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Naive idea: how many pivotals are there?

A site (or bond) is pivotal in ω, if flipping it
changes the existence of a left-right crossing.
E|Pivn| ≍ n2 α4(n) (= n3/4+o(1)).

Furthermore, E[ |Pivn|2 ] 6 C (E|Pivn|)2.
So, P

[
|Pivn| > λE|Pivn|

]
< C/λ2, any λ.

Tightness around mean also from below:
P

[
0 < |Pivn| < λE|Pivn|

]
≍ λ11/9+o(1), as

λ → 0 (exponent only for ∆).

Cannot have many pivotals. =⇒ If ǫnE[ |Pivn| ] → 0, then we don’t hit
any pivotals. =⇒ Asymptotically full correlation.

Cannot have few pivotals (if there is any). =⇒ If ǫnE[ |Pivn| ] → ∞, then
we do hit many pivotals. But this 6=⇒ asymptotic independence!
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What is the Fourier spectrum and why is it useful?

fn : {±1}Vn −→ {±1} indicator function of left-right crossing.

(Nǫf)(ω) := E[ f(ωǫ) | ω ] is the noise operator, acting on the space
L2(Ω, µ), where Ω = {±1}V , µ uniform measure, inner product E[ fg ].

Correlation: E[ f(ωǫ)f(ω) ] − E[ f(ω) ]E[ f(ωǫ) ] = E[ f(ω)Nǫf(ω) ] −
E[ f(ω) ]

2
. So, we would like to diagonalize the noise operator Nǫ.

Let χi be the function χi(ω) = ω(i), ω ∈ Ω.

For S ⊂ V , let χS :=
∏

i∈S
χi, the parity inside S. Then

Nǫχi = (1 − ǫ) χi ; NǫχS = (1 − ǫ)|S| χS.

Moreover, the family {χS, S ⊂ V } is an orthonormal basis of L2(Ω, µ).

2



Any function f ∈ L2(Ω, µ) in this basis (Fourier-Walsh series):

f̂(S) := E[ fχS ] ; f =
∑

S⊂V

f̂(S)χS .

The correlation:

E[ fNǫf ] − E[ f ]2 =
∑

S

∑

S′
f̂(S) f̂(S′)E

[
χS NǫχS′

]
− E[ fχ∅ ]2

=
∑

∅6=S⊂V

f̂(S)2 (1 − ǫ)|S| =

|Vn|∑

k=1

(1 − ǫ)k
∑

|S|=k

f̂(S)2.

By Parseval,
∑

S f̂(S)2 = E[ f2 ] = 1. So can define probability measure

P
[
Sf = S

]
:= f̂(S)2/E[ f2 ], the spectral sample Sf ⊂ V .

If, for some sequence kn, we have ν
[
0 < |Sn| < tkn

]
→ 0 as t → 0,

uniformly in n, then (1 − ǫ)k ∼ exp(−ǫk) implies that for ǫn ≫ 1/kn we
have asymptotic independence. Maybe with kn = E|Sn|?
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Pivotals versus spectral sample

∇if(ω) := f(σi(ω)) − f(ω) ∈ {−2, 0,+2} gradient.

∇if(ω) =
∑

S f̂(S)[χS(σi(ω)) − χS(ω)], hence ∇̂if(S) = 2f̂(S)1i∈S.

P[ i ∈ Pivf ] = 1
4‖∇if‖2

2 = 1
4

∑
S ∇̂if(S)2 =

∑
S∋i f̂(S)2 = P[ i ∈ Sf ].

Thus, E|Sf | = E|Pivf |. So, the pivotal upper bound for noise sensitivity
is sharp if there is tightness around E|S |.

Will see P[ i, j ∈ Pivf ] = P[ i, j ∈ Sf ], hence E|Sf |2 = E|Pivf |2.

Not for more points and higher moments!
Both random subsets measure the “influence” or
“relevance” of bits, but in different ways.

For percolation, E[ |Pivn|2 ] 6 C (E|Pivn|)2,
hence ∃c > 0 s.t. P

[
|Sn| > cE|Sn|

]
> c.

That’s why one hopes for tightness around mean.
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Three very simple examples

Dictatorn(x1, . . . , xn) := x1 .
Here Cov

[
Dicn(x), Dicn(xǫ)

]
= 1 − ǫ, so noise-stable.

And P
[
Sn = {x1}

]
= 1.

Majorityn(x1, . . . , xn) := sgn (x1 + · · · + xn) ≈ 1√
n
(x1 + · · · + xn) .

Here Cov
[
Majn(x), Majn(xǫ)

]
= 1 − O(ǫ), so noise-stable.

And P
[
Sn = {xi}

]
≍ 1/n, most of the weight is on singletons.

