does $\left[\mathscr{S}_{n} \cap B \mid \mathscr{S}_{n} \cap B \neq \emptyset\right]$ look like?
B as set has to be pivotal.

Strong Separation Lemma. For $\mathrm{d}(B, \partial \mathcal{Q})>\operatorname{diam}(B)$, conditioned on the 4 interfaces to reach ∂B, with arbitrary starting points, with a uniformly positive conditional probability the interfaces are well-separated around ∂B. Very bad separation is very unlikely. [Simple proof by Damron-Sapozhnikov '09, following Kesten '87. Also explained in Appendix to GPS '10.]

Corollary 1. $\mathbf{P}\left[\mathscr{S}_{n} \cap B_{r} \neq \emptyset\right] \asymp \alpha_{4}(r, n)$.
Corollary 2. $\mathbf{E}\left[\left|\mathscr{S}_{n} \cap B_{r}\right| \mid \mathscr{S}_{n} \cap B_{r} \neq \emptyset\right] \asymp r^{2} \alpha_{4}(1, r) \asymp \mathbf{E}\left|\mathscr{S}_{r}\right|$.

Self-similarity for left-right crossing of $n \times n$ square

$$
\begin{aligned}
\mathbf{E}\left|\mathscr{S}_{n}\right|=\mathbf{E}\left|\operatorname{Piv}_{n}\right| & \asymp n^{2} \alpha_{4}(1, n) \asymp n^{3 / 4+o(1)}, \\
\mathbf{E}\left|\mathscr{S}_{n}(r)\right|:=\mathbf{E}\left[\#\left\{r \text {-boxes } \mathscr{S}_{n} \cap B_{r} \neq \emptyset\right\}\right] & \asymp \frac{n^{2}}{r^{2}} \alpha_{4}(r, n) \asymp \mathbf{E}\left|\mathscr{S}_{n / r}\right|, \\
\mathbf{E}\left[\left|\mathscr{S}_{n} \cap B_{r}\right| \mid \mathscr{S}_{n} \cap B_{r} \neq \emptyset\right] & \asymp r^{2} \alpha_{4}(1, r) \asymp \mathbf{E}\left|\mathscr{S}_{r}\right| .
\end{aligned}
$$

Of course, $r^{2} \alpha_{4}(1, r) \cdot \frac{n^{2}}{r^{2}} \alpha_{4}(r, n) \asymp n^{2} \alpha_{4}(1, n)$, by quasi-multiplicativity.

Self-similarity for left-right crossing of $n \times n$ square

$$
\begin{aligned}
\mathbf{E}\left|\mathscr{S}_{n}\right|=\mathbf{E}\left|\operatorname{Piv}_{n}\right| & \asymp n^{2} \alpha_{4}(1, n) \triangleq n^{3 / 4+o(1)}, \\
\mathbf{E}\left|\mathscr{S}_{n}(r)\right|:=\mathbf{E}\left[\#\left\{r \text {-boxes } \mathscr{S}_{n} \cap B_{r} \neq \emptyset\right\}\right] & \asymp \frac{n^{2}}{r^{2}} \alpha_{4}(r, n) \asymp \mathbf{E}\left|\mathscr{S}_{n / r}\right|, \\
\mathbf{E}\left[\left|\mathscr{S}_{n} \cap B_{r}\right| \mid \mathscr{S}_{n} \cap B_{r} \neq \emptyset\right] & \asymp r^{2} \alpha_{4}(1, r) \asymp \mathbf{E}\left|\mathscr{S}_{r}\right| .
\end{aligned}
$$

Of course, $r^{2} \alpha_{4}(1, r) \cdot \frac{n^{2}}{r^{2}} \alpha_{4}(r, n) \asymp n^{2} \alpha_{4}(1, n)$, by quasi-multiplicativity.