On the other hand, E|Sn| = E|Pivn| ≍ 1√
n

n ≍ √
n.

Parityn(x1, . . . , xn) := x1 · · ·xn

Here Cov
[
Parn(x), Parn(xǫ)

]
= (1 − ǫ)n, the most sensitive to noise.

And P
[
Sn = {x1, . . . , xn}

]
= 1.
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Benjamini, Kalai & Schramm 1998

Theorem. A sequence fn of monotone Boolean functions is noise sensitive,
i.e., for any fixed ǫ > 0,

E
[
fn(ω) fn(ωǫ)

]
− E

[
fn(ω)

]2 → 0

as n → ∞, iff it is asymptotically uncorrelated with all weighted majorities
Majw(x1, . . . , xn) = sign

∑n
i=1 xiwi . Also, not very slow decorrelation with

all subset-majorities is enough for sensitivity.

Theorem. The left-right percolation crossing in an n × n square is noise
sensitive, even with ǫ = ǫn > c/ log n.
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Steif & Schramm 2005

Theorem. If f : Ω −→ R can be computed with a randomized algorithm
with revealment δ, then ∑

S:|S|=k

f̂(S)2 6 δ k ‖f‖2
2 .

For left-right crossing in n × n box on the hexagonal lattice, exploration
interface with random starting point gives revealment n−1/4+o(1) (it has
length n7/4+o(1), given by 2-arm exponent), while

∑
k6m k ≍ m2, thus:

Theorem. Left-right crossing on the triangular lattice is noise sensitive
under ǫn > n−a, with any a < 1/8. Even on square lattice, can take some
positive a > 0.

The revealment is at least n−1/2+o(1) for any algorithm computing the
crossing, hence this method can give only n−1/4+o(1)-sensitivity, far from
the conjectured ǫn = n−3/4+o(1).
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The GPS approach, 2008

Although goal is to understand size, Gil Kalai suggested trying to understand
entire distribution of Sf . A strange random set of bits.

Effective sampling? If f is an effectively computable Boolean function, then
there is an effective quantum algorithm for Sf [Bernstein-Vazirani 1993].

For SQ,n (left-right crossing in a conformal rectangle Q, mesh 1/n),
[Smirnov ‘01] + [Tsirelson ‘04] + [Schramm-Smirnov ‘11] implies that it
has a conformally invariant scaling limit.

How to prove tightness for the size of strange random fractal-like sets?
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Basic properties of the spectral sample

For A ⊆ V : E
[
χS

∣∣ FA

]
=

{
χS S ⊆ A ,

0 otherwise .

Therefore, E
[
f

∣∣ FA

]
=

∑
S⊆A f̂(S)χS , a nice projection.

Also, for S ⊆ A: E
[
f χS

∣∣ FAc

]
=

∑
S′⊆Ac f̂(S ∪ S′)χS′ , hence

E

[
E

[
f χS

∣∣ FAc

]2 ]
=

∑

S′⊆Ac

f̂(S ∪ S′)2 = P
[
S ∩ A = S

]
.

This is the Random Restriction Lemma of Linial-Mansour-Nisan ‘93. E.g.,

P
[
i, j ∈ Sf

]
= E

[
P

[
fχ{i,j}

∣∣ F{i,j}c

] ]

=
1

4
P

[
ω
∣∣
{i,j}c is such that i, j each may be pivotal

]

= P
[
i, j ∈ Pivf

]
.
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How does
[
Sn ∩ B

∣∣Sn ∩ B 6= ∅
]

look like?

B as set has to be pivotal.

Strong Separation Lemma. For d(B, ∂Q) > diam(B), conditioned on the
4 interfaces to reach ∂B, with arbitrary starting points, with a uniformly
positive conditional probability the interfaces are well-separated around ∂B.
Very bad separation is very unlikely. [Simple proof by Damron-Sapozhnikov
‘09, following Kesten ‘87. Also explained in Appendix to GPS ‘10.]

Corollary 1. P

[
Sn ∩ Br 6= ∅

]
≍ α4(r, n) .

Corollary 2. E

[
|Sn ∩ Br|

∣∣∣ Sn ∩ Br 6= ∅
]
≍ r2 α4(1, r) ≍ E|Sr| .
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Self-similarity for left-right crossing of n × n square

E|Sn| = E|Pivn| ≍ n2 α4(1, n)
∆≍ n3/4+o(1) ,

E|Sn(r)| := E

[
#

{
r-boxes Sn ∩ Br 6= ∅

} ]
≍ n2

r2
α4(r, n) ≍ E|Sn/r| ,

E

[
|Sn ∩ Br|

∣∣∣ Sn ∩ Br 6= ∅
]
≍ r2 α4(1, r) ≍ E|Sr| .

Of course, r2 α4(1, r) · n2

r2 α4(r, n) ≍ n2 α4(1, n), by quasi-multiplicativity.
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α4(r, n) ≍ E|Sn/r| ,

E

[
|Sn ∩ Br|

∣∣∣ Sn ∩ Br 6= ∅
]
≍ r2 α4(1, r) ≍ E|Sr| .

Of course, r2 α4(1, r) · n2

r2 α4(r, n) ≍ n2 α4(1, n), by quasi-multiplicativity.

Similar to the zero-set of simple random walk: E|Zn| ≍ nn−1/2 = n1/2,

E|Zn(r)| := E

[
#

{
r-intervals Zn ∩ Ir 6= ∅

} ]
≍ n

r
(n/r)−1/2 ≍ E|Zn/r| ,

E

[
|Zn ∩ Ir|

∣∣∣ Zn ∩ Ir 6= ∅
]
≍ r r−1/2 ≍ E|Zr| .

These results are related to the existence of scaling limits.
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What concentration can we expect?

Sn is very different from uniform set of similar density:
i.i.d. P[ x ∈ Un ] = n−5/4. Hence E|Un| = n3/4.

For large r (≫ n5/8), this Un intersects every r-box;
for small r, if it intersects one, there is just one point there.

Concentration of size: roughly within
√

E|Un| = n3/8.

A bit more similar: for i = 1, . . . , (n/r)2, i.i.d. P
[
Xi = r3/4

]
= (n/r)−5/4,

Xi = 0 otherwise. Then Sn,r :=
∑

i Xi. Hence E|Sn,r| = n3/4.

For r = nγ, size |Sn,r| is concentrated within n3/8(1+γ), still o(E|Sn,r|).

For self-similar sets, we expect only tightness around the mean:
P

[
0 < |Sn| < λE|Sn|

]
→ 0 as λ → 0, uniformly in n.
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Proving tightness with a lot of independence

Assume we have the following ingredients, true for the zeroes:

(1) P

[
|Zn ∩ Ir| > cE|Zr|

∣∣∣ Zn ∩ Ir 6= ∅, F[n]\Ir

]
> c > 0.

(2) P
[
|Zn(r)| = k

]
6 g(k)P

[
|Zn(r)| = 1

]
, with sub-exponential g(k):

when the r-intervals intersected are scattered, have to pay k times to get
to and leave them, and this cost is not balanced by combinatorial entropy.
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when the r-intervals intersected are scattered, have to pay k times to get
to and leave them, and this cost is not balanced by combinatorial entropy.

P
[
0 < |Zn| < cE|Zr|

]
=

∑

k>1

P

[
0 < |Zn| < cE|Zr| , |Zn(r)| = k

]

by (1): 6
∑

k>1

(1 − c)k
P

[
|Zn(r)| = k

]

by (2): 6 O(1)P
[
|Zn(r)| = 1

]
≍ (n/r)1−3/2,

which, using λ = c E|Zr|
E|Zn| ≍ (r/n)1/2, reads as P

[
0 < |Zn| < λE|Zn|

]
≍ λ.
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But we know much less independence for Sn

(1’) P

[
|Sn ∩ Br/3| > cE|Sr|

∣∣∣ Sn ∩ Br 6= ∅ = Sn ∩ W
]

> c > 0,

for any W that is not too close to Br.

Why only this negative conditioning? Inclusion formula:

P
[
Sf ⊂ U

]
=

∑

S⊂U

f̂(S)2 = E

[ (∑

S⊂U

f̂(S)χS

)2 ]
= E

[
E

[
f

∣∣ FU

]2 ]
.

From this, for disjoint subsets A and B,

P
[
Sf ∩ B 6= ∅ = Sf ∩ A

]
= P

[
Sf ⊆ Ac

]
− P

[
Sf ⊆ (A ∪ B)c

]

= E

[
E[ f | FAc ]

2 − E[ f | F(A∪B)c ]
2
]

= E

[ (
E[ f | FAc ] − E[ f | F(A∪B)c ]

)2
]
.

16



So, what are we going to do?

With quite a lot of work for both items,

(1’) P

[
|Sn ∩ Br/3| > cE|Sr|

∣∣∣ Sn ∩ Br 6= ∅ = Sn ∩ W
]

> c > 0.

(2) P
[
|Sn(r)| = k

]
6 g(k)P

[
|Sn(r)| = 1

]
, with sub-exponential g(k).

We could repeat (1’) for many r-boxes only if “not enough points in one
box” meant “we found nothing in that box”.