Similar to the zero-set of simple random walk: $\mathbf{E}\left|\mathcal{Z}_{n}\right| \asymp n n^{-1 / 2}=n^{1 / 2}$,

$$
\begin{array}{rl}
\mathbf{E}\left|\mathcal{Z}_{n}(r)\right|:= & \mathbf{E}[\# \\
& \left.\left\{r \text {-intervals } \mathcal{Z}_{n} \cap I_{r} \neq \emptyset\right\}\right] \\
& \mathbf{E}\left[\left|\mathcal{Z}_{n} \cap I_{r}\right| \mid \mathcal{Z}_{n} \cap I_{r} \neq \emptyset\right] \\
r & n / r)^{-1 / 2} \asymp \mathbf{E}\left|\mathcal{Z}_{n / r}\right|, \\
-1 / 2 & \mathbf{E}\left|\mathcal{Z}_{r}\right| .
\end{array}
$$

These results are related to the existence of scaling limits.

What concentration can we expect?

\mathscr{S}_{n} is very different from uniform set of similar density:
i.i.d. $\mathbf{P}\left[x \in \mathscr{U}_{n}\right]=n^{-5 / 4}$. Hence $\mathbf{E}\left|\mathscr{U}_{n}\right|=n^{3 / 4}$.

For large $r\left(\gg n^{5 / 8}\right)$, this \mathscr{U}_{n} intersects every r-box; for small r, if it intersects one, there is just one point there.

Concentration of size: roughly within $\sqrt{\mathbf{E}\left|\mathscr{U}_{n}\right|}=n^{3 / 8}$.

A bit more similar: for $i=1, \ldots,(n / r)^{2}$, i.i.d. $\mathbf{P}\left[X_{i}=r^{3 / 4}\right]=(n / r)^{-5 / 4}$, $X_{i}=0$ otherwise. Then $S_{n, r}:=\sum_{i} X_{i}$. Hence $\mathbf{E}\left|S_{n, r}\right|=n^{3 / 4}$.
For $r=n^{\gamma}$, size $\left|S_{n, r}\right|$ is concentrated within $n^{3 / 8(1+\gamma)}$, still $o\left(\mathbf{E}\left|S_{n, r}\right|\right)$.

For self-similar sets, we expect only tightness around the mean: $\mathbf{P}\left[0<\left|\mathscr{S}_{n}\right|<\lambda \mathbf{E}\left|\mathscr{S}_{n}\right|\right] \rightarrow 0$ as $\lambda \rightarrow 0$, uniformly in n.

Proving tightness with a lot of independence

Assume we have the following ingredients, true for the zeroes:
(1) $\mathbf{P}\left[\left|\mathcal{Z}_{n} \cap I_{r}\right|>c \mathbf{E}\left|\mathcal{Z}_{r}\right| \mid \mathcal{Z}_{n} \cap I_{r} \neq \emptyset, \quad \mathscr{F}_{[n] \backslash I_{r}}\right] \geqslant c>0$.
(2) $\mathbf{P}\left[\left|\mathcal{Z}_{n}(r)\right|=k\right] \leqslant g(k) \mathbf{P}\left[\left|\mathcal{Z}_{n}(r)\right|=1\right]$, with sub-exponential $g(k)$:
when the r-intervals intersected are scattered, have to pay k times to get to and leave them, and this cost is not balanced by combinatorial entropy.

Proving tightness with a lot of independence

Assume we have the following ingredients, true for the zeroes:
(1) $\mathbf{P}\left[\left|\mathcal{Z}_{n} \cap I_{r}\right|>c \mathbf{E}\left|\mathcal{Z}_{r}\right| \mid \mathcal{Z}_{n} \cap I_{r} \neq \emptyset, \quad \mathscr{F}_{[n] \backslash I_{r}}\right] \geqslant c>0$.
(2) $\quad \mathbf{P}\left[\left|\mathcal{Z}_{n}(r)\right|=k\right] \leqslant g(k) \mathbf{P}\left[\left|\mathcal{Z}_{n}(r)\right|=1\right]$, with sub-exponential $g(k)$: when the r-intervals intersected are scattered, have to pay k times to get to and leave them, and this cost is not balanced by combinatorial entropy.