So, take an independent random dilute sample: P[ x ∈ R ] = 1/E|Sr| i.i.d.
Then, |Sn ∩ Br/3| is small =⇒ R∩ Sn ∩ Br/3 = ∅ is likely,
and |Sn ∩ Br/3| is large =⇒ R∩ Sn ∩ Br/3 6= ∅ is likely.
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So, take an independent random dilute sample: P[ x ∈ R ] = 1/E|Sr| i.i.d.
Then, |Sn ∩ Br/3| is small =⇒ R∩ Sn ∩ Br/3 = ∅ is likely,
and |Sn ∩ Br/3| is large =⇒ R∩ Sn ∩ Br/3 6= ∅ is likely.

But P

[
Sn 6= ∅ = R∩ Sn

∣∣∣ |Sn(r)| = k
]

is still problematic conditioning.

A strange large deviations lemma solves the issue.
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The strange large deviation lemma

Suppose Xi, Yi ∈ {0, 1}, i = 1, . . . , n, and that ∀J ⊂ [n] and ∀i ∈ [n] \ J

P
[
Yi = 1

∣∣ ∀j∈JYj = 0
]

> cP
[
Xi = 1

∣∣ ∀j∈JYj = 0
]
.

Then
P

[
∀iYi = 0

]
6 c−1

E

[
exp

(
−(c/e)

∑

i

Xi

) ]
.

We use this with Xj := 1{S∩Bj 6=∅} and Yj := 1{S∩Bj∩R6=∅}.

Proof: Instead of sequential scan, average everything together.
Choose J ⊂ [n] randomly, Bernoulli(1−p). Get E

[
Y pY

]
> cE

[
X pY +1

]
.

So, E[Z ] > 0, where Z := (Y − c p X) pY . Choose p := e−1. Maximize
Z over Y , and get the bound Z 6 exp(−1 − cX/e). Altogether,
c e−1

P
[
Y = 0 < X

]
6 E

[
1X>0 exp(−1 − cX/e)

]
, and done.
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Final result for the spectral sample

If r ∈ [1, n], then
{
|Sn| < E|Sr|

}
is basically equivalent to being contained

inside some r × r sub-square:

P
[
0 < |Sn| < E|Sr|

]
≍ α4(r, n)2

(n

r

)2

.

In particular, on the triangular lattice ∆,

P
[
0 < |Sn| < λE|Sn|

]
≍ λ2/3.

The scaling limit of Sn is a conformally invariant Cantor-set with Hausdorff-
dimension 3/4.

GPS (2010-11) proves that the scaling limit of dynamical percolation exists
as a Markov process; for mesh 1/n the time-scale is tn−3/4+o(1). The above
implies that this process is ergodic, with correlations decaying as t−2/3.
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Question 1: Can one build similar proofs for other Boolean functions?

Question 2: Self-similarity of Pivn and Sn is a lot of restriction. The
entropy of such random sets Xn should be at most E|Xn|, i.e., there is no
log factor as it would be in uniform:

Fractal percolation on a b-ary tree, by always choosing j random children,
to depth h. This is uniform measure on

(
b

j

)(
b

j

)j

· · ·
(

b

j

)jh−1

=

(
b

j

)jh−1
j−1

subsets, so entropy is const(b, j) · jh, while size is jh.
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In particular, Influence-Entropy conjecture [Friedgut-Kalai 1996]: For some
universal constant C, for any Boolean function f ,

SpecEnt(f) :=
∑

S⊂[n]

f̂(S)2 log
1

f̂(S)2
6 C ×

× Influence(f) := E|Sf | = E|Pivf | =
∑

S⊂[n]

f̂(S)2|S| .

I think I can do it for Pivn, but not enough independence is known in Sn.

Gil Kalai’s motivating example: Recursive 3-Wise Majority:

Pivotal set is the leaves of a Galton-Watson tree with offspring distribution
P

[
π = 0

]
= 1/4 and P

[
π = 2

]
= 3/4.

Spectral sample is the leaves of a Galton-Watson tree with offspring
distribution P

[
σ = 1

]
= 3/4 and P

[
σ = 3

]
= 1/4.

Note that E[π ] = E[σ ] = 3/2 and E[π2 ] = E[σ2 ] = 3.
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General Boolean functions?

Random Restriction Lemma + Strong Separation Lemma suggest that
typical random restriction of a large Boolean function might look “generic”.
And then could continue recursively, to get tree-like structure (except that
we don’t have enough independence. . . ). Is that naive?

Two results in similar directions:

Szemerédi Regularity Lemma ‘75: large dense graphs look random.

Chatterjee-Ledoux ‘09: If M is a large Hermitian matrix, and k is large,
then the spectral measure of almost all principal submatrices of M of order
k is almost the same (but depends on M , of course).
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