$$
\begin{aligned}
& \mathbf{P}\left[0<\left|\mathcal{Z}_{n}\right|<c \mathbf{E}\left|\mathcal{Z}_{r}\right|\right]=\sum_{k \geqslant 1} \mathbf{P}\left[0<\left|\mathcal{Z}_{n}\right|<c \mathbf{E}\left|\mathcal{Z}_{r}\right|,\left|\mathcal{Z}_{n}(r)\right|=k\right] \\
& \text { by (1): } \leqslant \sum_{k \geqslant 1}(1-c)^{k} \mathbf{P}\left[\left|\mathcal{Z}_{n}(r)\right|=k\right] \\
& \text { by (2): } \leqslant O(1) \mathbf{P}\left[\left|\mathcal{Z}_{n}(r)\right|=1\right] \asymp(n / r)^{1-3 / 2},
\end{aligned}
$$

which, using $\lambda=\frac{c \mathbf{E}\left|\mathcal{Z}_{r}\right|}{\mathbf{E}\left|Z_{n}\right|} \asymp(r / n)^{1 / 2}$, reads as $\mathbf{P}\left[0<\left|\mathcal{Z}_{n}\right|<\lambda \mathbf{E}\left|\mathcal{Z}_{n}\right|\right] \asymp \lambda$.

But we know much less independence for \mathscr{S}_{n}

(1') $\mathbf{P}\left[\left|\mathscr{S}_{n} \cap B_{r} / 3\right|>c \mathbf{E}\left|\mathscr{S}_{r}\right| \mid \mathscr{S}_{n} \cap B_{r} \neq \emptyset=\mathscr{S}_{n} \cap W\right] \geqslant c>0$,
for any W that is not too close to B_{r}.

Why only this negative conditioning? Inclusion formula:

$$
\mathbf{P}\left[\mathscr{S}_{f} \subset U\right]=\sum_{S \subset U} \hat{f}(S)^{2}=\mathbf{E}\left[\left(\sum_{S \subset U} \hat{f}(S) \chi_{S}\right)^{2}\right]=\mathbf{E}\left[\mathbf{E}\left[f \mid \mathscr{F}_{U}\right]^{2}\right]
$$

From this, for disjoint subsets A and B,

$$
\begin{aligned}
\mathbf{P}\left[\mathscr{S}_{f} \cap B \neq \emptyset=\mathscr{S}_{f} \cap A\right] & =\mathbf{P}\left[\mathscr{S}_{f} \subseteq A^{c}\right]-\mathbf{P}\left[\mathscr{S}_{f} \subseteq(A \cup B)^{c}\right] \\
& =\mathbf{E}\left[\mathbf{E}\left[f \mid \mathscr{F}_{A^{c}}\right]^{2}-\mathbf{E}\left[f \mid \mathscr{F}_{(A \cup B)^{c}}\right]^{2}\right] \\
& =\mathbf{E}\left[\left(\mathbf{E}\left[f \mid \mathscr{F}_{A^{c}}\right]-\mathbf{E}\left[f \mid \mathscr{F}_{(A \cup B)^{c}}\right]\right)^{2}\right] .
\end{aligned}
$$

So, what are we going to do?

With quite a lot of work for both items,
(1') $\quad \mathbf{P}\left[\left|\mathscr{S}_{n} \cap B_{r} / 3\right|>c \mathbf{E}\left|\mathscr{S}_{r}\right| \mid \mathscr{S}_{n} \cap B_{r} \neq \emptyset=\mathscr{S}_{n} \cap W\right] \geqslant c>0$.
(2) $\mathbf{P}\left[\left|\mathscr{S}_{n}(r)\right|=k\right] \leqslant g(k) \mathbf{P}\left[\left|\mathscr{S}_{n}(r)\right|=1\right]$, with sub-exponential $g(k)$.

We could repeat (1') for many r-boxes only if "not enough points in one box" meant "we found nothing in that box".

So, take an independent random dilute sample: $\mathbf{P}[x \in \mathcal{R}]=1 / \mathbf{E}\left|\mathscr{S}_{r}\right|$ i.i.d. Then, $\left|\mathscr{S}_{n} \cap B_{r} / 3\right|$ is small $\Longrightarrow \mathcal{R} \cap \mathscr{S}_{n} \cap B_{r} / 3=\emptyset$ is likely, and $\left|\mathscr{S}_{n} \cap B_{r} / 3\right|$ is large $\Longrightarrow \mathcal{R} \cap \mathscr{S}_{n} \cap B_{r} / 3 \neq \emptyset$ is likely.

So, what are we going to do?

With quite a lot of work for both items,
(1') $\quad \mathbf{P}\left[\left|\mathscr{S}_{n} \cap B_{r} / 3\right|>c \mathbf{E}\left|\mathscr{S}_{r}\right| \mid \mathscr{S}_{n} \cap B_{r} \neq \emptyset=\mathscr{S}_{n} \cap W\right] \geqslant c>0$.
(2) $\mathbf{P}\left[\left|\mathscr{S}_{n}(r)\right|=k\right] \leqslant g(k) \mathbf{P}\left[\left|\mathscr{S}_{n}(r)\right|=1\right]$, with sub-exponential $g(k)$.

We could repeat (1') for many r-boxes only if "not enough points in one box" meant "we found nothing in that box".

So, take an independent random dilute sample: $\mathbf{P}[x \in \mathcal{R}]=1 / \mathbf{E}\left|\mathscr{S}_{r}\right|$ i.i.d. Then, $\left|\mathscr{S}_{n} \cap B_{r} / 3\right|$ is small $\Longrightarrow \mathcal{R} \cap \mathscr{S}_{n} \cap B_{r} / 3=\emptyset$ is likely, and $\left|\mathscr{S}_{n} \cap B_{r} / 3\right|$ is large $\Longrightarrow \mathcal{R} \cap \mathscr{S}_{n} \cap B_{r} / 3 \neq \emptyset$ is likely.
But $\mathbf{P}\left[\mathscr{S}_{n} \neq \emptyset=\mathcal{R} \cap \mathscr{S}_{n}| | \mathscr{S}_{n}(r) \mid=k\right]$ is still problematic conditioning.
A strange large deviations lemma solves the issue.

The strange large deviation lemma

Suppose $X_{i}, Y_{i} \in\{0,1\}, i=1, \ldots, n$, and that $\forall J \subset[n]$ and $\forall i \in[n] \backslash J$

$$
\mathbf{P}\left[Y_{i}=1 \mid \forall_{j \in J} Y_{j}=0\right] \geqslant c \mathbf{P}\left[X_{i}=1 \mid \forall_{j \in J} Y_{j}=0\right]
$$

Then

$$
\mathbf{P}\left[\forall_{i} Y_{i}=0\right] \leqslant c^{-1} \mathbf{E}\left[\exp \left(-(c / e) \sum_{i} X_{i}\right)\right]
$$

We use this with $X_{j}:=1_{\left\{\mathscr{\mathscr { O }} \cap_{j} \neq \emptyset\right\}}$ and $Y_{j}:=1_{\left\{\mathscr{G} \cap B_{j} \cap \mathcal{R} \neq \emptyset\right\}}$.
Proof: Instead of sequential scan, average everything together. Choose $J \subset[n]$ randomly, Bernoulli $(1-p)$. Get $\mathbf{E}\left[Y p^{Y}\right] \geqslant c \mathbf{E}\left[X p^{Y+1}\right]$.

So, $\mathbf{E}[Z] \geqslant 0$, where $Z:=(Y-c p X) p^{Y}$. Choose $p:=e^{-1}$. Maximize Z over Y, and get the bound $Z \leqslant \exp (-1-c X / e)$. Altogether, $c e^{-1} \mathbf{P}[Y=0<X] \leqslant \mathbf{E}\left[1_{X>0} \exp (-1-c X / e)\right]$, and done.

Final result for the spectral sample

If $r \in[1, n]$, then $\left\{\left|\mathscr{S}_{n}\right|<\mathbf{E}\left|\mathscr{S}_{r}\right|\right\}$ is basically equivalent to being contained inside some $r \times r$ sub-square:

$$
\mathbf{P}\left[0<\left|\mathscr{S}_{n}\right|<\mathbf{E}\left|\mathscr{S}_{r}\right|\right] \asymp \alpha_{4}(r, n)^{2}\left(\frac{n}{r}\right)^{2} .
$$

In particular, on the triangular lattice Δ,

$$
\mathbf{P}\left[0<\left|\mathscr{S}_{n}\right|<\lambda \mathbf{E}\left|\mathscr{S}_{n}\right|\right] \asymp \lambda^{2 / 3} .
$$

The scaling limit of \mathscr{S}_{n} is a conformally invariant Cantor-set with Hausdorffdimension 3/4.

GPS (2010-11) proves that the scaling limit of dynamical percolation exists as a Markov process; for mesh $1 / n$ the time-scale is $t n^{-3 / 4+o(1)}$. The above implies that this process is ergodic, with correlations decaying as $t^{-2 / 3}$.

Question 1: Can one build similar proofs for other Boolean functions?

Question 2: Self-similarity of Piv_{n} and \mathscr{S}_{n} is a lot of restriction. The entropy of such random sets X_{n} should be at most $\mathbf{E}\left|X_{n}\right|$, i.e., there is no \log factor as it would be in uniform:

Fractal percolation on a b-ary tree, by always choosing j random children, to depth h. This is uniform measure on

$$
\binom{b}{j}\binom{b}{j}^{j} \cdots\binom{b}{j}^{j^{h-1}}=\binom{b}{j}^{\frac{j^{h}-1}{j-1}}
$$

subsets, so entropy is const $(b, j) \cdot j^{h}$, while size is j^{h}.

In particular, Influence-Entropy conjecture [Friedgut-Kalai 1996]: For some universal constant C, for any Boolean function f,

$$
\begin{aligned}
\operatorname{SpecEnt}(f):=\sum_{S \subset[n]} & \widehat{f}(S)^{2} \log \frac{1}{\widehat{f}(S)^{2}} \leqslant C \times \\
& \times \operatorname{Influence}(f):=\mathbf{E}\left|\mathscr{S}_{f}\right|=\mathbf{E}\left|\operatorname{Piv}_{f}\right|=\sum_{S \subset[n]} \widehat{f}(S)^{2}|S| .
\end{aligned}
$$

I think I can do it for Piv_{n}, but not enough independence is known in \mathscr{S}_{n}.

Gil Kalai's motivating example: Recursive 3-Wise Majority:
Pivotal set is the leaves of a Galton-Watson tree with offspring distribution $\mathbf{P}[\pi=0]=1 / 4$ and $\mathbf{P}[\pi=2]=3 / 4$.

Spectral sample is the leaves of a Galton-Watson tree with offspring distribution $\mathbf{P}[\sigma=1]=3 / 4$ and $\mathbf{P}[\sigma=3]=1 / 4$.

Note that $\mathbf{E}[\pi]=\mathbf{E}[\sigma]=3 / 2$ and $\mathbf{E}\left[\pi^{2}\right]=\mathbf{E}\left[\sigma^{2}\right]=3$.

General Boolean functions?

Random Restriction Lemma + Strong Separation Lemma suggest that typical random restriction of a large Boolean function might look "generic". And then could continue recursively, to get tree-like structure (except that we don't have enough independence. . .). Is that naive?

Two results in similar directions:
Szemerédi Regularity Lemma '75: large dense graphs look random.
Chatterjee-Ledoux '09: If M is a large Hermitian matrix, and k is large, then the spectral measure of almost all principal submatrices of M of order k is almost the same (but depends on M, of course).

